首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sediment-to-water recruitment of blue-green algae was investigated in a shallow lake following treatment with aluminum sulfate and sodium aluminate to control sediment phosphorus (P) release. A comparison of results from two summers each before and after treatment indicates that the treatment did not universally impact the recruitment of either sporulating or non-sporulating forms of blue-green algae. Blooms of Anabaena, Aphanizomenon, and Coelosphaerium resulted predominantly from growth in the water column following strong recruitment episodes lasting up to two weeks, while Microcystis populations were relatively insensitive to periodically high inputs from recruitment. The development of planktonic populations of Gloeotrichia echinulata, by contrast, were largely dependent on sustained recruitment in response to adequate light and temperature regimes at the sediment surface.The cellular P content of recruited G. echinulata colonies was unaffected by the accumulation of aluminum floc to the lake sediments. Both G. echinulata and C. naegelianum showed elevated levels of cellular P in newly recruited colonies as compared to planktonic colonies, indicating P transport from the sediments to the water column. Total P translocation by blue-green algae was negligible in the absence of a substantial recruitment of G. echinulata. The recruitment of G. echinulata, and hence the magnitude of P translocation, was therefore more responsive to environmental conditions prevalent at the sediments than to direct effects of the treatment itself.  相似文献   

2.
Epilimnetic colonies of Gloeotrichia echinulata were harvestedfrom 200–300 I of water in Lake Erken with filtrationthrough appropriate plankton nets (200 or 70 µm). Phosphateuptake characteristics, phosphorus (P) status and photosynthesisof the colonies were determined twice a week during July andAugust 1991. Phosphate uptake was analysed according to thesimple force- flow relationship of Falkner et al. (Arch. Microbiol.,152, 353–361, 1989). The threshold concentration of Puptake below which uptake ceases for energetic reasons, wasconstantly much higher than the epilimnetic soluble reactivephosphorus (SRP) concentration, so that the planktonic colonieswere unable to acquire any Pin the epilimnion. Neither did organicP seem to be a source of P for planktonic colonies. Gloeotrichiaechinulata has a unique life strategy in comparison to othercommon genera of bloom-forming cynanobacteria. Its P assimilationand growth are completely separated both in time and space;growth is preceded by benthic P assimilation. Epilimnetic growthwas based solely on internally stored P and growth rates fittedthe Droop model well. Depletion of stored P restricts the lengthof the planktonic phase to 15–20 days under ‘optimal’growth conditions. Wind-induced surface drift seemed to be themost important loss factor from the epilimnion. Massive recruitmentof P-rich benthic colonies accounted for two-thirds of totalnet internal P loading observed between mid-July and mid-August(3.8 mg P m–2 day–1).  相似文献   

3.
1. The influence of light, temperature, sediment mixing and sediment origin (water depth) on the recruitment of the cyanobacterium Gloeotrichia echinulata was examined in the laboratory. 2. Light and temperature were the most important factors initiating germination in G. echinulata. 3. The extent of germination (recruited biovolume) was mainly regulated by temperature and sediment mixing. Furthermore, sediment mixing significantly enhanced the frequency of observed heterocysts and colonies. 4. Despite the fact that the deep and shallow sediments contained a similar number of akinete colonies, the highest recruitment occurred from shallow sediments, indicating that akinetes from shallow sediments have a higher viability than those from deeper parts of the lake. 5. Our results support the hypothesis that shallow sediments are more important than profundal sediments for the recruitment of G. echinulata to the pelagic zone.  相似文献   

4.
Four species of bluegreen algae were tested for possible effect on the protozoan Paramecium caudatum Ehrenberg. Toxicity was demonstrated using lyophilized cells of Fischerella epiphytica Ghose and Gloeotrichia echinulata (Smith) Richter. Nostoc linckia (Roth) Bornet & Thuret failed to show any effects when lyophilized but became toxic when sonified. Anabaena flos-aquae (Lyngb.) Bréb. was nontoxic in all tests. G. echinulata was lethal at 0.1 mg·ml?1 which is comparable to the toxic concentration of Aphanizomenon flos-aquae (L.) Ralfs reported for microcrustaceans.  相似文献   

