首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Appropriate controls in outdoor UV-B supplementation experiments   总被引:7,自引:0,他引:7  
Quercus robur L. saplings were exposed in an outdoor experiment to supplemental levels of UV-8 (280–315 nm) radiation using treatment arrays of cellulose diacetate-filtered fluorescent lamps that also produce UV-A (315–400 nm) radiation. Saplings were also exposed to UV-A radiation alone using control arrays of the same lamps filtered with polyester and to ambient levels of radiation, using arrays of unenergized lamps. The UV-B treatment was modulated to maintain a 30% elevation above the ambient level of UV-B radiation, measured by a broad-band sensor weighted with an erythemal action spectrum. Saplings exposed to UV-B radiation beneath treatment arrays developed thicker leaves than those beneath ambient and control arrays. Despite the fact that supplemental levels of UV-A radiation were only a small percentage of ambient levels, apparent UV-A effects were also recorded. Significant increases in sapling height, lammas shoot length and herbivory by chewing insects were observed under treatment and control arrays, relative to ambient, but there were no differences between the responses of saplings under treatment and control. These data imply that supplemental UV-A radiation or other effects associated with energised lamps can significantly affect plant growth parameters and herbivory in outdoor studies. We conclude that the results from current outdoor UV-B supplementation experiments that lack control exposures using polyester-filtered lamps need to be interpreted with caution and that future supplementation experiments should include appropriate controls.  相似文献   

2.
Effects of increased UV-B radiation on activities of primary photosynthetic carboxylating enzymes and on contents of soluble proteins were studied in soybean (Glycine max [L.] Merr. cv. Bragg), pea (Pisum sativum L. cv. Little Marvel), tomato (Lycopersicon esculentum L. cv. Rutgers), and sweet corn (Zea mays L. cv. Golden Cross Bantam). The purpose was to evaluate the responses of agronomic crops to increases in solar UV-B radiation. Plants were grown and exposed under greenhouse conditions for 6 h daily to supplemental UV-B radiation which was provided by Westinghouse FS-40 fluorescent sun lamps filtered with 0.127-mm film of cellulose acetate (UV-B treated) or Mylar S (Mylar control). Three UV-B levels were tested: 1.09 (treatment T1), 1.36 (treatment T2), and 1.83 (treatment T3) UV-Bseu where 1 UV-Bseu equals 16.0 mW-m2 weighted by EXP-[(λ-265)/21]2. These UV-B levels corresponded to 6%,21%, and 36%, respectively, of decrease in stratospheric ozone content, based on the interpolations of UV-B irradiances at a solar elevation angle of 60°. Leaves of plants of soybean, pea, and tomato exposed to UV-B radiation were generally low in RuBP carboxylase activity. On a fresh weight basis, all three UV-B radiation levels significantly reduced the enzyme activity in soybean and pea, whereas tomato plants showed significant reduction in RuBP carboxylase activity only when exposed to 1.83 and 1.36 UV-Bseu. An apparent decrease in soluble proteins was observed in leaf extracts of soybean and pea plants exposed to 1.36 and 1.83 UV-Bseu whereas higher amounts of proteins were detected in leaves of tomato plants grown under UV-B radiation. Leaves of sweet corn plants grown under Mylar control were low in PEP carboxylase activity and proteins as compared with those of control plants receiving no supplemental UV and UV-B treatment. Activities of PEP carboxylase in crode extracts from leaves of sweet corn were significantly suppressed under 1.36 and 1.83 UV-Bseu as compared with the no UV control. Some stimulation of PEP carboxylase activity was observed in corn plants exposed to 1.09 UV-Bseu.  相似文献   

3.
Elevated UV-B radiation effects on experimental grassland communities   总被引:5,自引:0,他引:5  
Experimental grassland communities (turves) were exposed to supplemental levels of UV-B radiation (280–315 nm) at an outdoor facility, under treatment arrays of cellulose diacetate-filtered fluorescent lamps which also produce UV-A radiation (315–400 nm). Control treatments consisted of arrays of polyester-filtered lamps, which allowed for exposure to UV-A radiation alone, and arrays of unenergized lamps allowing for exposure to ambient levels of solar radiation.  相似文献   

