首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current multi-scale computational models of ventricular electromechanics describe the full process of cardiac contraction on both the micro- and macro- scales including: the depolarization of cardiac cells, the release of calcium from intracellular stores, tension generation by cardiac myofilaments, and mechanical contraction of the whole heart. Such models are used to reveal basic mechanisms of cardiac contraction as well as the mechanisms of cardiac dysfunction in disease conditions. In this paper, we present a methodology to construct finite element electromechanical models of ventricular contraction with anatomically accurate ventricular geometry based on magnetic resonance and diffusion tensor magnetic resonance imaging of the heart. The electromechanical model couples detailed representations of the cardiac cell membrane, cardiac myofilament dynamics, electrical impulse propagation, ventricular contraction, and circulation to simulate the electrical and mechanical activity of the ventricles. The utility of the model is demonstrated in an example simulation of contraction during sinus rhythm using a model of the normal canine ventricles.  相似文献   

2.
Heart failure with preserved ejection fraction (HFpEF) is a complex disease associated with multiple co-morbidities, where impaired cardiac mechanics are often the end effect. At the cellular level, cardiac mechanics can be pharmacologically manipulated by altering calcium signalling and the sarcomere. However, the link between cellular level modulations and whole organ pump function is incompletely understood. Our goal is to develop and use a multi-scale computational cardiac mechanics model of the obese ZSF1 HFpEF rat to identify important biomechanical mechanisms that underpin impaired cardiac function and to predict how whole-heart mechanical function can be recovered through altering cellular calcium dynamics and/or cellular contraction. The rat heart was modelled using a 3D biventricular biomechanics model. Biomechanics were described by 16 parameters, corresponding to intracellular calcium transient, sarcomere dynamics, cardiac tissue and hemodynamics properties. The model simulated left ventricular (LV) pressure-volume loops that were described by 14 scalar features. We trained a Gaussian process emulator to map the 16 input parameters to each of the 14 outputs. A global sensitivity analysis was performed, and identified calcium dynamics and thin and thick filament kinetics as key determinants of the organ scale pump function. We employed Bayesian history matching to build a model of the ZSF1 rat heart. Next, we recovered the LV function, described by ejection fraction, peak pressure, maximum rate of pressure rise and isovolumetric relaxation time constant. We found that by manipulating calcium, thin and thick filament properties we can recover 34%, 28% and 24% of the LV function in the ZSF1 rat heart, respectively, and 39% if we manipulate all of them together. We demonstrated how a combination of biophysically based models and their derived emulators can be used to identify potential pharmacological targets. We predicted that cardiac function can be best recovered in ZSF1 rats by desensitising the myofilament and reducing the affinity to intracellular calcium concentration and overall prolonging the sarcomere staying in the active force generating state.  相似文献   

3.
Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Cai) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ventricular action potential model, we modified the L-type calcium (Ca) current (ICa,L) and Cai cycling formulations based on new experimental patch-clamp data obtained in isolated rabbit ventricular myocytes, using the perforated patch configuration at 35-37°C. Incorporating a minimal seven-state Markovian model of ICa,L that reproduced Ca- and voltage-dependent kinetics in combination with our previously published dynamic Cai cycling model, the new model replicates experimentally observed action potential duration and Cai transient alternans at rapid heart rates, and accurately reproduces experimental action potential duration restitution curves obtained by either dynamic or S1S2 pacing.  相似文献   

