首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Electron-electron double resonance (ELDOR) has been applied to the study of specific interactions of 15N-spin-labeled stearic acid with the retinal chromophore of a rhodopsin analogue containing a 14N spin-labeled retinal. Both the 5 and 16 spin-labeled stearic acids were incorporated into the lipid bilayer of rod outer segment membranes containing the spin-labeled pigment. No interaction between the 15N and 14N spin-labels was observed in rhodopsin or the metarhodopsin II state with either of these labeled stearic acids. Therefore in this system the ring portion of the chromophore must be highly sequestered from the phospholipid bilayer in both the rhodopsin and metarhodopsin II forms.  相似文献   

2.
An analogue of all-trans retinal in which all-trans/13-cis isomerization is blocked by a carbon bridge from C12 to C14 was incorporated into the apoproteins of sensory rhodopsin I (SR-I) and sensory rhodopsin II (SR-II, also called phoborhodopsin) in retinal-deficient Halobacterium halobium membranes. The "all-trans-locked" retinal analogue forms SR-I and SR-II analogue pigments with similar absorption spectra as the native pigments. Blocking isomerization prevents the formation of the long-lived intermediate of the SR-I photocycle (S373) and those of the SR-II photocycle (S-II360 and S-II530). A computerized cell tracking and motion analysis system capable of detecting 2% of native pigment activity was used for assessing motility behavior. Introduction of the locked analogue into SR-I or SR-II apoprotein in vivo did not restore phototactic responses through any of the three known photosensory systems (SR-I attractant, SR-I repellent, or SR-II repellent). We conclude that unlike the phototaxis receptor of Chlamydomonas reinhardtii, which has been reported to mediate physiological responses without specific double-bond isomerization of its retinal chromophore (Foster et al., 1989), all-trans/13-cis isomerization is essential for SR-I and SR-II phototaxis signaling.  相似文献   

3.
Rhodopsin is the prototypical G protein-coupled receptor, responsible for detection of dim light in vision. Upon absorption of a photon, rhodopsin undergoes structural changes, characterised by distinct photointermediates. Currently, only the ground-state structure has been described. We have determined a density map of a photostationary state highly enriched in metarhodopsin I, to a resolution of 5.5 A in the membrane plane, by electron crystallography. The map shows density for helix 8, the cytoplasmic loops, the extracellular plug, all tryptophan residues, an ordered cholesterol molecule and the beta-ionone ring. Comparison of this map with X-ray structures of the ground state reveals that metarhodopsin I formation does not involve large rigid-body movements of helices, but there is a rearrangement close to the bend of helix 6, at the level of the retinal chromophore. There is no gradual build-up of the large conformational change known to accompany metarhodopsin II formation. The protein remains in a conformation similar to that of the ground state until late in the photobleaching process.  相似文献   

4.
Vogel R  Siebert F  Lüdeke S  Hirshfeld A  Sheves M 《Biochemistry》2005,44(35):11684-11699
Activation of the visual pigment rhodopsin is initiated by isomerization of its retinal chromophore to the all-trans geometry, which drives the conformation of the protein to the active state. We have examined by FTIR spectroscopy the impact of a series of modifications at the ring of retinal on the activation process and on molecular interactions within the binding pocket. Deletion of ring methyl groups at C1 and C5 or replacement of the ring in diethyl or ethyl-methyl acyclic analogues resulted in partial agonists, for which the conformational equilibrium between the Meta I and Meta II photoproduct is shifted from the active Meta II side to the inactive Meta I side. While the Meta II states of these artificial pigments had a conformation similar to those of native Meta II, the Meta I states were different. Modifications on the ring of retinal had a particular impact on the interaction of Glu 122 within the ring-binding pocket and are shown to interfere with the Glu 134-mediated proton uptake during formation of Meta II. We further found, upon partial deletion of ring constituents, a decrease of the entropy change of the transition from Meta I to Meta II by up to 50%, while the concomitant reduction of the enthalpy term was less pronounced. These findings underline the particular importance of the ring and the ring methyl groups and are discussed in a model of receptor activation.  相似文献   

