首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monoclonal antibody MEL-14 recognizes a lymphocyte surface structure (the MEL-14 antigen) involved in migration of lymphocytes into lymph nodes. Its use as a maturation marker for T cells within the thymus led to the view that a small population (1 to 2%) of MEL-14high thymocytes located in the inner cortex represented fully mature cells about to exit as thymus emigrants. The medulla, in this view, contained only the phenotypically mature but MEL-14low cells, and was not the source of thymus emigrants. The data we present, derived from flow-cytometric analysis of suspension-stained CBA mouse thymocytes, is not in accordance with this view. A high proportion (approximately 20%) of thymocytes express relatively high levels of MEL-14; these include some immature Ly-2- L3T4- and nonmature Ly-2+ L3T4+ thymocytes. Among the 12 to 14% thymocytes of mature phenotype (PNAlow or H-2Khigh or Ly-2+ L3T4- and Ly-2- L3T4+), more than half express relatively high levels of MEL-14. The mature phenotype and MEL-14moderate-to-high cells (8% of thymocytes) appear too numerous to account for the few percent MEL-14high cells seen in the cortex in frozen sections, and the mature phenotype but MEL-14low cells (2 to 3% of thymocytes) too few to fill the medulla; however, both together account numerically for the medullary population. By section staining, the medulla contains Ly-2- L3T4+ and Ly-2+ L3T4- cells in a characteristic 2:1 ratio; by suspension staining this ratio agrees with that of the total mature phenotype population, but not with that of the MEL-14low subset previously claimed to represent medullary cells. Another paradox is apparent when suspension staining and section staining are compared: suspension staining reveals that many mature phenotype cells coexpress high levels of both MEL-14 and H-2K, yet section staining reveals H-2Khigh cells in the medulla but not in the inner cortex, and reveals scattered MEL-14high cells throughout the cortex but not in the medulla. We suggest that section staining for MEL-14 fails to locate the mature cells that stain for MEL-14 in suspension; the few MEL-14high cells localized in both the inner and the outer cortex on section staining are predominantly immature Ly-2- L3T4- and nonmature Ly-2+ L3T4+ thymocytes; the majority of thymocytes of mature phenotype, whether MEL-14high or MEL-14low on suspension staining, are of medullary location; the medulla is the most likely immediate source of thymic emigrants.  相似文献   

2.
Thymocytes that express high levels of homing receptors for peripheral lymph nodes can be detected with the monoclonal antibody MEL-14. We have shown that in adult mice these rare MEL-14hi thymocytes a) are cortical in location and typically constitute 1 to 3% of the total thymocyte population, b) may be a major source of thymus emigrants, and c) contain a high frequency of precursors of alloreactive cytotoxic T lymphocytes. In this study we have analyzed the phenotype of the MEL-14hi thymocyte subset. Most normal adult MEL-14hi thymocytes are midsize and express the mature phenotype typical of thymus emigrants, medullary thymocytes, and peripheral T cells: they are predominantly PNAlo, H-2K+, Thy-1+, Ly-1hi, and either Lyt-2-/L3T4+ or Lyt-2+/L3T4-. These findings argue strongly for the presence of rare MEL-14hi immunocompetent cortical thymocytes that, aside from their homing receptor expression, are phenotypically indistinguishable from medullary thymocytes. However, a minority (20 to 30%) of MEL-14hi thymocytes are large and phenotypically nonmature: they express intermediate to high levels of PNA binding sites, and are H-2K- to H-2Klo, Thy-1hi, Ly-1+, and either Lyt-2+/L3T4+ or Lyt-2-/L3T4-. Through a technique that selectively labels outer cortical cells, phenotypically nonmature MEL-14hi thymocytes have been shown to be concentrated in the subcapsular blast region of the outer cortex. Although we have no direct evidence of a precursor-product relationship, we consider it likely that the phenotypically nonmature outer cortical MEL-14hi lymphoblasts give rise to phenotypically mature MEL-14hi cells located deeper in the cortex. These results are consistent with our previous proposal that MEL-14hi thymocytes are a major source of thymus emigrants, and indicate that expression of high levels of MEL-14-defined homing receptors may be closely linked to the intrathymic selection process.  相似文献   