4.
5.
6.
Emerging evidence suggests that both adult cardiac cell and the cardiac stem/progenitor cell (CSPC) compartments are involved in the patho-physiology of diabetic cardiomyopathy (DCM). We evaluated whether early administration of Resveratrol, a natural antioxidant polyphenolic compound, in addition to improving cardiomyocyte function, exerts a protective role on (i) the progenitor cell pool, and (ii) the myocardial environment and its impact on CSPCs, positively interfering with the onset of DCM phenotype. Adult Wistar rats (n?=?128) with streptozotocin-induced type-1 diabetes were either untreated (D group; n?=?54) or subjected to administration of trans-Resveratrol (i.p. injection: 2.5 mg/Kg/day; DR group; n?=?64). Twenty-five rats constituted the control group (C). After 1, 3 or 8 weeks of hyperglycemia, we evaluated cardiac hemodynamic performance, and cardiomyocyte contractile properties and intracellular calcium dynamics. Myocardial remodeling and tissue inflammation were also assessed by morphometry, immunohistochemistry and immunoblotting. Eventually, the impact of the diabetic "milieu" on CSPC turnover was analyzed in co-cultures of healthy CSPCs and cardiomyocytes isolated from D and DR diabetic hearts. In untreated animals, cardiac function was maintained during the first 3 weeks of hyperglycemia, although a definite ventricular remodeling was already present, mainly characterized by a marked loss of CSPCs and adult cardiac cells. Relevant signs of ventricular dysfunction appeared after 8 weeks of diabetes, and included: 1) a significant reduction in ±dP/dt in comparison with C group, 2) a prolongation of isovolumic contraction/relaxation times, 3) an impaired contraction of isolated cardiomyocytes associated with altered intracellular calcium dynamics. Resveratrol administration reduced atrial CSPC loss, succeeded in preserving the functional abilities of CSPCs and mature cardiac cells, improved cardiac environment by reducing inflammatory state and decreased unfavorable ventricular remodeling of the diabetic heart, leading to a marked recovery of ventricular function. These findings indicate that RSV can constitute an adjuvant therapeutic option in DCM prevention.  相似文献   

7.
Ventricular fibrillation (VF), the major cause of sudden cardiac death, is typically preceded by ventricular tachycardia (VT), but the mechanisms underlying the transition from VT to VF are poorly understood. Intracellular Ca(2+) overload occurs during rapid heart rates typical of VT and is also known to promote arrhythmias. We therefore studied the role of intracellular Ca(2+) dynamics in the transition from VT to VF, using a combined experimental and mathematical modeling approach. Our results show that 1) rapid pacing of rabbit ventricular myocytes at 35 degrees C led to increased intracellular Ca(2+) levels and complex patterns of action potential (AP) configuration and the intracellular Ca(2+) transients; 2) the complex patterns of the Ca(2+) transient arose directly from the dynamics of intracellular Ca(2+) cycling, and were not merely passive responses to beat-to-beat alterations in AP; 3) the complex Ca(2+) dynamics were simulated in a modified version of the Luo-Rudy (LR) ventricular action potential with improved intracellular Ca(2+) dynamics, and showed good agreement with the experimental findings in isolated myocytes; and 4) when incorporated into simulated two-dimensional cardiac tissue, this action potential model produced a form of spiral wave breakup from VT to a VF-like state in which intracellular Ca(2+) dynamics played a key role through its influence on Ca(2+)-sensitive membrane currents such as I(Ca), I(NaCa), and I(ns(Ca)). To the extent that spiral wave breakup is useful as a model for the transition from VT to VF, these findings suggest that intracellular Ca(2+) dynamics may play an important role in the destabilization of VT and its degeneration into VF.  相似文献   

8.
9.
The experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. In this article we introduce a mathematical model of the action potential of human ventricular cells that, while including a high level of electrophysiological detail, is computationally cost-effective enough to be applied in large-scale spatial simulations for the study of reentrant arrhythmias. The model is based on recent experimental data on most of the major ionic currents: the fast sodium, L-type calcium, transient outward, rapid and slow delayed rectifier, and inward rectifier currents. The model includes a basic calcium dynamics, allowing for the realistic modeling of calcium transients, calcium current inactivation, and the contraction staircase. We are able to reproduce human epicardial, endocardial, and M cell action potentials and show that differences can be explained by differences in the transient outward and slow delayed rectifier currents. Our model reproduces the experimentally observed data on action potential duration restitution, which is an important characteristic for reentrant arrhythmias. The conduction velocity restitution of our model is broader than in other models and agrees better with available data. Finally, we model the dynamics of spiral wave rotation in a two-dimensional sheet of human ventricular tissue and show that the spiral wave follows a complex meandering pattern and has a period of 265 ms. We conclude that the proposed model reproduces a variety of electrophysiological behaviors and provides a basis for studies of reentrant arrhythmias in human ventricular tissue.  相似文献   