5.
The effect of the length of the retinal polyene side chain on bacterioopsin pigment formation and function has been investigated with two series of synthetic retinal analogues. Cyclohexyl derivatives with polyene chains one carbon longer and one or more carbons shorter than retinal and linear polyenes with no ring have been synthesized and characterized. Compounds of six carbons or less in the polyene chain form pigments very poorly or not at all with bacterioopsin. Compounds containing at least seven carbons in the chain are found to form reasonably stable bacterioopsin pigments that show a small shift in absorbance on irradiation. However, photocycling and proton photorelease are not detected. The analogue with nine carbons in the polyene chain (one less than retinal) forms a stable pigment with an M-type intermediate but demonstrates reduced amounts of photocycling and light-activated proton release. The analogue with a polyene chain identical with that of retinal, but containing no ring, forms a pigment that shows both an efficient light-activated proton photocycle and release. The pigment containing the chromophore with the polyene chain one carbon longer than retinal is likewise fully active. We thus conclude that the length of the polyene chain must be at least 9 carbons for the formation of a stable pigment that photocycles and must be 10 carbons for both the photocycle and light-activated proton release to have a high quantum efficiency.  相似文献   

6.
Vogel R  Fan GB  Sheves M  Siebert F 《Biochemistry》2000,39(30):8895-8908
The formation of the active rhodopsin state metarhodopsin II (MII) is believed to be partially governed by specific steric constraints imposed onto the protein by the 9-methyl group of the retinal chromophore. We studied the properties of the synthetic pigment 9-demethyl rhodopsin (9dm-Rho), consisting of the rhodopsin apoprotein regenerated with synthetic retinal lacking the 9-methyl group, by UV-vis and Fourier transform infrared difference spectroscopy. Low activation rates of the visual G-protein transducin by the modified pigment reported in previous studies are shown to not be caused by the reduced activity of its MII state, but to be due to a dramatic equilibrium shift from MII to its immediate precursor, MI. The MII state of 9dm-Rho displays only a partial deprotonation of the retinal Schiff base, leading to the formation of two MII subspecies absorbing at 380 and 470 nm, both of which seem to be involved in transducin activation. The rate of MII formation is slowed by 2 orders of magnitude compared to rhodopsin. The dark state and the MI state of 9dm-Rho are distinctly different from their respective states in the native pigment, pointing to a more relaxed fit of the retinal chromophore in its binding pocket. The shifted equilibrium between MI and MII is therefore discussed in terms of an increased entropy of the 9dm-Rho MI state due to changed steric interactions.  相似文献   

7.
In visual pigments, opsin proteins regulate the spectral absorption of a retinal chromophore by mechanisms that change the energy level of the excited electronic state relative to the ground state. We have studied these mechanisms by using photocurrent recording to measure the spectral sensitivities of individual red rods and red (long-wavelength-sensitive) and blue (short-wavelength-sensitive) cones of salamander before and after replacing the native 3-dehydro 11-cis retinal chromophore with retinal analogs: 11-cis retinal, 3-dehydro 9-cis retinal, 9-cis retinal, and 5,6-dihydro 9-cis retinal. The protonated Schiff's bases of analogs with unsaturated bonds in the ring had broader spectra than the same chromophores bound to opsins. Saturation of the bonds in the ring reduced the spectral bandwidths of the protonated Schiff's bases and the opsin-bound chromophores and made them similar to each other. This indicates that torsion of the ring produces spectral broadening and that torsion is limited by opsin. Saturating the 5,6 double bond in retinal reduced the perturbation of the chromophore by opsin in red and in blue cones but not in red rods. Thus an interaction between opsin and the chromophoric ring shifts the spectral maxima of the red and blue cone pigments, but not that of the red rod pigment.  相似文献   

8.
Halorhodopsin (HR), the light-driven chloride transport pigment of Halobacterium halobium, was bleached and reconstituted with retinal analogues with the pi electron system interrupted at different locations (dihydroretinals). The absorption maxima of the artificial pigments formed with the dihydroretinals are found to be very similar to those of the corresponding pigments formed by reconstitution of bacteriorhodopsin (BR) and sensory rhodopsin (SR). This strongly suggests that the distribution of charges around the retinal is similar in all three bacterial rhodopsins. Comparison of the primary, and proposed secondary, structures for HR and BR reveal conserved asparagine (asp) and arginine (arg) residues, which are likely candidates for the ionizable amino acids that interact with the retinal. In a second set of experiments absorption shifts due to the binding of anions to Sites I and II in HR, reconstituted with different retinal analogues, were used to estimate the locations of these binding sites relative to the retinal. Site I is localized near the Schiff base, and Site II near the ionone ring. On the basis of these results a structural model for HR is proposed, which accounts for the spectroscopic properties of HR in terms of the three buried arg residues and two of the buried asp residues in the protein.  相似文献   