3.
The role of lymphostromal complexes in T-cell differentiation is far from elucidated, mainly because a clear association of a particular stromal cell type with a distinct thymocyte subset has never been identified. Using an in vitro system, detecting the adherence of thymocytes to a thymic medullary epithelial cell line (E-5), we showed that the phenotype of these thymocytes was that of cortical type: Thy-1hi, LFA-1+, PNAhi, CD4+CD8+, MEL-14-/lo, IL-2R-, CD3-/lo, and TcR V beta 8-/lo. They were enriched in cells in G2/M at the time of complex formation, showed a higher basal proliferation in culture, and did not respond to PHA, IL-2 and only marginally to Con A. These data show that complex formation with mouse thymic medullary epithelium selects for CD4+CD8+ thymocytes, as shown by the marked decrease in CD4+CD8-/CD4-CD8+ thymocytes, and the incapacity of CD4-CD8- thymocytes to adhere.  相似文献   

4.
Thymic shared Ag-2 (TSA-2) is a 28-kDa, glycophosphatidylinitosol-linked cell surface molecule expressed on various T cell and thymic stromal cell subsets. It is expressed on most CD3-CD4-CD8-, CD4+CD8+, and CD3highCD4-CD8+ thymocytes but is down-regulated on approximately 40% of CD3highCD4+CD8- thymocytes. Expression on peripheral TCR-alphabeta+ T cells is similar to that of CD3+ thymocytes, although a transient down-regulation occurs with cell activation. Consistent with the recent hypothesis that emigration from the thymus is an active process, recent thymic emigrants are primarily TSA-2-/low. TSA-2 expression reveals heterogeneity among subpopulations of CD3highCD4+CD8- thymocytes and TCR-gamma delta+ T cell previously regarded as homogenous. The functional importance of TSA-2 was illustrated by the severe block in T cell differentiation caused by adding purified anti-TSA-2 mAb to reconstituted fetal thymic organ culture. While each CD25/CD44-defined triple-negative subset was present, differentiation beyond the TN stage was essentially absent, and cell numbers of all subsets were significantly below those of control cultures. Cross-linking TSA-2 on thymocytes caused a significant Ca2+ influx but no increase in apoptosis, unless anti-TSA-2 was used in conjunction with suboptimal anti-CD3 mAb. Similar treatment of mature TSA-2+ T cells had no effect on cell survival or proliferation. This study reveals TSA-2 to be a functionally important molecule in T cell development and a novel indicator of heterogeneity among a variety of developing and mature T cell populations.  相似文献   

5.
The heat-stable antigen (HSA), recognized by the monoclonal antibodies M1/69, B2A2, and J11d, is low or absent on the surface of most murine peripheral T cells but present on all but 3% of thymocytes. The CD4-CD8+ and CD4+CD8- or "single positive" thymic populations may be divided into further subgroups based on surface HSA expression. One group, CD4-CD8+ and expressing very high levels of HSA (HSA++), is an immature, T cell antigen receptor (TcR) negative, outer cortical blast cell. However, a further subdivision of CD4-CD8+ and CD4+CD8- single positives may be made, into those negative to low for HSA (HSA-) and those expressing moderate amounts of HSA (HSA+). The proportion of HSA- single positives is low in the thymus of young mice, whereas the proportion of HSA+ single positives is similar to that of the adult. Both the HSA- and the HSA+ subsets of single positive thymocytes from adult mice are CD3+ and express the normal peripheral T cell incidence of V beta 8 determinants on the TcR. On stimulation with concanavalin A in limit-dilution culture both HSA- and HSA+ subsets of single positive thymocytes give a high frequency of proliferating clones, and the clones from both HSA- and HSA+ subsets of CD4-CD8+ thymocytes are cytotoxic. Thus both HSA- and HSA+ single positive thymocytes are functionally mature. The HSA- subsets of single positive thymocytes differ from the HSA+ subsets in being slightly larger in size, in expressing higher levels of MEL-14, in binding more peanut agglutinin, and in including a proportion of cells expressing high levels of the Pgp-1 glycoprotein. It is suggested that HSA- CD4-CD8+ and HSA- CD4+CD8- thymocytes are more mature than their HSA+ counterparts, and might represent a previously activated or "memory" thymic subpopulation.  相似文献   