10.
Sudden cardiac arrest is a malfunction of the heart’s electrical system, typically caused by ventricular arrhythmias, that can lead to sudden cardiac death (SCD) within minutes. Epidemiological studies have shown that SCD and ventricular arrhythmias are more likely to occur in the morning than in the evening, and laboratory studies indicate that these daily rhythms in adverse cardiovascular events are at least partially under the control of the endogenous circadian timekeeping system. However, the biophysical mechanisms linking molecular circadian clocks to cardiac arrhythmogenesis are not fully understood. Recent experiments have shown that L-type calcium channels exhibit circadian rhythms in both expression and function in guinea pig ventricular cardiomyocytes. We developed an electrophysiological model of these cells to simulate the effect of circadian variation in L-type calcium conductance. In our simulations, we found that there is a circadian pattern in the occurrence of early afterdepolarizations (EADs), which are abnormal depolarizations during the repolarization phase of a cardiac action potential that can trigger fatal ventricular arrhythmias. Specifically, the model produces EADs in the morning, but not at other times of day. We show that the model exhibits a codimension-2 Takens-Bogdanov bifurcation that serves as an organizing center for different types of EAD dynamics. We also simulated a two-dimensional spatial version of this model across a circadian cycle. We found that there is a circadian pattern in the breakup of spiral waves, which represents ventricular fibrillation in cardiac tissue. Specifically, the model produces spiral wave breakup in the morning, but not in the evening. Our computational study is the first, to our knowledge, to propose a link between circadian rhythms and EAD formation and suggests that the efficacy of drugs targeting EAD-mediated arrhythmias may depend on the time of day that they are administered.  相似文献   

11.
Arrhythmogenic cardiomyopathy, or its most well-known subform arrhythmogenic right ventricular cardiomyopathy (ARVC), is a cardiac disease mainly characterised by a gradual replacement of the myocardial mass by fibrous and fatty tissue, leading to dilatation of the ventricular wall, arrhythmias and progression towards heart failure. ARVC is commonly regarded as a disease of the intercalated disk in which mutations in desmosomal proteins are an important causative factor. Interestingly, the Dutch founder mutation PLN R14Del has been identified to play an additional, and major, role in ARVC patients within the Netherlands. This is remarkable since the phospholamban (PLN) protein plays a leading role in regulation of the sarcoplasmic reticulum calcium load rather than in the establishment of intercellular integrity. In this review we outline the intracellular cardiac calcium dynamics and relate pathophysiological signalling, induced by disturbed calcium handling, with activation of calmodulin dependent kinase II (CaMKII) and calcineurin A (CnA). We postulate a thus far unrecognised role for Ca2+ sensitive signalling proteins in maladaptive remodelling of the macromolecular protein complex that forms the intercalated disk, during pro-arrhythmic remodelling of the heart.  相似文献   

12.
13.
Many cellular functions are regulated by the Ca(2+) signal which contains specific information in the form of frequency, amplitude, and duration of the oscillatory dynamics. Any alterations or dysfunctions of components in the calcium signaling pathway of cardiac myocytes may lead to a diverse range of cardiac diseases including hypertrophy and heart failure. In this study, we have investigated the hidden dynamics of the intracellular Ca(2+) signaling and the functional roles of its regulatory mechanism through in silico simulations and parameter sensitivity analysis based on an experimentally verified mathematical model. It was revealed that the Ca(2+) dynamics of cardiac myocytes are determined by the balance among various system parameters. Moreover, it was found through the parameter sensitivity analysis that the self-oscillatory Ca(2+) dynamics are most sensitive to the Ca(2+) leakage rate of the sarcolemmal membrane and the maximum rate of NCX, suggesting that these two components have dominant effects on circulating the cytosolic Ca(2+).  相似文献   

