首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 5S rRNA gene family organization among 87 species and varieties of Pythium was investigated to assess evolutionary stability of the two patterns detected and to determine which pattern is likely the ancestral state in the genus. Species with filamentous sporangia (Groups A-C according to the ITS phylogenetic tree for Pythium) had 5S genes linked to the rDNA repeat that were predominantly coded for on the DNA strand opposite to the one with the other rRNA genes (‘inverted’ orientation). A small group of species with contiguous sporangia (Group D) is related to Groups A-C but had unlinked 5S genes. The main group of species with spherical zoosporangia (Groups E-J) generally had unlinked 5S genes in tandem arrays. The six species in Group K, although they also have spherical sporangia, had linked genes on the same strand as the other rRNA genes ‘non-inverted’ and most of them had pairs of tandem 5S genes. The evolutionary stability of 5S sequence organization was compared with the stability of morphological characters as interpreted from a phylogeny based on ITS sequence analysis. Features of 5S sequence organization were found to be just as consistent within groups as were the morphological characters. To determine the ancestral type of 5S family organization, a survey of Phytophthora strains was conducted to supply an outgroup reference. The most parsimonious interpretation of the data in this survey yielded the tentative conclusion that the linked condition of the 5S sequences was ancestral.  相似文献   

2.
An electrophoretic karyotype of Aspergillus niger   总被引:4,自引:0,他引:4  
Summary An electrophoretic karyotype of Aspergillus niger was obtained using contour-clamped homogeneous electric field (CHEF) gel electrophoresis. Chromosomesized DNA was separated into four bands. Seven of the eight linkage groups could be correlated with specific chromosomal bands. For this purpose DNA preparations from seven transformant strains of A. niger each carrying the heterologous amdS gene of Aspergillus nidulans on a different chromosome were analysed. Some of the assignments were confirmed with linkage groupspecific A. niger probes. The estimated sizes of the A. niger chromosome range from 3.5 to 6.6 Mb, based on gel migration relative to the chromosomes of Schizosaccharomyces pombe strains, Saccharomyces cerevisiae and A. nidulans. The total genome size of A. niger significantly exceeds that of A. nidulans and is estimated to be about 35.5–38.5 Mb. Electrophoretic karyotyping was used to allocate non-mutant rRNA genes and to estimate the number of plasmids integrated in a high copy number transformant.  相似文献   

3.
Summary Hybridization of cytoplasmic ribosomal RNA (rRNA) to restriction endonuclease digests of nuclear DNA of Chlamydomonas reinhardii reveals two BamHI ribosomal fragments of 2.95 and 2.35×106 d and two SalI ribosomal fragments of 3.8 and 1.5×106 d. The ribosomal DNA (rDNA) units, 5.3×106 d in size, appear to be homogeneous since no hybridization of rDNA to other nuclear DNA fragments can be detected. The two BamHI and SalI ribosomal fragments have been cloned and a restriction map of the ribosomal unit has been established. The location of the 25S, 18S and 5.8S rRNA genes has been determined by hibridizing the rRNAs to digests of the ribosomal fragments and by observing RNA/DNA duplexes in the electron microscope. The data also indicate that the rDNA units are arranged in tandem arrays. The 5S rRNA genes are not closely located to the 25S and 18S rRNA genes since they are not contained within the nuclear rDNA unit. In addition no sequence homology is detectable between the nuclear and chloroplast rDNA units of C. reinhardii.Abbreviations used rRNA ribosomal RNA - rDNA ribosomal DNA d, dalton  相似文献   

4.
The protein kinase-encoding genes RCK1 and RCK2 from Saccharomyces cerevisiae have been identified as suppressors of Schizosaccharomyces pombe cell cycle checkpoint mutations. Upon expression of these genes, radiation resistance is partially restored in S. pombe mutants with checkpoint deficiencies, but not in mutants with DNA repair defects. Some checkpoint mutants are sensitive to the DNA synthesis inhibitor hydroxyurea, and this sensitivity is also suppressed by RCK1 and RCK2. The degree of suppression can be modulated by varying expression levels. Expression of RCK1 or RCK2 in S. pombe causes cell elongation and decelerated growth. Cells expressing these genes have a single nucleus and a 2n DNA content. We conclude that these genes act in S. pombe to prolong the G2 phase of the cell cycle.  相似文献   