6.
Within the thymus, developing T cells must acquire the competence to respond to appropriate signals by inducing the expression of genes required for immunologic function; one such gene encodes the 55-kDa-chain of the IL-2R (IL-2R alpha). Previously, we showed that most cortical-type thymocytes lack the competence to make this particular response, while most medullary-type cells respond like mature T lymphocytes. The noninducibility of cortical-type cells was striking, because most of their presumed precursors were inducible. To test the relationship between this apparent loss of competence and the positive and negative selection processes that may occur in the thymic cortex, we have assayed the inducibility of thymocyte populations, staged carefully with respect to their expression of TCR. Using size fractionation to enrich for dividing cells, we concentrated and thereby revealed defined developmental intermediates. We report that, although CD4+CD8- thymocytes behave as mature T cells, a significant fraction of CD4-CD8+ cells are noninducible. These noninducible thymocytes are dividing cells, which appear to be in a major developmental continuum between CD4-CD8- blasts and CD4+CD8+ blasts. Furthermore, the noninducible blasts as yet lack surface TCR expression. We also demonstrate the functional similarity of these CD4-CD8+ cells to a major subset of dividing CD4-CD8- precursor cells, which appear to have lost IL-2R alpha expression. These results suggest that precursors of cortical thymocytes lose competence to be induced to express IL-2R alpha several stages before their acquisition of cell-surface TCR complexes. The implications of this characterization are discussed in terms of the possible relationships between IL-2R alpha gene regulation and intrathymic fate determination.  相似文献   

7.
The origin of TCR-alphabeta+ CD4-CD8- cells is unclear, yet accumulating evidence suggests that they do not represent merely a default pathway of unselected thymocytes. Rather, they arise by active selection as evidenced by their absence in mice lacking expression of class I MHC. TCR-alphabeta+ CD4-CD8- cells also preferentially accumulate in mice lacking expression of Fas/APO-1/CD95 (lpr) or Fas-ligand (gld), suggesting that this subset might represent a subpopulation destined for apoptosis in normal mice. Findings from mice bearing a self-reactive TCR transgene support this view. In the current study we observe that in normal mice, TCR-alphabeta+ CD4-CD8- thymocytes contain a high proportion of cells undergoing apoptosis. The apoptotic subpopulation is further identified by its expression of B220 and IL2Rbeta and the absence of surface CD2. The CD4-CD8- B220+ phenotype is also enriched in T cells that recognize endogenous retroviral superantigens, and can be induced in TCR transgenic mice using peptide/MHC complexes that bear high affinity, but not low affinity, for TCR. A model is presented whereby the TCR-alphabeta+ CD2- CD4-CD8- B220+ phenotype arises from high intensity TCR signals. This model is broadly applicable to developing thymocytes as well as mature peripheral T cells and may represent the phenotype of self-reactive T cells that are increased in certain autoimmune conditions.  相似文献   