5.
The hypolimnetic protozoan plankton of a eutrophic lake   总被引:2,自引:1,他引:1  
The seasonal distribution of benthic species in the water column above and below the thermocline in a small eutrophic lake is described. During summer stratification populations of Spirostomum spp, Loxodes spp., Plagiopyla and Deltopylum become established in the plankton on or below the oxycline/thermocline. At shallow sites no migration occurred and populations of the migratory species in the benthos were sparse, with the exception of Plagiopyla which occurred in high densities in the sediment. Two distinct planktonic populations are established during stratification: an epilimnetic community of obligate planktonic ciliates and a hypolimnetic community of benthic migrants.  相似文献   

6.
Different parameters in the life cycle of the colony forming cyanobacterium Gloeotrichia echinulata (J.E. Smith) Richter was evaluated in Lake Erken, Sweden. Recruitment of colonies from the sediments and pelagic abundance were measured during 2 years. These data were then used in a model to evaluate and estimate parameters of the life cycle. In our study, recruitment alone only contributed to a small part (<5%) of the maximum G. echinulata abundance that occurred during late summer. However, recruitment from shallow sediments forms the important seed for the pelagic population. Together with measured rates of migration from the sediment, variations in either pelagic colony division rate or pelagic residence time could explain variations in the measured abundance of G. echinulata in situ.  相似文献   

7.
The recruitment of Aphanizomenon flos-aquae out of the sedimentswas measured in the shallow, hypereutrophic Agency Lake, Oregon.There were two main episodes of recruitment, the latter of whichaccounted for 8.2% of the water column population increase duringits main growth phase. Phosphorus (P) content was higher innewly recruited cells than in water column cells. Recruitmentduring one weekly episode constituted an internal P load rateof 3.56 mg P m–2 day–1, accounting for 27% of thecorresponding increase in water column total phosphorus (TP).However, the majority of internal loading in the lake did notcoincide with, and therefore could not be explained by, biotranslocationdue to benthic recruitment of A.flos-aquae. 1Present address: WES-ES-P, USAE Waterways Experiment Station,3909 Halls Ferry Road, Vicksburg, MS 39180, USA  相似文献   

8.
Over a period of four years, the seasonal periodicity of dominant phytoplankton species in a shallow, eutrophic Danish lake changed markedly. Cyanophytes prevailed during the summer period of all four years. In the first three years, species of Microcystis, Anabaena and Aphanothece dominated, whereas in the fourth year of investigation, these algae were replaced by Gloeotrichia echinulata (J. E. Smith) Richter and Aphanizomenon flos-aquae (L.) Ralfs. The most striking environmental differences in the fourth year as compared with the previous three years, were an increase in tranparency, from about 0.5 meter in 1989–1991 to more than 2 metres preceding the summer maximum in 1992, and a simultaneous occurrence of low oxygen concentrations. A collapse of the fish population was followed by an increased proportion of large Cladocerans in the zooplankton. Improved light conditions at the bottom and grazing pressure from large Cladocerans favoured growth of the large colony forming blue-green algae, Gloeotrichia echinulata and Aphanizomenon flos-aquae. These species germinate from resting spores in the sediment and are able to sustain some growth there before migration to the lake water. The transfer of algal biomass from the bottom sediment to the water phase was accompanied by a marked increase in concentrations of particulate phosphorus and nitrogen in the entire lake.  相似文献   

9.
An increase of xenodiversity in plankton and benthos in the eastern Gulf of Finland was observed from 1998 to 2004. Nonindigenous species account for 4.8% of all species found and up to 96% of total biomass. Invasive benthic omnivores, the alien amphipods Gmelinoides fasciatus and Pontogammarus robustoides and the predaceous fish Perccottus glenii with their versatile diets strongly affect the community structure. Invasive sessile seston-feeders that directly (through grazing and water clearance) and indirectly (through recycling of nutrients) interact with other ecosystem components, are mainly represented by the zebra mussel Dreissena polymorpha, which affect the structure of benthic and planktonic communities as well as benthic-pelagic coupling. The invasive predatory cladocerans Cercopagis pengoi and Evadne anonyx and larvae of D. polymorpha are only temporary components in the zooplankton, which is limiting their overall effect. Alien benthic bioturbators, the polychaetes Marenzelleria neglecta and the oligochaete Tubificoides pseudogaster account for a high proportion of total abundance and biomass but their effects on native species need further research.  相似文献   