5.
Summary The organization of the 5S genes in the genome of Tetrahymena thermophila was examined in various strains, with germinal ageing, and the 5S gene clusters were mapped to the MIC chromosomes. When MIC or MAC DNA is cut with the restriction enzyme EcoRI, electrophoresed, blotted, and probed with a 5S rDNA probe, the banding patterns represent the clusters of the 5S rRNA genes as well as flanking regions. The use of long gels and 60 h of electrophoresis at 10 mA permitted resolution of some 30–35 5S gene clusters on fragments ranging in size from 30-2 kb (bottom of gel). The majority of the 5S gene clusters were found in both MIC and MAC genomes, a few being MIC limited and a few MAC limited. The relative copy number of 5S genes in each cluster was determined by integrating densitometric tracings made from autoradiograms. The total number of copies in the MAC was found to be 33% greater than in the MIC. When different inbred strains were examined, the majority of the 5S gene clusters were found to be conserved, with a few strain-specific clusters observed. Nine nullisomic strains missing both copies of one or more MIC chromosomes were used to map the 5S gene clusters. The clusters were distributed non-randomly to four of the five MIC chromosomes, with 17 of them localized to chromosome 1. A deletion map of chromosome 1 was constructed using various deletion strains. Some of these deletion strains included B strain clones which had been in continuous culture for 15 years. Losses of 5S gene clusters in these ageing MIC could be attributed to deletions of particular chromosomes. The chromosomal distribution of the 5S gene clusters in Tetrahymena is unlike that found for the well-studied eukaryotes, Drosophila and Xenopus.  相似文献   

6.
Zhang D  Yang Q  Ding Y  Cao X  Xue Y  Cheng Z 《Genomics》2008,92(2):107-114
Tandem repetitive sequences are DNA motifs common in the genomes of eukaryotic species and are often embedded in heterochromatic regions. In most eukaryotes, ribosomal genes, as well as centromeres and telomeres or subtelomeres, are associated with abundant tandem arrays of repetitive sequences and typically represent the final barriers to completion of whole-genome sequencing. The nature of these repeats makes it difficult to estimate their actual sizes. In this study, combining the two cytological techniques DNA fiber-FISH and pachytene chromosome FISH allowed us to characterize the tandem repeats distributed genome wide in Antirrhinum majus and identify four types of tandem repeats, 45S rDNA, 5S rDNA, CentA1, and CentA2, representing the major tandem repetitive components, which were estimated to have a total length of 18.50 Mb and account for 3.59% of the A. majus genome. FISH examination revealed that all the tandem repeats correspond to heterochromatic knobs along the pachytene chromosomes. Moreover, the methylation status of the tandem repeats was investigated in both somatic cells and pollen mother cells from anther tissues using an antibody against 5-methylcytosine combined with sequential FISH analyses. Our results showed that these repeats were hypomethylated in anther tissues, especially in the pollen mother cells at pachytene stage.  相似文献   

7.
Genomic DNA from 30 strains of Helicobacter pylori was subjected to pulsed-field gel electrophoresis (PFGE) after digestion with NotI and NruI. The genome sizes of the strains ranged from 1.6 to 1.73 Mb, with an average size of 1.67 Mb. By using NotI and NruI, a circular map of H. pylori UA802 (1.7 Mb) which contained three copies of 16S and 23S rRNA genes was constructed. An unusual feature of the H. pylori genome was the separate location of at least two copies of 16S and 23S rRNA genes. Almost all strains had different PFGE patterns after NotI and NruI digestion, suggesting that the H. pylori genome possesses a considerable degree of genetic variability. However, three strains from different sites (the fundus, antrum, and body of the stomach) within the same patient gave identical PFGE patterns. The genomic pattern of individual isolates remained constant during multiple subcultures in vitro. The reason for the genetic diversity observed among H. pylori strains remains to be explained.  相似文献   