4.
Spectral balance and UV-B sensitivity of soybean: a field experiment   总被引:12,自引:5,他引:7  
Soybean [Glycine max (L.) Merr.] cultivar Essex was grown and tested for sensitivity to UV-B radiation (280–320 nm) under different combinations of UV-A (320–400 nm) and PFD (400–700 nm) radiation in four simultaneous field experiments. The radiation conditions were effected with combinations of filtered solar radiation and UV-B and UV-A lamps electronically modulated to track ambient radiation. Significant UV-B-caused decreases in total aboveground production and growth were seen only when PFD and UV-A were reduced to less than half their flux in sunlight. When PFD was low, UV-A appeared to be particularly effective in mitigating UV-B damage. However, when PFD was high, substantial UV-A did not appear to be required for UV-B damage mitigation. Leaf chlorophyll fluorescence did not indicate photosynthetic damage under any radiation combination. With UV-B, leaves in all experiments exhibited increased UV-absorbing pigments and decreased whole-leaf UV transmittance. Results of these field experiments indicate difficulties in extrapolating from UV-B experiments conducted in glasshouse or growth cabinet conditions to plant UV-B sensitivity in the field. Implications for UV radiation weighting functions in evaluating atmospheric ozone reduction are also raised.  相似文献   

5.
Saplings of pedunculate oak (Quercus robur L.) were exposed at an outdoor facility to modulated levels of elevated UV-B radiation (280–315 nm) under treatment arrays of cellulose diacetate-filtered fluorescent lamps which also produced UV-A radiation (315–400 nm). Saplings were also exposed to UV-A radiation alone under control arrays of polyester-filtered lamps and to ambient levels of solar radiation under arrays of unenergized lamps. The UV-B treatment corresponded to a 30% elevation above the ambient level of erythemally weighted UV-B radiation. Sapling growth and the occurrence of associated organisms were examined over two years. In both years, leaves of saplings exposed to UV-B treatment were thicker and smaller in area relative to leaves exposed to ambient and control levels of radiation. UV-B treatment also retarded bud burst at one sampling in the first year of the study. Some responses were recorded which were common to both treatment and control arrays, implying that UV-A radiation, or some other factor associated with energized lamps, was responsible for the observed effects. Saplings under treatment and control arrays were taller in the first year of the study, suffered greater herbivory from chewing insects, and had lower root dry weights and greater insertion heights of secondary branches than saplings exposed to ambient levels of radiation. Exposure of saplings to elevated UV-A radiation alone under control arrays increased estimated leaf volumes in the second year of the study and reduced the number of secondary branches and the total number of branches per sapling after two years, relative to both treatment and ambient arrays. There were no effects of elevated ultraviolet radiation on shoot or total plant weight, root/shoot ratios, stem diameter, the numbers or insertion heights of primary or tertiary branches, total leaf number, timing of leaf fall or frequency of ectomycorrhizas. Our study suggests that any increases in UV-B radiation as a result of stratospheric ozone depletion will influence the growth of Q. robur primarily through effects on leaf morphology.  相似文献   

6.
With a reduced stratospheric ozone concentration, the generation of UV-tolerant plants may be of particular importance. Among different crop plants there is large variation in sensitivity to UV-B radiation. This study was undertaken to investigate the possibilities of using somaclonal variation and selection in vitro for improving UV-B tolerance in sugar beet (Beta vulgaris L.). Sugar beet callus was exposed to UV radiation (280–320 nm, 0.863–5.28 kJ m-2 day-1, unweighted) and resultant shoots were selected from surviving cells. After establishment of the plants, they were grown under either visible radiation (114 μmol m-2 s-1 PAR) or with the addition of UV radiation (6.3 kJ m-2 day-1 biologically effective UV-B). Screening of regenerants in vivo for tolerance to UV radiation was undertaken 10 months after termination of the UV selection pressure. Screening was done visually and by using a number of physiological parameters, including chlorophyll fluorescence induction, ultraweak luminescence, pigment analysis and total content of UV-screening pigments. A clear difference between the unselected and the UV-selected somaclones was observed when visually studying the UV damage and other leaf injury. The observations were supported by the ultraweak luminescence measurements. Unselected plants showed significantly greater damage when subjected to subsequent UV radiation as compared to the selected plants. The clones subjected to UV selection pressure displayed a significantly higher concentration of UV-screening pigments under subsequent UV radiation. The unselected plants under subsequent UV treatment showed a lower carotenoid concentration when compared to selected plants. However, no significant difference between treatments was found for chlorophyll a/b, or F/Fmax, a measure of photosynthetic quantum yield.  相似文献   