8.
Expression of ets genes in mouse thymocyte subsets and T cells   总被引:27,自引:0,他引:27  
The cellular ets genes (ets-1, ets-2, and erg) have been identified by their sequence similarity with the v-ets oncogene of the avian erythroblastosis virus, E26. Products of the ets-2 gene have been detected in a wide range of normal mouse tissues and their expression appears to be associated with cell proliferation in regenerating liver. In contrast, the ets-1 gene was previously shown to be more highly expressed in the mouse thymus than in other tissues. Because the thymic tissue contains various subsets of cells in different stages of proliferation and maturation, we have examined ets gene expression in fetal thymocytes from different stages of development, in isolated subsets of adult thymocytes, and in peripheral T lymphocytes. Expression of the ets-1 gene was first detected at day 18 in fetal thymocytes, corresponding to the first appearance of CD4+ (CD4+, CD8-) thymocytes, and reaches maximal/plateau levels of expression in the thymus at 1 to 2 days after birth. The ets-2 gene expression is detected at least 1 day earlier, coinciding with the presence of both double-positive (CD4+, CD8+) and double-negative (CD4-, CD8-) blast thymocytes and reaches maximal/plateau levels 1 day before birth. In the adult thymus, ets-1 and ets-2 mRNA expression is 10- to 8-fold higher respectively in the CD4+ subset than in the other subsets examined. Higher levels of p55 ets-1 protein were also shown to exist in the CD4+ subset. Because the CD4+ thymic subset is the pool from which the CD4+ peripheral, helper/inducer T cells are derived, the ets gene expression was examined in lymph node T cells. Both the CD4+ and the CD8+ T cells subsets had lower ets RNA levels than the CD4+ thymocytes. These results suggest that ets-2 and more particularly ets-1 gene products play an important role in T cell development and differentiation and are not simply associated with proliferating cells, which are observed at a higher frequency in fetal thymocytes, or dull Ly-1 (low CD5+), and double-negative (CD4-, CD8-) adult thymocytes. Selectively enhanced expression of ets-1 gene may be observed in thymic CD4+ thymocytes because these cells have uniquely encountered MHC class II or other Ag in the thymic environment. These cells may have been subsequently stimulated to activate the ets genes in conjunction with their differentiation of helper/inducer function(s) and expression of mature TCR.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The majority of CD4+8- thymocytes are functionally immature.   总被引:5,自引:0,他引:5  
The thymus is the major site of T cell development and repertoire selection. During these processes, T cells segregate into two subsets that express either CD4 or CD8 accessory molecules, the phenotype of peripheral T cells. Analysis of CD4+8- thymocytes revealed that the majority of these cells express the heat-stable Ag (HSA) but not the nonclassical class I Ag, Qa-2. This HSA+, Qa-2- phenotype is similar to that of the less mature, CD4+8+ thymocytes. The remaining CD4+8- thymocytes possess the HSA-, Qa-2+ phenotype of peripheral T cells. To determine whether the Qa-2-, CD4+8- thymic subset is fully mature, we have analyzed the functional status of these CD4+8- subpopulations. The results indicate that only those thymocytes which express Qa-2 are fully responsive to anti-TCR stimulation in a manner analogous to peripheral T cells. The Qa-2- subset is nonresponsive to stimulation by anti-TCR antibodies that have been immobilized to plastic, even in the presence of lymphokines or syngeneic APC. This subset is, however, capable of proliferating to allogeneic cells or to anti-TCR on the surface of syngeneic APC, although not to the levels achieved by Qa-2+ thymocytes. Thus, the Qa-2- subset appears to require additional interactions which are not necessary for peripheral T cells or Qa-2+ thymocytes. Relevant to this issue, the Qa-2+ thymocyte subset does not appear until relatively late in development, and does not reach adult frequencies until several weeks after birth. These results would suggest that there is a progression from HSA+, Qa-2- to HSA-, Qa-2+ which parallels the maturation of functional responsiveness. These findings are important to understanding T cell selection since thymocytes with such a decreased responsiveness may have a differential capacity for tolerance induction. The results presented suggest that the bulk of CD4+8- thymocytes are not fully mature and that Qa-2 may serve as a marker for T cells with a more complete functional competence.  相似文献   

10.
Expression and function of the UM4D4 antigen in human thymus   总被引:3,自引:0,他引:3  
UM4D4 is a newly identified T cell surface molecule, distinct from the Ag receptor and CD2, which is expressed on 25% of peripheral blood T cells, resting or activated. Monoclonal anti-UM4D4 is mitogenic for T cells and T cell clones. Since alternative activation pathways independent of Ag/MHC recognition may be important in thymic differentiation, the expression and function of UM4D4 was examined in human thymus. UM4D4 was found on the surface of 6% of thymocytes. All thymocyte subsets contained UM4D4+ cells but expression was greatest on thymocytes that were CD1- (12%), CD3+ (11%) and especially CD4-CD8- (18%). CD3+CD4- CD8- cells, most of which bear the gamma delta-receptor, were greater than or equal to 50% + for UM4D4. Moreover, anti-UM4D4 was comitogenic for thymocytes together with PMA or IL-2. Anti-UM4D4 also reacted strongly with a subset of thymic epithelial cells in both cortex and medulla. Dual color fluorescence microscopy, with anti-UM4D4 and antibodies to other thymic epithelial Ag, showed UM4D4 expression on neuroendocrine thymic epithelium but not on thymic fibrous stroma. Thus, UM4D4 is expressed on, and represents an activation pathway for, a subset of thymic T cells. In addition, this determinant, initially identified as a novel T cell activating molecule, is broadly expressed by neuroendocrine thymic epithelium. Although the function of UM4D4 on the thymic epithelial cells is not yet clear, it is possible that UM4D4 represents a pathway for the functional activation of a subset of the thymic epithelium as well as a subset of thymocytes, thus playing a dual role in T cell differentiation.  相似文献   