8.
A number of DNA damage-inducible genes (DIN) have been identified in Saccharomyces cerevisiae. In the present study we describe isolation of a novel gene, Din7, the expression of which is induced by exposure of cells to UV light, MMS (methyl methanesulfonate) or HU (hydoxyurea). The DNA sequence of DIN7 was determined. By comparison of the predicted Din7 amino acid sequence with those in databases we found that it belongs to a family of proteins which includes S. cerevisiae Rad2 and its Schizosaccharomyces pombe and human homologs Rad13 and XPGC; S. cerevisiae Rad27 and its S. pombe homolog Rad2, and S. pombe Exo I. All these proteins are endowed with DNA nuclease activity and are known to play an important function in DNA repair. The strongest homology to Din7 was found with the Dhs1 protein of S.␣cerevisiae, the function of which is essentially unknown. The expression of the DIN7 gene was studied in detail using a DIN7-lacZ fusion integrated into a chromosome. We show that the expression level of DIN7 rises during meiosis at a time nearly coincident with commitment to recombination. No inducibility of DIN7 was found after treatment with DNA-damaging agents of cells bearing the rad53-21 mutation. Surprisingly, a high basal level of DIN7 expression was found in strains in which the DUN1 gene was inactivated by transposon insertion. We suggest that a form of Dun1 may be a negative regulator of the DIN7 gene expression. Received: 30 May 1996 / Accepted: 26 September 1996  相似文献   

9.
The loci of the 5S and 45S rRNA genes were localized on chromosomes in five species of Capsicum, namely, an-nuum, chacoense, frutescens, baccatum, and chinense by FISH. The 5S rDNA was localized to the distal region of one chromosome in all species observed. The number of 45S rDNA loci varied among species; one in annuum, two in chacoense, frutescens, and chinense, and four in baccatum, with the exceptions that ‘CM334’ of annuum had three loci and ‘tabasco’ of frutescens had one locus. ‘CM334’-derived BAC clones, 384B09 and 365P05, were screened with 5S rDNA as a probe, and BACs 278M03 and 262A23 were screened with 25S rDNA as a probe. Both ends of these BAC clones were sequenced. FISH with these BAC probes on pachytenes from ‘CM334’ plant showed one 5S rDNA locus and three 45S rDNA loci, consistent with the patterns on the somatic chromosomes. The 5S rDNA probe was also applied on extended DNA fibers to reveal that its coverage measured as long as 0.439 Mb in the pepper genome. FISH techniques applied on somatic and meiotic chromosomes and fibers have been established for chili to provide valuable information about the copy number variation of 45S rDNA and the actual physical size of the 5S rDNA in chili.  相似文献   

10.
Summary Ribosomal DNA (rDNA) repeats of the plant-parasitic nematode Meloidogyne arenaria are heterogeneous in size and appear to contain 5S rRNA gene sequences. Moreover, in a recA + bacterial host, plasmid clones of a 9 kb rDNA repeat show deletion events within a 2 kb intergenic spacer (IGS), between 28S and 5S DNA sequences. These deletions appear to result from a reduction in the number of tandem 129 by repeats in the IGS. The loss of such repeats might explain how rDNA length heterogeneity, observed in the Meloidogyne genome, could have arisen. Each 129 by repeat also contains three copies of an 8 by subrepeat, which has sequence similarity to an element found in the IGS repeats of some plant rDNAs.  相似文献   

11.
《Genomics》2022,114(4):110430
Ribosomal DNA genes (rDNA) encode the major ribosomal RNAs and in eukaryotes typically form tandem repeat arrays. Species have characteristic rDNA copy numbers, but there is substantial intra-species variation in copy number that results from frequent rDNA recombination. Copy number differences can have phenotypic consequences, however difficulties in quantifying copy number mean we lack a comprehensive understanding of how copy number evolves and the consequences. Here we present a genomic sequence read approach to estimate rDNA copy number based on modal coverage to help overcome limitations with existing mean coverage-based approaches. We validated our method using Saccharomyces cerevisiae strains with known rDNA copy numbers. Application of our pipeline to a global sample of S. cerevisiae isolates showed that different populations have different rDNA copy numbers. Our results demonstrate the utility of the modal coverage method, and highlight the high level of rDNA copy number variation within and between populations.  相似文献   

