首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: Our aims were to assess the phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs and to estimate divergence times using different geological scenarios. We related divergence times to past geological events and discuss the relevance of our data for the systematics of eastern Mediterranean water frogs. LOCATION: The eastern Mediterranean region. METHODS: Genetic diversity and divergence were calculated using sequences of two protein-coding mitochondrial (mt) genes: ND2 (1038 bp, 119 sequences) and ND3 (340 bp, 612 sequences). Divergence times were estimated in a Bayesian framework under four geological scenarios representing alternative possible geological histories for the eastern Mediterranean. We then compared the different scenarios using Bayes factors and additional geological data. RESULTS: Extensive genetic diversity in mtDNA divides eastern Mediterranean water frogs into six main haplogroups (MHG). Three MHGs were identified on the Anatolian mainland; the most widespread MHG with the highest diversity is distributed from western Anatolia to the northern shore of the Caspian Sea, including the type locality of Pelophylax ridibundus. The other two Anatolian MHGs are restricted to south-eastern Turkey, occupying localities west and east of the Amanos mountain range. One of the remaining three MHGs is restricted to Cyprus; a second to the Levant; the third was found in the distribution area of European lake frogs (P. ridibundus group), including the Balkans. MAIN CONCLUSIONS: Based on geological evidence and estimates of genetic divergence we hypothesize that the water frogs of Cyprus have been isolated from the Anatolian mainland populations since the end of the Messinian salinity crisis (MSC), i.e. since c. 5.5-5.3 Ma, while our divergence time estimates indicate that the isolation of Crete from the mainland populations (Peloponnese, Anatolia) most likely pre-dates the MSC. The observed rates of divergence imply a time window of c. 1.6-1.1 million years for diversification of the largest Anatolian MHG; divergence between the two other Anatolian MHGs may have begun about 3.0 Ma, apparently as a result of uplift of the Amanos Mountains. Our mtDNA data suggest that the Anatolian water frogs and frogs from Cyprus represent several undescribed species.  相似文献   

2.
Aim We analysed the population genetics of the brown hare (Lepus europaeus) in order to test the hypothesis that this species migrated into central Europe from a number of late glacial refugia, including some in Asia Minor. Location Thirty‐three localities in Greece, Bulgaria, Italy, Croatia, Serbia, Poland, Switzerland, Austria, France, Germany, the Netherlands, Spain, the United Kingdom, Turkey and Israel. Methods In total, 926 brown hares were analysed for mitochondrial DNA (mtDNA) variation by restriction fragment length polymorphism (RFLP) performed on polymerase chain reaction‐amplified products spanning cytochrome b (cyt b)/control region (CR), cytochrome oxidase I (COI) and 12S–16S rRNA. In addition, sequence analysis of the mtDNA CR‐I region was performed on 69 individuals, and the data were compared with 137 mtDNA CR‐I sequences retrieved from GenBank. Results The 112 haplotypes detected were partitioned into five phylogeographically well‐defined major haplogroups, namely the ‘south‐eastern European type haplogroup’ (SEEh), ‘Anatolian/Middle Eastern type haplogroup’ (AMh), ‘European type haplogroup, subgroup A’ (EUh‐A), ‘European type haplogroup, subgroup B’ (EUh‐B) and ‘Intermediate haplogroup’ (INTERh). Sequence data retrieved from GenBank were consistent with the haplogroups determined in this study. In Bulgaria and north‐eastern Greece numerous haplotypes of all five haplogroups were present, forming a large overlap zone. Main conclusions The mtDNA results allow us to infer post‐glacial colonization of large parts of Europe from a late glacial/early Holocene source population in the central or south‐central Balkans. The presence of Anatolian/Middle Eastern haplotypes in the large overlap zone in Bulgaria and north‐eastern Greece reveals gene flow from Anatolia to Europe across the late Pleistocene Bosporus land‐bridge. Although various restocking operations could be partly responsible for the presence of unexpected haplotypes in certain areas, we nevertheless trace a strong phylogeographic signal throughout all regions under study. Throughout Europe, mtDNA results indicate that brown hares are not separated into discernable phyletic groups.  相似文献   

3.
Genetic variability of Anatolian hares and relationships between Anatolian and European populations were assessed by a multilocus allozyme approach to infer evolutionary relationships between hares from Asia Minor and Europe. Of the 48 loci assayed, 19 (39.6%) were polymorphic with two to four alleles in the Anatolian hares. Among all Anatolian alleles, 14 were so far not found in the compared 717 brown hares from Europe. Overall, genetic diversity was highest in Anatolian hares, intermediate in brown hares from the southern and southeastern Balkans and lowest in central European populations. The rich genetic diversity in Anatolian hares might be a consequence of Anatolias biogeographic position with the chance of multiple gene flow from neighbouring regions, and the likelihood of long-term presence of hares during the last ice age, when large parts of more northern latitudes did not provide suitable habitats.However, among 28 loci used for the comparison between European and Anatolian populations, most common alleles of European brown hares were also common in Anatolian populations and no alternately fixed alleles were found for Anatolian and European populations. This together with only little or moderately varying allele frequencies produced low genetic divergence between Anatolian and European populations. Genetic differentiation among Anatolian populations was also low. Even between the two forms with different coat colour (brownish and yellowish) in Anatolian hares, there was little genetic differentiation. Altogether, all Anatolian hares studied presently are closely related to European brown hare populations, and only some distantly spaced population pairs revealed increased genetic divergence.