11.
Although considerable indirect evidence supports the hypothesis that CD4+8+ thymocytes are developmental intermediates in the generation of mature (CD4+8- or CD4-8+) T cells, the ability of these cells to proliferate in vitro has been highly controversial. We demonstrate here that a fraction of purified murine CD4+8+ thymocytes can be induced to proliferate in response to immobilized anti-TCR mAb. To exclude possible proliferation by trace mature T cell contaminants, we have exploited our recent finding that in Mlsa mice mature V beta 6-bearing thymic T cells are virtually absent (less than or equal to 0.5%) due to clonal deletion, whereas V beta 6 +CD4+8+ thymocytes are present in much higher numbers (approximately 3%). Proliferation of sorted CD4+8+ thymocytes from Mlsa mice was therefore induced at limiting dilution with immobilized anti-V beta 6 mAb to select against any contaminating mature T cells. Under optimal culture conditions, the frequency of CD4+8+ thymocytes proliferating specifically to anti-V beta 6 mAb (1/1000) was higher than those obtained for purified CD4-8+ (1/2000) or CD4+8- (1/5000) subsets, thus demonstrating directly that a proportion (in this case 3%) of CD4+8+ thymocytes are potentially clonable. During culture, V beta 6 +CD4+8+ thymocytes gave rise to a mixture of phenotypically "immature" (CD4-8-) and "mature" (CD4-8+) T cells. This system should be valuable for further analysis of the elusive CD4+8+ thymocyte subset.  相似文献   

12.
The V beta 8-specific mAb F23.1 and KJ16 were used as fluorescent stains to test for TCR expression on the surface of subpopulations of early, CD4-CD8- (L3T4-Ly-2-) thymocytes from adult CBA mice. A surprisingly high proportion (27%) of Ly-2-L3T4- thymocytes were strongly F23.1 and KJ16 positive. No positive cells were detected among Ly-2-L3T4- thymocytes from V beta 8-negative SJL mice. In contrast to the adult thymus, Ly-2-L3T4- cells from embryonic CBA thymus lacked F23.1-positive cells. Subsets of adult CBA Ly-2-L3T4- thymocytes were separated to determine which expressed V beta 8. The major subset, Ly-1 low B2A2-M1/69+Thy-1+Pgp-1-, representing a phenotype similar to embryonic Ly-2-L3T4- thymocytes and the phenotype commonly isolated from adult thymocytes as Ly-1 "dull," lacked cells strongly positive for F23.1. In contrast, a series of subsets of adult CBA Ly-2-L3T4- thymocytes which were B2A2-M1/69- and Pgp-1+ all included strongly F23.1-positive cells. A minor subset, negative for most markers except Pgp-1 and presumed on the basis of this phenotype and some reconstitution studies to include the earliest intrathymic precursors, contained 28% F23.1-positive cells. However, no F.23.1-positive cells were detected in equivalent "prethymic" populations from bone marrow or from athymic mouse spleen. The subsets of Ly-2-L3T4- thymocytes which were Ly-1 high, B2A2-M1/69-, and Pgp-1+ all contained about 70% F23.1-positive cells, indicating a V beta 8 usage much higher than the mature T cell average. These results indicate that a series of distinct developmental events have occurred within these CD4-CD8- thymocytes previously considered as a single group of early precursor cells, and that some aspects of repertoire selection may be occurring amongst thymocytes which lack CD4 or CD8.  相似文献   

13.
We previously reported that IL-7 maintains the viability and differentiation potential of CD25 (IL-2R p55) positive CD3-CD4-CD8- thymic pre-T cells in vitro. This culture system is suitable for studying signals that regulate differentiation of T cell precursors in the thymus. In this study, we screened cytokines for their capacity to induce CD4 or CD8 in murine thymic pre-T cells cultured with IL-7. Of 15 cytokines tested, only transforming growth factor (TGF-beta) and TNF-alpha induced CD8 (Lyt-2), while no cytokine was able to induce CD4 on CD25+CD3-CD4-CD8- thymocytes. The combination of TGF-beta and TNF-alpha was synergistic, and the majority of cells recovered after 2 to 3 days in culture expressed CD8 (but not CD3 or CD4). A similar effect of TGF-beta and TNF-alpha was observed using day-15 fetal thymocytes, CD3+CD4-CD8- or CD3+CD4+CD8- adult thymocytes, although the combination of these cytokines resulted in an additive rather than a synergistic effect in these subsets. In contrast, neither TGF-beta nor TNF-alpha induced CD8 expression on splenic CD4+CD8- T cells. These observations suggest a role for these cytokines in the induction of CD8 expression in CD8- thymocyte subsets including CD3-CD4-CD8- thymic pre-T cells.  相似文献   