12.
Transposon mutagenesis allows for the discovery and characterization of genes by creating mutations that can be easily mapped and sequenced. Moreover, this method allows for a relatively unbiased approach to isolating genes of interest. Recently, a system of transposon based mutagenesis for Schizosaccharomyces pombe became available. This mutagenesis relies on Hermes, a DNA transposon from the house fly that readily integrates into the chromosomes of S. pombe. The Hermes system is distinct from the retrotransposons of S. pombe because it efficiently integrates into open reading frames. To mutagenize S. pombe, cells are transformed with a plasmid that contains a drug resistance marker flanked by the terminal inverted repeats of Hermes. The Hermes transposase expressed from a second plasmid excises the resistance marker with the inverted repeats and inserts this DNA into chromosomal sites. After S. pombe with these two plasmids grow 25 generations, approximately 2% of the cells contain insertions. Of the cells with insertions, 68% contain single integration events. The protocols listed here provide the detailed information necessary to mutagenize a strain of interest, screen for specific phenotypes, and sequence the positions of insertion.  相似文献   

13.
采用热处理法从海南省佳西热带雨林土壤中分离到147株芽胞杆菌,并利用16S rDNA PCR-RFLP与序列分析技术对其遗传多样性进行了研究。16S rDNA PCR-RFLP酶切图谱UPGMA聚类分析结果表明,在100%的相似性水平上,这些芽胞杆菌分属13个遗传类群。不同遗传类型代表菌株的16S rRNA基因序列分析结果显示,它们分布在Bacillaceae、Planococcaceae和Paenibacillaceae科的Bacillus、Lysinibacillus、Paucisalibacillus、Bhargavaea和Paenibacillus五个属,其中Bacillus为优势属(占50%);有3株芽胞杆菌的16S rRNA基因序列与数据库中相应模式菌株的最大相似性在98.3%~98.9%之间。结果表明,佳西热带雨林土壤中芽胞杆菌有着较为丰富的遗传多样性。  相似文献   

14.
Localization of genes for ribosomal RNA in the nuclei of Oxytricha fallax   总被引:1,自引:0,他引:1  
The location of ribosomal RNA (rRNA) genes in the nuclei of the ciliated protozoan, Oxytricha fallax, was analysed by in situ hybridization. The micronuclear genome of O. fallax has typical chromosomal DNA organization. Macronuclei, although derived from micronuclei, lack chromosomes and instead contain short pieces of DNA ranging from 500 to 20 000 base pairs in length. In situ hybridization was carried out to determine if specific DNA sequences are limited to certain locations within the macronucleus, or if sequences are randomly arranged. Cells were fixed, squashed and then hybridized with 3H-labelled RNA synthesized in vitro using cloned O. fallax rDNA as a template. After autoradiography, silver grains were found to be distributed uniformly over the entire macronucleus without any detectable localization to specific regions. The uniformity of hybridization indicates that rDNA molecules are randomly dispersed throughout the macronucleus and suggests that the macronuclear genetic apparatus lacks any substantial multimolecular organization. S phase macronuclei also showed a uniform distribution of rDNA molecules, irrespective of the position of the replication band at which DNA synthesis takes place. The micronuclei, in contrast, did not show any hybridization, even in cells in which macronuclei were heavily labelled. Macronuclear anlagen, in which the micronuclear chromosomes are polytenized, also do not hybridize. This absence of hybridization indicates a much lower concentration of rDNA in the micronucleus than in the macronucleus. The change in rDNA concentration of rRNA genes presumably occurs during the complicated process of development of a macronucleus from a micronucleus.  相似文献   