7.
Plants ofLolium perenne, grown with and without the balansoidfungal leaf endophyteNeotyphodium lolii, were exposed to threeultraviolet radiation treatments at an outdoor facility in theUK for 172 d. Plants were exposed to either (a) a 30% elevationabove the ambient erythemally-weighted level of UV-B (280–315nm) radiation under banks of cellulose diacetate filtered fluorescentlamps that also produce UV-A (315–400 nm) radiation (UV-B+A);(b) elevated UV-A radiation alone under banks of polyester filteredlamps; or (c) ambient levels of solar radiation under banksof unenergized lamps. The fertility of plants grown withN. loliiwassignificantly reduced by the elevated UV-B+A exposure. After172 d, these plants produced 70% fewer spikes, 75% fewer seeds,71% lower total weight of seed and 78% fewer seeds per g d.wt of plant tissue than plants colonized byN. loliiwhich wereexposed to ambient radiation. There was no discernible effectof elevated UV-B+A exposure on the fertility of endophyte-freeplants. Plants irradiated with UV-B+A developed 14% thickerleaves than those exposed to ambient radiation. Those whichwere irradiated with elevated UV-A alone produced seeds thatwere 20% heavier than plants exposed to ambient levels of radiation.Plants grown withN. loliihad 7% thicker leaves, 4% thicker stembases and 7% fewer tillers than those grown without it. Thefresh mass of tillers of plants grown withN. loliiwas 11% greaterthan those of endophyte-free plants, owing to their higher moisturecontents. These results suggest that the fertility ofL. perennecolonizedbyN. loliiin the natural environment could be deleteriouslyaffected by elevated fluxes of UV-B radiation associated withstratospheric ozone depletion and that this may affect the populationdynamics of the species.Copyright 1998 Annals of Botany Company Fungal leaf endophyte,Neotyphodium lolii, perennial ryegrass (Lolium perenne), stratospheric ozone depletion, UV-B radiation.  相似文献   

8.
The effect of low doses of UV-A (320–400 nm) and UV-B (280–320 nm) radiation on photosynthetic activities inPhaseolus mungo L. was investigated under field condition. Supplementation of UV-A enhanced the synthesis of chlorophyll and carotenoids than the UV-B supplemented plants. Significant increase was seen in the concentration of UV-B absorbing compounds of UV-B treated plants. Increase of PS 2 activity in UV-A treated plants was seen. Changes in photosynthetic activity were measured in terms of PS 2 mediated O2 evolution and Chl a fluorescence.  相似文献   

9.
Abstract: The effects of solar ultraviolet radiation (UV) on carbon uptake, oxygen evolution and motility of marine phytoplankton were investigated in coastal waters at Kristineberg Marine Research Station on the west coast of Sweden (58° 30'N, 11° 30'E). The mean irradiances at noon above the water surface during the investigation period were: photosynthetic active radiation (PAR, 400–700 nm) 1670 μmol m−2 s−1; ultraviolet-A radiation (UV-A, 320–400 nm) 35.9 W m−2 and ultraviolet-B radiation (UV-B, 280–320 nm) 1.7 W m−2. UV-B radiation was much more attenuated with depth in the water column than were PAR and UV-A radiation. UV-B radiation could not be detected at depths greater than 100–150 cm. Inhibition of carbon uptake by UV-A and UV-B in natural phytoplankton populations was greatest at 50 cm depth and the effects of UV-B were greater than those of UV-A. At depths greater than 50 cm there was almost no effect of ultraviolet radiation on carbon uptake. PAR, UV-A and UV-B decreased oxygen evolution by the dinoflagellate Prorocentrum minimum . Inhibition of oxygen evolution was greater after 4 h than 2 h but it was not possible to distinguish the negative effects of the different light regimes. The motility of P. minimum was not affected by PAR, UV-A and UV-B. The importance of exposure of phytoplankton to different light regimes before being exposed to natural solar radiation is discussed.  相似文献   

10.
师生波  韩发 《生物技术通报》2006,64(Z1):161-166
介绍了用于UV-B生物学效应研究的几种常见光源,对如何利用选择性薄膜获得理想的UV-B波段的光谱,进而能较真实模拟平流层O3耗损所导致的近地表面太阳UV-B辐射的增强,以及在野外进行UV-B模拟研究时,紫外荧光灯管的排列方式等进行了分析讨论。介绍并讨论了当前UV-B辐射实验的各种方法,并就各实验设计的注意事项和安全操作等提出了建议。  相似文献   