10.
Summary An investigation was made of 5 species of blue-green algae reported to contain gas-vacuoles. All organisms were grown and harvested under standard conditions. Gas-vacuoles were characterised as reddish structures which are destroyed by applying pressure. Using a simple direct preparation technique gascylinders were observed with the transmission electron microscope in gas-vacuolate cells. Gas-vacuoles were present in the strains of Anabaena flos-aquae, Gloeotrichia echinulata and Oscillatoria agardhii studied and absent from Microcystis aeruginosa and Nostoc linckia. The reddish, refractile central area of N. linckia and M. aeruginosa cells was tentatively identified as nucleoplasm. Gas-vacuoles are collections of gas-cylinders 70 m wide, which in A. flos-aquae and G. echinulata are clearly bounded by photosynthetic lamellae and associated with -granules. The presence of bounding photosynthetic lamellae in these species is suggested as a causal factor of the unusual optical properties of their gas-vacuoles. The range of lengths of gas-cylinders in G. echinulata and O. agardhii is from 100 m to 500 m and in A. flos-aquae it is from 100 m to 1300 m. The percentage of cell volume occupied by gas-vacuoles was estimated by direct measurement. In A. flos-aquae and G. echinulata it was 22%. In O. agardhii gas-cylinders were not clearly associated with photosynthetic lamellae and -granules and occupied 39% of cell volume. Gascylinder membranes showed reasonable preservation in KMnO4 and excellent preservation in OsO4. The widths of membranes after treatment with these two fixatives was 3 m and 2 m respectively.  相似文献   

11.
Species of prorocentroid dinoflagellates are common in marine benthic sediment and epibenthic habitats, as well as in planktonic habitats. Marine planktonic prorocentroids typically possess a small spine in the apical region. In this study, we describe a new, potentially widely distributed benthic species of Prorocentrum, P. fukuyoi sp. nov., from tidal sand habitats in several sites in Australia and from central Japan. This species was found to possess an apical spine or flange and was sister species to P. emarginatum. We analyzed the phylogeny of the group including this new species, based on large subunit (LSU) rDNA sequences. The genus contained a high level of divergence in LSU rDNA, in some cases among sister taxa. P. fukuyoi and P. emarginatum were found to be most closely related to a clade of generally planktonic taxa. Several morphological features may constitute more informative synapomorphies than habitat in distinguishing clades of prorocentroid species.  相似文献   

12.
1. We assessed the role of cyanobacterial–bacterial consortia (Gloeotrichia echinulata phycospheres) for net changes in inorganic carbon, primary production (PP) and secondary production in Lake Erken (Sweden). 2. At the time of sampling, large colonies of G. echinulata formed a massive bloom with abundances ranging from 102 colonies L?1 in the pelagic zone to 5000 colonies L?1 in shallow bays. These colonies and their surrounding phycospheres contributed between 17 and 92% of total PP, and phycosphere‐associated bacteria contributed between 8.5 and 82% of total bacterial secondary production. PP followed a diurnal cycle, whereas bacterial production showed no such pattern. Over a 24 h period, carbon dioxide measurements showed that the phycospheres were net autotrophic in the top layer of the water column, whereas they were net heterotrophic below 2 m depth. 3. Sequencing and phylogenetic analysis of 16S rRNA genes of attached bacteria revealed a diverse bacterial community that included populations affiliated with Proteobacteria, Bacteriodetes, Acidobacteria, Fusobacteria, Firmicutes, Verrucomicrobia, and other Cyanobacteria. 4. Compared with their planktonic counterparts, bacteria associated with cyanobacterial phycospheres had lower affinity for arginine, used as a model compound to assess uptake of organic compounds. 5. Extrapolation of our data to the water column of lake Erken suggests that microorganisms that were not associated with cyanobacteria dominated CO2 production at the ecosystem scale during our experiments, as CO2 fixation balanced CO2 production in the cyanobacterial phycospheres.  相似文献   

13.
Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200–1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions.  相似文献   