14.
The thymus exports a selected subset of virgin T lymphocytes to the peripheral lymphoid organs. The mature phenotype of these thymus emigrants is similar to that of medullary thymocytes and has been cited as supporting a medullary rather than cortical exit site. Using the monoclonal antibody MEL-14, we identify a 1%-3% subpopulation of thymocytes that expresses high levels of a receptor molecule involved in lymphocyte homing to peripheral lymph nodes. We present evidence that these rare MEL-14hi thymocytes are predominantly of mature phenotype and represent the major source of thymus emigrants. Surprisingly, MEL-14hi thymocytes are exclusively cortical in location, although their mature phenotype may allow them to masquerade as medullary cells in conventional studies. We also demonstrate that unlike medullary thymocytes, many cortisone-resistant thymocytes (CRT) are MEL-14hi. Thus, in contrast to current dogma, CRT do not represent a sample of medullary thymocytes as they are found in situ and their level of immunocompetence does not necessarily reflect that of the medullary population. Our findings refute the hypothesis that phenotypically and functionally mature cells are restricted to the medulla, and support our proposition that most thymus emigrants are derived from the MEL-14hi cortical subset.  相似文献   

15.
In a previous study, we raised a mAb (MTS 35) reacting with a plasma membrane Ag expressed on both cortical thymocytes and a subset of thymic medullary epithelial cells. In view of the shared expression of this molecule, we have defined it as thymic shared Ag-1 (TSA-1). Considering its selective reactivity with cortical, but not medullary thymocytes, the relevance of TSA-1 as a marker of immature T cells was investigated in detail in this study, using multicolor flow cytometric analysis. TSA-1 was found on all immature thymocyte subsets (CD3-4-8-, CD3-4+8-, CD3-4-8+, CD3-4+8+, CD3low4+8+). Conversely, CD3high4+8- and CD3high4-8+ thymocytes, early thymic migrants and peripheral T cells were TSA-1-. More refined gating and analysis of the transitional CD3intermediate/high4+8+ thymocytes, proposed candidates for negative selection, demonstrated that approximately one half were TSA-1-. In fact, there was a directly inverse relationship between TSA-1 and CD3 expression on thymocytes. In the periphery, TSA-1 was detected on B lymphocytes. TSA-1 is PI-linked and has a molecular mass of 17 kDa nonreduced, or 12 to 13 kDa reduced. Through cross-correlation analysis, this molecule was distinct from H-2K, PNA-R, CD5, CD11a/18, Thy-1, HSA, Ly6A/E, Ly6C, ThB, CD25, CD44. Hence TSA-1 appears to be a unique marker which exquisitely separates mature from immature thymocytes.  相似文献   

16.
A mAb (I/24) has been generated that is specific for a determinant on mouse CD45 molecules. Reactivity of this mAb with a panel of CD45 transfected cell lines demonstrated that the determinant recognized is dependent upon expression of one or more CD45 variable exons and that exon C is sufficient for its expression. The exon C-specific epitope detected by I/24 is expressed at high density on essentially all B lymphocytes and at an intermediate density on the vast majority of CD8+ splenic T cells. Two distinct subpopulations of CD4+ splenic T cells were detected, a minor subpopulation that expresses this exon determinant at high density and a major subpopulation that expresses it at a much lower density. This first identification of a CD45RC-specific reagent allowed a comparison of the expression of exon A-, exon B-, and exon C-specific determinants on peripheral and thymic lymphoid populations. When splenic lymphocytes were analyzed for expression of CD45RA (reactive with mAb 14.8), CD45RB (reactive with mAb 23G2 or mAb 16.A), and CD45RC (reactive with mAb I/24) determinants, it was found that each of these CD45 determinants had a distinct pattern of expression on CD4+ and CD8+ T cells and B cells. CD45RB and RC epitopes were also detected at high density on a small proportion (0.7 to 4.1%) of thymocytes. Both CD45RB and RC epitopes were found predominantly on CD4-CD8- and CD4-CD8+ thymocytes but were also found on small numbers of CD4+CD8+ and CD4+CD8- cells. The population of thymocytes that expressed CD45RB and CD45RC determinants displayed a novel TCR CD3 phenotype characterized by a level of expression that was intermediate between that seen in the larger CD3 bright and CD3 dull populations of thymocytes.  相似文献   