11.
Increased ultraviolet-B (UV-B, 280–320 nm) radiation, due to depletion of stratospheric ozone, is an increasing threat to living organisms. Furthermore, increased ground level temperatures as a consequence of global warming may favour development of pathogens, such as Cercospora beticola , that thrive at high temperatures. This study evaluates the effect of combined UV stress and Cercospora leaf-spot disease on young sugarbeet plants ( Beta vulgaris L . ). An inoculum consisting of twelve European isolates of C. beticola Sacc. was used in the experiments. One Cercospora -sensitive and one Cercospora -tolerant sugarbeet line were analysed from growth regimes where plants were grown either under visible radiation alone or with supplemental UV-B. Photosynthetic pigments and partial reactions of photosynthesis, including potential yield and quantum yield under illumination, non-photochemical quenching (qNPQ) and photochemical quenching (qP), were measured to assess plant response. The combination of Cercospora and supplemental UV-B radiation in the sensitive line resulted in a decreased photosynthetic efficiency, shown by qNPQ and quantum yield under illumination as compared with that for either stress applied alone. The Fv/Fm was unchanged for plants subjected to UV-B radiation without infection, although the qNPQ decreased. The Cercospora -tolerant line showed no significant differences under the different treatments. Thus, the line tolerant to Cercospora infection also proved to be tolerant to UV-B radiation alone and in combination with the infection.  相似文献   

12.
In Antarctica ozone depletion is highest during spring, coinciding with the reproduction of many seaweed species. Propagules are the life-stage of an alga most susceptible to environmental perturbations. Therefore, fertile thalli of Iridaea cordata (Turner) Bory (Rhodophyta) were collected in the eulittoral of King George Island (Antarctica) to examine spore susceptibility to ultraviolet radiation (UVR). In the laboratory, freshly released tetraspores were exposed to photosynthetically active radiation (PAR) (400–700 nm), PAR+UV-A (320–700 nm) or PAR+UV-A+UV-B (280–700 nm). Photosynthetic efficiency was measured during 1–8 h of exposure and after 48 h of recovery. Additionally, mycosporine-like amino acids (MAAs) and DNA damage were determined. Saturating irradiance of photosynthesis of freshly released tetraspores was 57 µmol photons m−2 s−1. Exposure to increasing fluence of PAR reduced photosynthetic efficiency. UVR further decreased the photosynthetic efficiencies of the tetraspores but spores were able to recover completely after UVR exposure and 2 days post-cultivation under low PAR. DNA damage was minimal and lesions were effectively repaired under photoreactivating light. Concentrations of the MAAs shinorine and palythine were higher in tetraspores treated with UVR than in spores only exposed to PAR. Generally, the tetraspores show a good UV tolerance. This flexible response of the tetraspores of this species to changing radiation conditions enables the alga to grow along a considerable depth gradient from the sublittoral to the eulittoral where they can be exposed to enhanced UVBR under conditions of stratospheric ozone depletion.  相似文献   

13.
We examined whether the exposure of Quercus robur L. to elevated UV-B radiation (280–315 nm) during growth would influence leaf decomposition rate through effects on litter quality. Saplings were exposed for eight months at an outdoor facility in the UK to a 30% elevation above the ambient level of erythemally weighted UV-B radiation under UV-B treatment arrays of fluorescent lamps filtered with cellulose diacetate, which transmitted both UV-B and UV-A (315–400 nm) radiation. Saplings were exposed to elevated UV-A alone under control arrays of lamps filtered with polyester and to ambient radiation under unenergised arrays of lamps. Abscised leaves from saplings were enclosed in 1 mm2 mesh nylon bags, placed in a Quercus–Fraxinus woodland and were sampled at 0.11, 0.53, 1.10 and 1.33 years for dry weight loss, chemical composition and saprotrophic fungal colonization. At abscission, litters from UV-A control arrays had ≈ 7.5% higher lignin/nitrogen ratios than those from UV-B treatment and ambient arrays (P < 0.06). Dry weight loss of leaves treated with elevated UV-B radiation during growth was 2.5% and 5% greater than that of leaves from UV-A control arrays at 0.53 and 1.33 years, respectively. Litter samples from UV-B treatment arrays lost more nitrogen and phosphorus than samples from ambient arrays and more carbon than samples from UV-A control arrays. The annual fractional weight loss of litter from UV-B treatment arrays was 8% and 6% greater than that of litter from UV-A control and ambient arrays, respectively. Regression analyses indicated that the increased decomposition rate of UV-B treated litters was associated with enhanced colonization of leaves by basidiomycete fungi, the most active members of the soil fungal community, and that the frequency of these fungi was negatively associated with the initial lignin/nitrogen ratio of leaves.  相似文献   