9.
Photochemical and subsequent thermal reactions of rhodopsin containing 9-cis-retinal [Rh(9)] or one of four analogues with 9-cis geometries formed from ring-modified retinals, alpha-retinal [alpha Rh(9)], acyclic retinal [AcRh(9)], acyclic alpha-retinal [Ac alpha Rh(9)], and 5-isopropyl-alpha-retinal [P alpha Rh(9)] were investigated by low-temperature spectrophotometry and nanosecond laser photolysis. Irradiation of each pigment at -180 degrees C produced a photosteady-state mixture containing the original 9-cis pigment, its 11-cis pigment, and a photoproduct, indicating that the primary process of each pigment is a photoisomerization of its chromophore. The photoproduct produced by the irradiation of AcRh(9) had an absorption spectrum red shifted from the original AcRh(9) and was identified as the batho intermediate of AcRh(9). It was converted to the lumi intermediate through a metastable species, the BL intermediate, which has never been detected in Rh(9) at low temperature and whose absorption maximum was at shorter wavelengths than that of the batho intermediate. In contrast, the absorption maxima of the photoproducts produced from the other analogue pigments were at shorter wavelengths than those of the original pigments. They were identified as BL intermediates on the basis of their absorption maxima and thermal stabilities. The formation time constant of the lumi intermediate at room temperature was found to be dependent on the extent of modification of the ring portion of the chromophore, decreasing with the complete truncation of the cyclohexenyl ring [Ac alpha Rh(9)] and increasing with the attachment of the isopropyl group to the ring [P alpha Rh(9)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Halorhodopsin (HR) and sensory rhodopsin (SR) have been regenerated with retinal analogues that are covalently locked in the 6-s-cis or 6-s-trans conformations. Both pigments regenerate more completely with the locked 6-s-trans retinal and produce analogue pigments with absorption maxima (577 nm for HR and 592 nm for SR) nearly identical to those of the native pigments (577 and 587 nm). This indicates that HR and SR bind retinal in the 6-s-trans conformation. The opsin shift for the locked 6-s-trans analogue in HR is 1,200 cm-1 less than that for the native chromophore (5,400 cm-1). The opsin shift for the 6-s-trans analogue in SR is 1,100 cm-1 less than that for the native retinal (5,700 cm-1). This demonstrates that approximately 20% of the opsin shift in these pigments arises from a protein-induced change in the chromophore conformation from twisted 6-s-cis in solution to planar 6-s-trans in the protein. The reduced opsin shift observed for the locked 6-s-cis analogue pigments compared with the locked 6-s-trans pigments may be due to a positive electrostatic perturbation near C7.  相似文献   

11.
The signaling state metarhodopsin II of the visual pigment rhodopsin decays to the apoprotein opsin and all-trans retinal, which are then regenerated to rhodopsin by the visual cycle. Opsin is known to have at neutral pH only a small residual constitutive activity toward its G protein transducin, which is thought to play a considerable role in light adaptation (bleaching desensitization). In this study we show with Fourier-transform infrared spectroscopy that after metarhodopsin II decay, opsin exists in two conformational states that are in a pH-dependent equilibrium at 30 degrees C with a pK of 4.1 in the presence of hydroxylamine scavenging the endogenous all-trans retinal. Despite the lack of the native agonist in its binding pocket, the low pH opsin conformation is very similar to that of metarhodopsin II and is likewise stabilized by peptides derived from rhodopsin's cognate G protein, transducin. The high pH form, on the other hand, has some conformational similarity to the inactive metarhodopsin I state. We therefore conclude that the opsin apoprotein displays intrinsic conformational states that are merely modulated by bound all-trans retinal.  相似文献   

12.
A comparative study on the chromophore (retinal) binding sites of the opsin (R-photopsin) from chicken red-sensitive cone visual pigment (iodopsin) and that scotopsin) from bovine rod pigment (rhodopsin) was made by the aid of geometric isomers of retinal (all-trans, 13-cis, 11-cis, 9-cis, and 7-cis) and retinal analogues including fluorinated (14-F, 12-F, 10-F, and 8-F) and methylated (12-methyl) 11-cis-retinals. The stereoselectivity of R-photopsin for the retinal isomers and analogues was almost identical with that of scotopsin, indicating that the shapes of the chromophore binding sites of both opsins are similar, although the former appears to be somewhat more restricted than the latter. The rates of pigment formation from R-photopsin were considerably greater than those from scotopsin. In addition, all the iodopsin isomers and analogues were more susceptible to hydroxylamine than were the rhodopsin ones. These observations suggest that the retinal binding site of iodopsin is located near the protein surface. On the basis of the spectral properties of fluorinated analogues, a polar group in the chromophore binding site of iodopsin as well as rhodopsin was estimated to be located near the hydrogen atom at the C10 position of the retinylidene chromophore. A large difference in wavelength between the absorption maxima of iodopsin and rhodopsin was significantly reduced in the 9-cis and 7-cis pigments. On the assumption that the retinylidene chromophore is anchored rigidly at the alpha-carbon of the lysine residue and loosely at the cyclohexenyl ring, each of the two isomers would have the Schiff-base nitrogen at a position altered from that of the 11-cis pigments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Nonbleachable rhodopsins containing retinal moieties with fixed 11-ene structures have been prepared. When the nonbleachable rhodopsin analogue corresponding to the natural pigment was flash-photolysed at 20.8 degrees C, no absorption changes occurred at the monitoring wavelengths of 380, 480, and 580 nm for the time range of 2 microseconds--10 s. This observation is in contrast to that of natural rhodopsin which showed the formation of metarhodopsin I and its decay to meta II. Irradiation of the artificial rhodopsin, 77 K, with light of 460 and 540 nm, also gave no spectral changes; in the case of natural rhodopsin, however, the irradiation leads to formation of the red-shifted intermediate bathorhodopsin. The absence of photochemistry in the artificial pigment shows that an 11-cis to trans photoisomerization of the retinal moiety is a crucial step in inducing the chain of events in te photolysis of rhodopsin.  相似文献   