17.
The predominant T lymphocytes that accumulate in the peripheral lymphoid tissues of mice homozygous for the lpr gene bear the phenotype CD3+CD4-CD8-. By certain functional criteria these cells would appear to have impaired CD3-mediated signal transduction, in that they do not respond to alloantigen and produce little if any detectable IL-2 or other lymphokines. However, the signal pathway appears adequate for achieving other T cell functions, including induction of high affinity IL-2R, and thymic deletion. To clarify the basis of this seeming discrepancy, we examined transmembrane signal transduction in T cell subsets of lpr/lpr (lpr) and +/+ mice, as defined by increased [Ca2+]i and the generation of inositol phosphates (InsPs). Stimulation of lpr CD4-CD8- cells with anti-CD3 antibody produced prompt and sustained increases in the concentration of [C2+]i and in InsPs. Similar responses occurred in mature T cells from lpr and +/+ mice, except for the somewhat slower kinetics of their increased [Ca2+]i. In marked distinction to the anti-CD2-mediated response, Con A, even in high doses, could not stimulate any increase of [Ca2+]i in lpr CD4-CD8- cells, and only modest increases in InsPs. Mature T cells, whether of lpr or +/+ origin, yielded normal increased [Ca2+]i with Con A. The reason for the differences in signal transduction between anti-CD3 and Con A stimulation of lpr CD4-CD8- cells may relate to the absence of surface structures on these immature T cells that are required for activation by Con A but not by anti-CD3. The data demonstrate that the CD3 complex in lpr CD4-CD8- T cells can couple to phospholipase C to hydrolyze phosphoinositides. These activation properties of lpr CD4-CD8- T cells have interesting functional parallels to thymocytes at the time of thymic selection, as well as tolerance induction of mature T lymphocytes.  相似文献   

18.
Thymic rosettes, structures consisting of 3-30 thymic lymphoid cells attached to a central macrophage or dendritic cell, were released from mouse thymus tissue by collagenase digestion. They were shown to be preexistent structures within the thymus, but to be subject to extensive exchange with free thymocytes under certain conditions. An isolation procedure was developed, using a new technique of zonal unit-gravity elutriation, which minimized exchange and produced a completely pure sample of the larger rosettes. The rosette-associated thymocytes were analyzed by two- and three-color immunofluorescent staining and flow cytometry. The dominant cell type was a small, CD4+CD8+, cortical-type thymocyte. However, all of the established thymus subpopulations defined by CD4 and CD8, including CD4-CD8+ and CD4+CD8- mature thymocytes and CD4-CD8- early thymocytes, were also present in rosettes. Very few of the cells present were of an intermediate or transitional phenotype. Rosette-associated thymocytes were somewhat enriched in large dividing thymocytes, in CD4-CD8- thymocytes, and in mature thymocytes expressing the T-cell antigen receptor-CD3 complex. Their most striking characteristic was a marked depletion in small thymocytes lacking surface H-2K expression, a major population among free thymocytes. The physiological role of the rosette structure is discussed, and it is suggested that the heterogeneity of the associated thymocytes in part reflects the existence of different types of rosettes in different areas of the thymus.  相似文献   

19.
Cortisone-resistant thymocytes (CRT) have been used as the experimental equivalent of medullary thymocytes for the past 15 yr. Studies with CRT have provided evidence that the medullary population is similar to mature T cells in phenotype and function and may therefore be the major source of thymus emigrants. However, we have recently demonstrated that CRT differ from medullary thymocytes in their expression of the homing receptor molecule recognized by the monoclonal antibody MEL-14. Thus, many CRT express high levels of the MEL-14-defined homing receptor, whereas medullary thymocytes are MEL-14- to MEL-14lo. In normal adult mice, only 1 to 3% of thymocytes are MEL-14hi; these cells are located exclusively in the cortex and many are phenotypically and functionally mature. In this study we have used dual immunofluorescence techniques to further characterize those thymocytes resistant to cortisone treatment. Aside from being of mature phenotype with respect to expression of peanut agglutinin binding sites and the cell surface molecules H-2K, Ly-1, Lyt-2, and L3T4, CRT can be divided into MEL-14lo and MEL-14hi subpopulations, suggesting that they may actually be derived from both the medullary and the MEL-14hi cortical thymocyte subsets.  相似文献   

20.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号