14.
The impact of exclusion of solar UV-B (280–320 nm) and UV-A+B (280–400 nm) radiation on the root nodules was studied in soybean(Glycine max var. MACS 330). Soybean plants were grown in the tropical region of Indore (Latitude-22.4°N), India under field conditions in metal cages covered with polyester exclusion filters that specifically cut off UV-B (<320 nm) and UV-A+B (<400 nm) radiation; control plants were grown under ambient solar radiation. Leghemoglobin content was analyzed in the root nodules on the 50th day after emergence of seedlings. Exclusion of UV radiations significantly enhanced the leghemoglobin content in the nodules on fresh weight basis; 25% and 45% higher amount of leghemoglobin were present in the nodules after the exclusion of UV-B and UV-A+B radiation respectively. Analysis by native and SDS-PAGE showed high intense bands of leghemoglobin after the exclusion of UV-A+B as compared to control. Exclusion of UV radiation also enhanced the growth of roots as well as aerial parts of the plants. UV Exclusion increased nodulation by increase in the number and size of nodules. The results are discussed in the light of advantage of exclusion for enhancing protein/nitrogen content in the plants.  相似文献   

15.
The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species.  相似文献   

16.
Experiments were conducted under greenhouse conditions to investigate the effects of enhanced UV-B radiation (280 to 320 nm) on height, fresh and dry weights, leaf chlorophyll and carotenoids, CO2 uptake rates, and Hill activity in soybean ( Glycine max L. cv. Bragg). Plants were exposed for 6 h continuously from midmorning to midafternoon each day to UV-B radiation which was provided by Westinghouse FS-40 sun lamps filtered with 0.127-mm cellulose acetate film (UV-B enhanced) or 0.127-mm Mylar S film (UV-B Mylar control). Three different UV-B enhanced radiation levels were tested: 1.09 (treatment T1), 1.36 (treatment T2), and 1.83 (treatment T3) UV-B sun equivalent units (UV-Bsec) where 1 UV-Bsec= 15.98 mW·m−2 of solar UV-B obtained by applying EXP -[(α-265)/21]2, a weighting function that simulates the DNA absorption spectrum, to the UV-B lamp systems. These UV-B levels correspond to a calculated decrease in stratospheric ozone content of 6%, 21%, and 36% for treatment T1, T2, and T3, respectively.
Daily exposure of soybean plants to UV-B radiation significantly decreased height, fresh and dry weights, leaf chlorophyll and carotenoid contents, and CO2 uptake rates. Leaf pigment extracted in 80% acetone from UV-B-treated soybean plants showed considerable increase in absorption in the wavelength region of 330 to 400 nm with increased UV-B radiation levels. Chloroplast preparations from leaves of T2 and T3 plants showed significant reductions in Hill reaction measurements.  相似文献   

17.
The effects of enhanced UV-B (290-320 nm) radiation on two native Mediterranean pines (Pinus pinea L., Pinus halepensis Mill.) were recorded during a one-year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras. Greece, 38.3°N. 29.1°E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses. particularly water stress during summer. Supplemental UV-B irradiation started in early February, 1993 and up to late June, no effects were observed on growth and photochemical efficiency of photosystem II, as measured by chlorophy II fluorescence induction. Water stress during the summer was manifested in the control plants as a decline in the ratio of variable to maximum fluorescence (Fv/Fm), the apparent photon yield for oxygen evolution (φl) and the photosynthetic capacity at 5% CO2 (Pm). In addition, a partial needle loss was evident. Under supplemental UV-B radiation, however, the decreases in Fv/Fm, φi, and Pm. as well as needle losses were significantly less. Soon after the first heavy autumn rains. photosynthetic parameters in both control and UV-B treated plants recovered to similar values. but the transient summer superiority of UV-B irradiated plants resulted in a significant increase in their dry weight measured at plant harvest. during late January. 1994. Plant height. UV-B absorbing compounds, photosynthetic pigments and relative water content measured at late spring. late summer and at plant harvest, were not significantly affected by supplemental UV-B radiation. The results indicate that enhanced UV-B radiation may be beneficial for Mediterranean pines through a partial alleviation of the adverse effects of summer drought.  相似文献   