14.
Deactivation of light-activated rhodopsin (metarhodopsin II) involves, after rhodopsin kinase and arrestin interactions, the hydrolysis of the covalent bond of all-trans-retinal to the apoprotein. Although the long-lived storage form metarhodopsin III is transiently formed, all-trans-retinal is eventually released from the active site. Here we address the question of whether the release results in a retinal that is freely diffusible in the lipid phase of the photoreceptor membrane. The release reaction is accompanied by an increase in intrinsic protein fluorescence (release signal), which arises from the relief of the fluorescence quenching imposed by the retinal in the active site. An analogous fluorescence decrease (uptake signal) was evoked by exogenous retinoids when they non-covalently bound to native opsin membranes. Uptake of 11-cis-retinal was faster than formation of the retinylidene linkage to the apoprotein. Endogenous all-trans-retinal released from the active site during metarhodopsin II decay did not generate the uptake signal. The data show that in addition to the retinylidene pocket (site I) there are two other retinoidbinding sites within opsin. Site II involved in the uptake signal is an entrance site, while the exit site (site III) is occupied when retinal remains bound after its release from site I. Support for a retinal channeling mechanism comes from the rhodopsin crystal structure, which unveiled two putative hydrophobic binding sites. This mechanism enables a unidirectional process for the release of photoisomerized chromophore and the uptake of newly synthesized 11-cis-retinal for the regeneration of rhodopsin.  相似文献   

15.
Kono M  Crouch RK  Oprian DD 《Biochemistry》2005,44(2):799-804
A triple mutant (F86L/T93P/S118T; bovine rhodopsin numbering) of the tiger salamander UV cone pigment appears to be trapped in an open conformation that is metarhodopsin-II-like. The pigment is able to activate transducin in the dark, and the ligand-free apoprotein is also able to activate transducin constitutively. The pigment permits protons and chloride ions from solution access to the active site as it displays a pH- and NaCl-dependent absorption spectrum not observed with the wild-type pigment. However, the wild-type properties of light-dependent activity and a pH-independent absorption spectrum are recovered upon reconstitution of the triple mutant with 11-cis-9-demethyl retinal. These results suggest that binding the native chromophore cannot deactivate the protein because of steric interactions between the protein, possibly residue 118, and the 9-methyl group of the chromophore. Furthermore, the absorption spectrum of the 9-demethyl retinal regenerated pigment exhibits a band broader and with lower extinction at the absorption maximum than either the human blue or salamander UV wild-type pigments generated with the same retinal analogue. The broad spectrum appears to be comprised of two or more species and can be well-fit by a sum of scaled spectra of the two wild-type pigments. Binding the chromophore appears to trap the pigment in two or more conformations. The triple mutant reported here represents the first example of a dark-active cone pigment and constitutively active cone opsin.  相似文献   

16.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

17.
Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II   总被引:7,自引:0,他引:7  
The resonance Raman spectra of bovine metarhodopsin I and metarhodopsin II have been measured. The spectra are compared with model chromophore resonance Raman data. It was found that metarhodopsin I is linked to opsin via a protonated Schiff base linkage, whereas metarhodopsin II is linked by an unprotonated Schiff base. A recent suggestion that the chromophore of metarhodopsin II is retinal is explicitly disproved. The chromophores of both metarhodopsins are found to have an essentially all-trans conformation. The basic mechanism for color regulation in both forms appears to be electron delocalization. The data tend to support the model of cis-trans isomerization as the primary mechanism for vision. Also, the conclusions and inferences of this work on energy uses and storage by rhodopsin in neural generation are discussed.  相似文献   