14.
Cao CM  Xia Q  Zhang X  Xu WH  Jiang HD  Chen JZ 《Life sciences》2003,72(22):2451-2463
The aim of the present study is to investigate the effect of Salvia miltiorrhiza (SM) on contraction and the intracellular calcium of isolated ventricular myocytes during normoxia or anoxia and reoxygenation using a video tracking system and spectrofluorometry. Cardiac ventricular myocytes were isolated enzymatically by collagenase and exposed to 5 min of anoxia followed by 10 min of reoxygenation. SM (1-9 g/L) depressed both contraction and the [Ca(2+)](i) transient in a dose-dependent manner. SM did not affect the diastolic calcium level and the sarcolemmal Ca(2+) channel of myocytes but decreased the caffeine-induced calcium release. During anoxia, the +/-dL/dtmax, amplitudes of contraction (dL) of cell contraction and [Ca(2+)](i) transients were decreased, while the diastolic calcium level was increased. None of the parameters returned to the pre-anoxia level during reoxygenaton. However, SM (3 g/L) did attenuate the changes in cell contraction and intracellular calcium induced by anoxia and reoxygenation. It is concluded that SM has different effects on normoxic and anoxic cardiomyocytes. The SM-induced reduction of changes in contraction and intracellular calcium induced by anoxia/reoxygenation indicates that SM may be beneficial for cardiac tissue in recovery of mechanical function and intracellular calcium homeostasis.  相似文献   

15.
The deficiency of dystrophin, a critical membrane stabilizing protein, in the mdx mouse causes an elevation in intracellular calcium in myocytes. One mechanism that could elicit increases in intracellular calcium is enhanced influx via the L-type calcium channels. This study investigated the effects of the dihydropyridines BAY K 8644 and nifedipine and alterations in dihydropyridine receptors in dystrophin-deficient mdx hearts. A lower force of contraction and a reduced potency of extracellular calcium (P < 0.05) were evident in mdx left atria. The dihydropyridine agonist BAY K 8644 and antagonist nifedipine had 2.7- and 1.9-fold lower potencies in contracting left atria (P < 0.05). This corresponded with a 2.0-fold reduction in dihydropyridine receptor affinity evident from radioligand binding studies of mdx ventricular homogenates (P < 0.05). Increased ventricular dihydropyridine receptor protein was evident from both radioligand binding studies and Western blot analysis and was accompanied by increased mRNA levels (P < 0.05). Patch-clamp studies in isolated ventricular myocytes showed no change in L-type calcium current density but revealed delayed channel inactivation (P < 0.05). This study indicates that a deficiency of dystrophin leads to changes in dihydropyridine receptors and L-type calcium channel properties that may contribute to enhanced calcium influx. Increased influx is a potential mechanism for the calcium overload observed in dystrophin-deficient cardiac muscle.  相似文献   

16.
The most common cause of cardiac side effects of pharmaco-therapy is acquired long QT syndrome, which is characterized by abnormal cardiac repolarization and most often caused by direct blockade of the cardiac potassium channel human ether a-go-go-related gene (hERG). However, little is known about therapeutic compounds that target ion channels other than hERG. We have discovered that arsenic trioxide (As(2)O(3)), a very potent antineoplastic compound for the treatment of acute promyelocytic leukemia, is proarrhythmic via two separate mechanisms: a well characterized inhibition of hERG/I(Kr) trafficking and a poorly understood increase of cardiac calcium currents. We have analyzed the latter mechanism in the present study using biochemical and electrophysiological methods. We find that oxidative inactivation of the lipid phosphatase PTEN by As(2)O(3) enhances cardiac calcium currents in the therapeutic concentration range via a PI3Kα-dependent increase in phosphatidylinositol 3,4,5-triphosphate (PIP(3)) production. In guinea pig ventricular myocytes, even a modest reduction in PTEN activity is sufficient to increase cellular PIP(3) levels. Under control conditions, PIP(3) levels are kept low by PTEN and do not affect calcium current amplitudes. Based on pharmacological experiments and intracellular infusion of PIP(3), we propose that in guinea pig ventricular myocytes, PIP(3) regulates calcium currents independently of the protein kinase Akt along a pathway that includes a secondary oxidation-sensitive target. Overall, our report describes a novel form of acquired long QT syndrome where the target modified by As(2)O(3) is an intracellular signaling cascade.  相似文献   

17.
Heart failure is the final common pathway of various cardiac pathologies and is associated with sudden cardiac death, mostly caused by ventricular arrhythmias. In this paper we briefly review the electrophysiological remodeling and the alterations in intracellular calcium handling, and the resulting arrhythmogenic mechanisms associated with heart failure. Intercellular uncoupling and fibrosis are identified as a major arrhythmogenic factors. Diet and ventricular wall stretch are discussed as modulating factors. Finally, emphasis is placed on the hitherto poorly studied aspects of right ventricular failure. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions.  相似文献   