18.
The regulation of oxyradicals and PSII activity by UV-B (280-315 nm) and UV-A (315-400 nm) components were investigated in the leaves of maize [Zea mays L. var: HQPM.1]. The impact of ambient UV radiation on the production of superoxide (O2-) and hydroxyl (.OH) radicals were analysed in the leaves of 20-day-old plants. The amount of O2.- and .OH radicals and the radical scavenging activity were significantly higher in the leaves exposed to ambient UV radiation as compared to the leaves of the plants grown under UV exclusion filters. Smaller amount of oxyradicals in the leaves of UV excluded plants was accompanied by a substantial increase in quantum yield of electron transport (phi Eo), rate of electron transport (psi o) and performance index (PIABS), as indicated by chlorophyll a fluorescence transient. Although higher amounts of oxyradicals invoked higher activity of antioxidant enzymes like superoxide dismutase and peroxidase under ambient UV, they also imposed limitation on the photosynthetic efficiency of PSII. Exclusion of UV components (UV-B 280-315 nm; UV-A 315-400 nm) translated to enhanced photosynthesis, growth and biomass. Thus, solar UV components, especially in the tropical region, could be a major limiting factor in the photosynthetic efficiency of the crop plants.  相似文献   

19.
The effects of ultraviolet-B radiation on loblolly pine   总被引:11,自引:0,他引:11  
Summary Depletion of stratospheric ozone and the resulting increase in ultraviolet-B (UV-B) radiation may negatively impact the productivity of terrestrial ecosystems. This concern has led to a number of studies that report the influence of supplementing UV-B radiation on plant growth and development. However, only two of these field studies have included tree species and both were singleseason experiments. In this study, loblolly pine (Pinus taeda L.) from seven seed sources was grown under natural and supplemental levels of UV-B radiation. Irradiation treatments were continued for three seasons on plants from four of the seven groups and for 1 year only for three groups. The supplemental irradiances simulated those that would be anticipated with stratospheric ozone reductions of 16% and 25% over Beltsville, Md. The effects of UV-B radiation during the 1st year on plant growth varied among the seed sources. The growth of plants from two of the seven seed sources tested showed significant reductions following a single irradiation season and plants from one group tended to be larger under increased UV-B radiation. However, after 3 years of supplemental irradiation, plant biomass was reduced in all four groups by 12–20% at the highest simulated ozone depletion. These results suggest that the effects of UV-B radiation may accumulate in trees and that increased UV-B radiation could significantly reduce the growth of loblolly pine over its lifetime. However, they also point to a need for multiple season research in any analysis of potential consequences of global change on the long-term growth of trees.  相似文献   

20.
Glycyrrhizin, the major bioactive component of Glycyrrhiza uralensis, is widely used as a natural sweetener. Recently glycyrrhizin has been shown to have anti-tumor activity, highly active in inhibiting replication of HIV-1 and SARS-associated virus and exhibits a number of pharmacological effects. The principle objective of the current study was to evaluate the effects of different spectral quality including red, blue, white and UV-B radiation on the production of glycyrrhizin, in a controlled environment. Plants were grown under artificial lights with elevated CO(2) concentration and both the pot and hydroponic plants were assigned to red and blue light treatments and those grown under white fluorescent lamps were used as control. In a separate experiment, pot plants were exposed to ultraviolet (UV)-B radiation (wavelength: 280-315 nm). The net photosynthetic rates (NPR) of the leaves reduced significantly immediately after exposure to the high intensity UV-B radiation (3 days at 1.13 W m(-2)). In case of the low intensity UV-B radiation (15 days at 0.43 W m(-2)), NPR was also reduced, but the rate of reduction was significantly slower than that of the high intensity treatment. The concentrations of glycyrrhizin quantified in the root tissues were highest in the plants grown under red light in both hydroponic and pot systems and the concentration increased linearly from 1- to 3-month-old pot plants. Both the low and high intensity of UV-B exposure increased the concentration of glycyrrhizin in the root tissues of 3-month-old pot plants, the values being nearly X1.5 those of the control. The results also indicate that the glycyrrhizin concentrations of 3-6 months old pot plants were similar or even higher than the previously reported values for 3-4 years old field-grown plants and confirm that high concentration of glycyrrhizin production is possible within a very short production period under controlled environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号