18.
Invertebrate opsins are unique among the visual pigments because the light-activated conformation, metarhodopsin, is stable following exposure to light in vivo. Recovery of the light-activated pigment to the dark conformation (or resting state) occurs either thermally or photochemically. There is no evidence to suggest that the chromophore becomes detached from the protein during any stage in the formation or recovery processes. Biochemical and structural studies of invertebrate opsins have been limited by the inability to express and purify rhodopsins for structure-function studies. In this study, we used Drosophila to produce an epitope-tagged opsin, Rh1-1D4, in quantities suitable for spectroscopic and photochemical characterization. When expressed in Drosophila, Rh1-1D4 is localized to the rhabdomere membranes, has the same spectral properties in vivo as wild-type Rh1, and activates the phototransduction cascade in a normal manner. Purified Rh1-1D4 visual pigment has an absorption maximum of the dark-adapted state of 474 nm, while the metarhodopsin absorption maximum is 572 nm. However, the metarhodopsin state is not stable as purified in dodecyl maltoside but decays with kinetics that require a double-exponential fit having lifetimes of 280 and 2700 s. We investigated the primary properties of the pigment at low temperature. At 70 K, the pigment undergoes a temperature-induced red shift to 486 nm. Upon illumination with 435 nm light, a photostationary state mixture is formed consisting of bathorhodopsin (lambda(max) = 545 nm) and isorhodopsin (lambda(max) = 462 nm). We also compared the spectroscopic and photochemical properties of this pigment with other vertebrate pigments. We conclude that the binding site of Drosophila rhodopsin is similar to that of bovine rhodopsin and is characterized by a protonated Schiff base chromophore stabilized via a single negatively charged counterion.  相似文献   

19.
Das J  Crouch RK  Ma JX  Oprian DD  Kono M 《Biochemistry》2004,43(18):5532-5538
In rhodopsin, the 9-methyl group of retinal has previously been identified as being critical in linking the ligand isomerization with the subsequent protein conformational changes that result in the activation of its G protein, transducin. Here, we report studies on the role of this methyl group in the salamander rod and cone pigments. Pigments were generated by combining proteins expressed in COS cells with 11-cis 9-demethyl retinal, where the 9-methyl group on the polyene chain has been deleted. The absorption spectra of all pigments were blue-shifted. The red cone and blue cone/green rod pigments were unstable to hydroxylamine; whereas, the rhodopsin and UV cone pigments were stable. The lack of the 9-methyl group of the chromophore did not affect the ability of the red cone and blue cone/green rod pigments to activate transducin. On the other hand, with the rhodopsin and UV cone pigments, activation was diminished. Interestingly, the red cone pigment containing the retinal analogue remained active longer than the native pigment. Thus, the 9-methyl group of retinal is not important in the activation pathway of the red cone and blue cone/green rod pigments. However, for the red cone pigment, the 9-methyl group of retinal appears to be critical in the deactivation pathway.  相似文献   

20.
Absorbance difference spectra were recorded at 20 degrees C from 30 ns to milliseconds after photolysis of lauryl maltoside suspensions of artificial visual pigments derived from 9-cis isomers of 5-ethylretinal, 8,16-methanoretinal (a 6-s-trans-bicyclic analogue), or 5-demethyl-8-methylretinal. In all three pigments, the earliest intermediate that was detected had the characteristics of a mixture of bathorhodopsin and a blue-shifted intermediate, BSI, which is the first decay product of bathorhodopsin in bovine rhodopsin. The first decays resolved on the nanosecond time scale were the formation of the lumirhodopsin analogues. Subsequent decays were able to be fit with a mechanistic scheme which has been shown to apply to both membrane and detergent suspensions of rhodopsin. Large increases were seen in the amount of metarhodopsin I which appeared after photolysis of 5-ethylisorhodopsin and the bicyclic isorhodopsin analogue, while 5-demethyl-8-methylisorhodopsin more closely followed native rhodopsin in decaying through meta I380, a 380 nm absorbing precursor to metarhodopsin II. In addition to forming more metarhodopsin I, the bicyclic analogue stabilized the metarhodopsin I-metarhodopsin II equilibrium similarly to what has been previously reported for 9-demethylrhodopsin in detergent, introducing the possibility that the bicyclic analogue could similarly be defective in transducin activation. These observations support the idea that long after initial photolysis, structural details of the retinylidene chromophore continue to play a decisive role in processes leading to the activated form, metarhodopsin II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号