18.
The primary purpose of this article is to present a basic overview of some key teaching concepts that should be considered for inclusion in an six- to eight-lecture introductory block on the regulation of cardiac performance for graduate students. Within the context of cardiac excitation-contraction coupling, this review incorporates information on Ca(2+) microdomains and local control theory, with particular emphasis on the role of Ca(2+) sparks as a key regulatory component of ventricular myocyte contraction dynamics. Recent information pertaining to local Ca(2+) cycling in sinoatrial nodal cells (SANCs) as a mechanism underlying cardiac automaticity is also presented as part of the recently described coupled-clock pacemaker system. The details of this regulation are emerging; however, the notion that the sequestration and release of Ca(2+) from internal stores in SANCs (similar to that observed in ventricular myocytes) regulates the rhythmic excitation of the heart (i.e., membrane ion channels) is an important advancement in this area. The regulatory role of cardiac adrenergic receptors on cardiac rate and function is also included, and fundamental concepts related to intracellular signaling are discussed. An important point of emphasis is that whole organ cardiac dynamics can be traced back to cellular events regulating intracellular Ca(2+) homeostasis and, as such, provides an important conceptual framework from which students can begin to think about whole organ physiology in health and disease. Greater synchrony of Ca(2+)-regulatory mechanisms between ventricular and pacemaker cells should enhance student comprehension of complex regulatory phenomenon in cardiac muscle.  相似文献   

19.
The role of the cardiac isoform of the electrogenic sodium-bicarbonate ion cotransporter (NBCe1) in cardiac remodeling is not fully understood. The aim of this study was to assess the effects of NBCe1 overexpression on cardiac remodeling induced by myocardial infarction (MI) in mice. We generated NBCe1 transgenic (Tg) mice and NBCe1 overexpressing adult mouse ventricular myocytes (AMVMs) to investigate the role of NBCe1 on post-MI remodeling and calcium kinetics. Tg mice showed a markedly higher mortality rate and larger infarct size after MI. At 6 weeks after MI, the maximum rising rates of left ventricular pressure (dp/dt), contractility index, and the exponential time constant of relaxation (τ) were markedly lower, and there was higher cardiomyocyte apoptosis, in Tg mice compared with WT mice. In cultured AMVMs, overexpression of NBCe1 decreased sarcomere shortening and calcium amplitude. In WT AMVMs, the rates of the rise and decay phase of calcium transients, indicated by the rising time (Tpeak, time to peak) and decay time constant (τd), and the number of apoptotic cells, were increased following hypoxia, while overexpression of NBCe1 further increased Tpeak and cellular apoptosis, but not τd. Intracellular resting calcium and sodium concentrations were significantly increased following both hypoxia and NBCe1 overexpression. Co-treatment with S0859, an NBCe1 antagonist, blocked the hypoxia-induced increase in Tpeak, τd, intracellular resting calcium and sodium concentrations, and apoptosis in cardiomyocytes. These findings indicate that NBCe1 overexpression promotes cardiac remodeling by increasing intracellular calcium overload. Therefore, NBCe1 should be a potential target for treatment of cardiac remodeling.  相似文献   

20.
Myocardial infarctions and stroke arise primarily as a result of hypoxia/ischemia-induced cell injury. However, the molecular mechanism of cardiac cell death due to hypoxia has not been elucidated. We showed here that chemical hypoxia induced by 1 mM azide triggered apoptosis of isolated neonatal rat ventricular cardiac myocytes but had no effect on cardiac fibroblasts. The azide-induced cardiomyocyte apoptosis could be characterized by a reversible initiation phase (0-6 h after azide exposure) during which cytosolic ATP levels remained little affected. This was followed by an irreversible execution phase (12-18 h) exhibiting prominent internucleosomal DNA fragmentation, cell membrane leakage, mitochondrial dysfunction, and increased calpain messenger RNA. Blocking extracellular calcium influx or intracellular calcium release was each effective in suppressing myocyte apoptosis. Cell death was also found to be mediated by calcium sensitive signal transduction events based on the use of specific antagonists. Consistent with the induction of calpain expression during apoptosis, blocking de novo protein synthesis and calpain activity inhibited cell death. These regulatory features coupled with the ease of the cell system suggest that the myocyte apoptosis model described here should be useful in the study of events leading to the demise of the myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号