14.
1. The taxonomic composition, abundance and biomass of heterotrophic protists (ciliates, heterotrophic flagellates (HF), rhizopods and actinopods) in the sediment and water column of shallow inlets of the Southern Baltic was studied under a variety of environmental conditions during 1996–1997. A shallow, highly eutrophic station and a deeper, less eutrophic station were compared.
2. Community biomass ranged from 0.12 to 0.34 μg C cm?3 in the water column and from 1.5 to 105 μg C cm?3 in the sediment. Heterotrophic protists dominated zooplankton biomass at both stations (73% and 84% mean contribution), while they were of minor importance within the zoobenthos. Expressed per unit area, benthic biomass contributed a significant part (44% and 49%) to the total heterotrophic protistan community at both stations.
3. Although the methodology for counting ciliates and HF was focussed on a high taxonomic resolution, the results reveal some general trends in the distribution of heterotrophic protists: protozooplankton biomass was dominated by flagellates (80% mean biomass contribution) at the shallow station and by ciliates (73% mean biomass contribution) at the deep station. In the benthos at both stations, ciliates were the dominant protozoans, followed by the hitherto little‐studied rhizopods (25% and 35% mean biomass contribution) and flagellates.
4. The degree of benthic–pelagic coupling differed between taxonomic groups. Benthic and pelagic communities of ciliates showed little taxonomic overlap. In contrast, many heterotrophic flagellate species were found both in the benthos and in the pelagic. These benthic–pelagic species contributed significantly to the biomass of HF in the water column. The planktonic rhizopod community consisted of a subset of those species found in the benthos.
5. The abundance of benthic and pelagic protists was positively correlated at the shallow station, but taxonomic data indicate that the direct exchange between benthic and pelagic communities was only partly responsible.  相似文献   

15.
Summary Smaller benthic and planktonic foraminifera from the clastic sediments of the Pazin Basin (Istria, Croatia) were studied in order to obtain more data about paleoceanographic conditions that existed in the Middle Eocene Dinaric foreland basin. The succession investigated corresponds to the Middle Eocene planktonic foraminiferal zones Globigerapsis kugleri/Morozovella aragonensis (P11), Morozovella lehneri (P12), and Globigerapsis beckmanni (P13). Benthic foraminiferal assemblages from the clastic succession are dominated by epifaunal trochospiral genera suggesting oligotrophic to mesotrophic conditions and moderately oxygenated bottom waters. Planktonic foraminiferal assemblages indicate mesotrophic to eutrophic conditions of the surface waters, with increased eutrophication in the upper part of the section. Water depth, based on the ratio between planktonic and epifaunal benthic foraminifera and on the recognized species of cosmopolitan benthic foraminifera, was estimated to have been between about 900 and 1200 m. The basin was elongated and open to marine currents on both sides allowing good circulation and ventilation of the bottom water.  相似文献   

16.
In some lakes, large amounts of the potentially toxic cyanobacterium Microcystis overwinter in the sediment. This overwintering population might inoculate the water column in spring and promote the development of dense surface blooms of Microcystis during summer. In the Dutch Lake Volkerak, we found photochemically active Microcystis colonies in the sediment throughout the year. The most vital colonies originated from shallow sediments within the euphotic zone. We investigated whether recruitment of Microcystis colonies from the sediment to the water column was an active process, through production of gas vesicles or respiration of carbohydrate ballast. We calculated net buoyancy, as an indication of relative density, using the amounts and densities of the major cell constituents (carbohydrates, proteins, and gas vesicles). Carbohydrate content of benthic Microcystis cells was very low throughout the year. Buoyancy changes of benthic Microcystis were mostly a result of changes in gas vesicle volume. Before the summer bloom, net buoyancy and the amount of buoyant colonies in the sediment did not change. Therefore, recruitment of Microcystis from the sediment does not seem to be an active process regulated by internal buoyancy changes. Instead, our observations indicate that attachment of sediment particles to colonies plays an important part in the buoyancy state of benthic colonies. Therefore, we suggest that recruitment of Microcystis is more likely a passive process resulting from resuspension by wind‐induced mixing or bioturbation. Consequently, shallow areas of the lake probably play a more important role in recruitment of benthic Microcystis than deep areas.  相似文献   

17.
Distribution and abundance of phyto-, zooplankton and benthic organisms in Lake Qarun were investigated during the period from January 1974 to December 1977.Average number of phytoplankton cells was 152,300 cells/L and its biomass was 0.365 g/C/m3; average number of zooplankton was 31.44 × 103/m3 and its biomass was 194.19 mg/m3. The average number of benthic fauna was 19889/m2 and its biomass was 400.22 g/m2 (dry wt.). Therefore, Lake Qarun may be considered as a highly eutrophic body of water.Freshwater planktonic species, that used to inhabit the lake, such as Diaptomus salinus and the cladoceran Moina salinarum, disappeared completely when the salinity of the lake water reached 30–34 However, some Rotatoria were able to withstand the high salinity. The new composition of the zooplankton community shows that the marine zooplankton species include not only Acartia latisetosa and Cirripedia nauplii, but also other species such as Polychaeta, Obelia medusae, etc.The benthos of Lake Qarun is characterised by an intensive growth of few species. The major part (i.e. 93.54% by weight) of bottom fauna in the lake is Mollusca, mainly Cerastoderma glaucum (69·84% by weight).  相似文献   