15.
Summary Three alcohol dehydrogenase (ADH) genes have recently been characterized in the yeast Kluyveromyces lactis. We report on a fourth ADH in K. lactis (KADH II: KADH2 gene) which is highly similar to other ADHs in K. lactis and Saccharomyces cerevisiae. KADH II appears to be a cytoplasmic enzyme, and after expression of KADH2 in S. cerevisiae enzyme activity comigrated with a K. lactis ADH present in cells grown in glucose or in ethanol. KADH I was also expressed in S. cerevisiae and it comigrated with a major ADH species expressed under glucose growth conditions in K. lactis. The substrate specificities for KADH I and KADH II were shown to be more similar to that of SADH II than to SADH I. SADH I cannot efficiently utilize long chain alcohols, in contrast to other cytoplasmic yeast ADHs, presumably because of the presence of a methionine (residue 271) in its substrate binding cleft. A comparison of the DNA sequences of ADHs among K. lactis, S. cerevisiae and Schizosaccharomyces pombe suggests that the ancestral yeast species contained one cytoplasmic ADH. After divergence from S. pombe, the ADH in the ancestor to K. lactis and S. cerevisiae was duplicated, and one ADH became localized to the mitochondrion, presumably for the oxidative use of ethanol. Following the speciation of S. cerevisiae and K. lactis, the gene encoding the cytoplasmic ADH in S. cerevisiae duplicated, which resulted in the development of the SADH II protein as the primary oxidative enzyme in place of SADH III. In contrast, the K. lactis mitochondrial ADH duplicated to give rise to the highly expressed KADH3 and KADH4 genes, both of which may still play primary roles in oxidative metabolism. These data suggest that K. lactis and S. cerevisiae use different compartments for their metabolism of ethanol. Our results also indicate that the complex regulatory circuits controlling the glucose-repressible SADH2 in S. cerevisiae are a recent acquisition from regulatory networks used for the control of genes other than SADH2.
  相似文献   

16.
白逢彦  贾建华 《菌物学报》1995,14(Z1):75-81
摘要:用CHEF(钳位均匀电场)脉冲电泳系统分析了德巴利汉逊酵母的两个变种及两个相关种的脉冲电泳核型。对每个分类群的染色体条数,染色体DNA的分子量大小范围及整个基因组大小作出了估算,结果如下:Debaryomyces hansenii(Zopf) Lodder et Kreger-van Rij var. hansenii具有6-7条染色体,分子量范围为1.2-2.6(个别3.5)Mb,整个基因组大小为I 0.6-14.9Mb;D. hansenii var. fabryi (Ota) Nakase et Suzuki具有7条染色体,分子量范围为0.7-2.4M b,整个基因组大小为12.0-12.7Mb;D. nepalensis Goto et Sugiyama具有6-8条染色体,分子量范围为(个别0.2)1.1-2.7Mb,整个基因组大小为10.6-11.0Mb;Candida saitoana Nakase et Suzuki具有10-11条染色体,分子量范围为0.6-3.6Mb,整个基因组大小为18.1-18.9Mb.本研究表明C. saitoana与上述德巴利酵母属的三个分类群在脉冲电泳核型上具有明显差异,而后三者之间在染色体DNA带型上却没有发现有价值的区别之处.  相似文献   

17.
Summary In this work we have used a method that allows a rapid and precise quantification of rRNA genes. With the purpose of examining small numbers of rRNA genes, we used Drosophila melanogaster embryos which are inviable because their sex chromosomes carry extensive rDNA deletions. Two of the mutants, B s Ybb 1 and Ybb l , appear to be completely devoid of rDNA. The third, Ybb -, contains no more than five genes.Work supported by C.N.R. contract No. 82-2100 and Progetto Finalizzato C.N.R. Ingegneria Genetica No. 83-01007-51  相似文献   

18.
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish, Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were determined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence IN SITU hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively. An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA, the presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements.  相似文献   

19.
Fifty-one yeast strains isolated from fermented mash of Balinese rice wine, brem, fermented using five different types of starters, ragi tape, were identified on the basis of their internal transcribed spacer (ITS) regions and their 18S rDNA sequences. The results revealed that Saccharomyces cerevisiae(35 strains), Candida glabrata(six strains), Pichia anomala(three strains) and Issatchenkia orientalis(seven strains) were the main yeasts in the fermentation of the rice wine. These yeasts undergo succession during the fermentation in which S. cerevisiae was mostly found as the principal yeast at the end of fermentation. Phylogenetic analysis based on the 18S rDNA sequences of selected strains placed the isolated S. cerevisiae strains in the Saccharomyces sensu stricto group. Karyotype analysis of the S. cerevisiae strains resolved using pulsed field gel electrophoresis (PFGE) showed that the strains are typically associated with different types of starters.  相似文献   

20.
Summary We screened a Schizosaccharomyces pombe genomic library using the ribosomal protein gene SI0 from Saccharomyces cerevisiae as a probe. Hybrid-selected translation of the positive clones revealed a ribosomal protein of S. pombe which is probably equivalent to the ribosomal protein SI0 from S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号