18.
Seasonal variations in the cell volume, number of cells in a colony and trichome length of nine bloom-forming cyanobacteria species were investigated in a small eutrophic pond from May to November 2005. The main genera of cyanobacteria were Microcystis and Anabaena, which formed a dense bloom from July to August. M. aeruginosa, M. viridis and M. wesenbergii were present throughout the study period. M. viridis dominated the Microcystis population (39.2–67.1% of total biovolume) during the pre-blooming period, but M. aeruginosa and M. wesenbergii dominated after July. M. aeruginosa was the dominant species from July to November, constituting 49.0–93.2% of the Microcystis population. Each Microcystis species could always be identified from the cell volume and the number of cells in a colony. The numbers of cells in colonies of M. aeruginosa, M. viridis and M. wesenbergii were in the ranges 37–444, 28–143 and 50–264, respectively. The Anabaena population consisted of three species—A. crassa, A. flos-aquae and A. reniformis. A. crassa and A. flos-aquae were typically present at higher densities than A. reniformis. These species also showed distinctive cell volumes. The number of cells in colonies of A. crassa, A. flos-aquae and A. reniformis were in the ranges 19–178, 18–113 and 29–143, respectively. Planktothrix raciborskii and Raphidiopsis mediterranea appeared in August and Aphanizomenon flos-aquae increased from late October, although these species were less abundant. Cell volumes of Microcystis and Anabaena and trichome length of P. raciborskii were positively correlated with water temperature. Small colonies of Microcystis and Anabaena remained small during the bloom period. In contrast, the trichome length of P. raciborskii seemed to depend more strongly on growth conditions.  相似文献   

19.
Irradiance-dependent rates of photosynthesis and cell division of six species of microalgae isolated from the benthos, plankton and sea ice microbial community in McMurdo Sound, Antarctica were compared. Microalgae isolated from different photic environments had distinct photosynthetic and growth characteristics. For benthic and ice algae, photosynthesis saturated at 6 to 20 μE.m?2.s?1 and was photoinhibited at 10 to 80 μE.m?2.s?1 while for the planktonic algae, saturation irradiances were up to 13 times higher and photoinhibition was not detected. The slope of the light-limited portion of the P-I relationship was up to 50 times greater for the benthic algae than for either the ice or planktonic algae suggesting that benthic algae used the low irradiances more efficiently for carbon uptake. Cell division was dependent on the incubation irradiance for all but one microalga examined. The dependence of division rates on irradiance was however much smaller than for carbon uptake, suggesting that cell division buffers the influence of short term variations of irradiance on cellular metabolism.  相似文献   

20.
1. Nitrogen (N) and phosphorus (P) fluxes via excretion by benthic invertebrates were quantified in a eutrophic reservoir (Acton Lake, Ohio, U.S.A.). We quantified variation in nutrient fluxes seasonally (June until November 1997), spatially (three sites) and among taxa (chironomids, tubificid oligochaetes and Chaoborus). 2. The three taxa differed in spatial distribution and contribution to nutrient fluxes. Tubificids were the most abundant taxon at two oxic sites (1.5 and 4 m depth), and were exceedingly rare at an anoxic, hypolimnetic site (8 m). Chironomids were abundant only at the shallowest oxic site. Chaoborus was the only abundant taxon at the anoxic site. Total benthic invertebrate biomass was greatest at the shallowest site and lowest at the anoxic, hypolimnetic site. 3. Mass‐specific excretion rate [μmol NH4–N or soluble reactive P (SRP) excreted mg dry mass–1 h–1] varied among experiments and was influenced by temperature. Differences among taxa were not significant. Thus, nutrient flux through benthic invertebrates was affected more by total invertebrate biomass and temperature than by species composition. 4. Fluxes of N and P via benthic invertebrate excretion (μmol NH4–N or SRP m–2 day–1) were greatest at the oxic sites, where fluxes were dominated by the excretion of tubificids and chironomids. The N and P fluxes at the anoxic site were much lower, and were dominated by excretion by Chaoborus. The ratio of N and P excreted by the benthic invertebrate assemblage varied seasonally and was lowest at the anoxic site. 5. Comparison with other measured inputs shows that excretion by benthic invertebrates could be an important source of nutrients, especially of P. However, the relative importance of nutrient excretion by the benthos varies greatly spatially and temporally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号