Zusammenfassung

Genetische Diversität anatolischer Feldhasen (Lepus europaeus Pallas, 1778) und Differenzierung zwischen anatolischen und europäischen PopulationenZur Beurteilung der phylogenetischen Beziehungen zwischen anatolischen Hasen und europäischen Feldhasenpopulationen wurde die allelische Variabilität anatolischer Hasen mittels horizontaler Stärkegelelektrophorese erfaßt und gemeinsam mit unmittelbar vergleichbaren Daten griechischer, bulgarischer und österreichischer Populationen aus früheren Studien populationsgenetischen Analysen unterzogen. Neunzehn der 48 untersuchten Loci der anatolischen Hasen zeigten allelische Variabilität. Unter den anatolischen Allelen kamen 14 bisher in den europäischen Polulationen nicht vor. Insgesamt zeigten anatolische Hasen die höchste und österreichische Populationen die niedrigste genetische Diversität; die jeweiligen Werte der griechischen und bulgarischen Populationen lagen dazwischen. Dies entspricht unserer Hypothese hoher genetischer Diversität in Anatolien, auf Grund der biogeografischen Position und der klimatischen bzw. Lebensraumbedingungen während des Pleistozäns, die, im Gegensatz zu Mitteleuropa, kontinuierliche Hasenpopulation in Anatolien wahrscheinlich erscheinen lassen. Kontinuierliche Populationen und Genflüsse aus verschiedenen Nachbarregionen könnten bei langfristig relative ungestörten Populationen zur Anreicherung genetischer Varianten in Anatolien geführt haben, während mitteleuropäische Feldhasenpopulationen im Zuge ihrer postglazialen Einwanderung aus Refugial-gebieten an genetischer Vielfalt eingebüßt haben. Allerdings waren die häufigen Allele der anatolischen Hasen ebenfalls häufig bei den europäischen Feldhasen vertreten; somit ergab sich insgesamt nur eine geringe genetische Differenzierung zwischen anatolischen und europäischen Feldhasen. Die zwei in Anatolien gefundenen Fellfärbungstypen (brauner vs. gelber Grundton) zeigten ebenfalls keine besondere genetische Differenzierung.  相似文献   

4.
Both the Cytb gene of mtDNA and Y chromosome markers were studied in a relatively large sample of brown hares (L. europaeus) from Europe and Anatolia (Turkey and Israel), together with other seven Lepus species, in order to enable comparative analysis of possible sex-specific gene flow. Furthermore, Y chromosome markers were compared with data from biparentally inherited markers in an attempt to understand whether or not their pattern of distribution was congruent with that of allozymes or whether they rather matched mtDNA phylogenies, with which they share uniparental inheritance. Consistent with the general observation, levels of interspecific genetic variability were very low for the Y chromosome markers compared with mtDNA. Moreover, lack of interspecific variation for the Y-DNA studied within Lepus genus rendered these markers improper for any further phylogenetic analysis. With the highest nucleotide diversity in Anatolia compared with Europe, both marker systems confirmed an unbroken species history in Anatolia, corroborated the hypothesis of continuous gene flow from Anatolia's neighbouring regions, and supported the idea of a quick postglacial colonization followed by expansion of the species in large parts of Europe. Phylogenetic analysis under mtDNA revealed the existence of four different haplogroups with a well defined distribution across Europe and Anatolia. Both genetic systems supported the deep separation of Anatolian and European lineages of L. europaeus. Nevertheless, Anatolian Y-DNA lineages extended across a longer geographic distance in south-eastern Europe than Anatolian mtDNA haplotypes, probably as a result of higher female philopatry that makes mtDNA introgression more difficult in brown hares.  相似文献   

5.
The phylogeographic structure of the brown hare (Lepus europaeus) was studied by analysing mtDNA control region sequences of 98 individuals from continental and insular Greece, Bulgaria, Cyprus and northern Israel, together with 44 published sequences from Italy and central Europe. We found two distinct clades separated by an average nucleotide divergence of 6.6%, which may correspond to a Balkan and to an Asia Minor refugium. The estimated time of separation of the two clades was dated back to 105,000- 490,000 years ago. These two clades coexist in the area of northeastern Greece and Bulgaria, most likely as a result of a post-glacial northward expansion. Within the southern Balkan refugium, network analyses showed geographical structuring, which supports the hypothesis of several isolated Late Pleistocene populations. The central European and Italian populations appear to have originated from a non-detected northern Balkan population that was genetically closely related to some northern Greek populations, as a result of postglacial expansion, translocations or a combination of both. Moreover, several cases of ancient and recent translocations by humans were detected, especially for some island populations, while the eastern Aegean islands off the Asia Minor coast were most likely colonized naturally through Late Pleistocene land bridge connection. The genetic analysis presented here provides a framework for designing proper conservation and management guidelines for this species.  相似文献   

6.
Although only of medium size, and thus of little nutritional value compared to big game such as mammoths and ungulates, hares (Lepus spp.) probably have always been a food source for humans, as documented in archaeological finds. Nowadays, hares, particularly such species as the brown hare (L. europaeus), are among the most important game species in many European countries. For hunting, perhaps religious reasons, and in connection with certain myths, hares have been and are still being intentionally translocated. Ancient translocations by humans can be inferred from the presence of hares on islands that had no mainland connections, at least during the Pleistocene, the major evolutionary period of the genus Lepus. We review some of the literature on anthropogenic translocations of hares. We focus on three examples [the brown hare (L. europaeus), the Corsican hare (L. corsicanus), and the Sardinian hare (L. capensis)], where some molecular data could be used to trace the translocation routes and possible origins of introduced hare populations. Certain molecular marker systems, such as sequences of the hypervariable part I (HV-1) of the mitochondrial control region, show high variability in hare species and are thus promising for tracing both recent and ancient origins of translocated hares. Some other molecular marker systems as well as caveats connected with the use of such marker systems in the genus Lepus are also discussed.  相似文献   

7.
Phylogeographic structure of the eastern pine processionary moth Thaumetopoea wilkinsoni was explored in this study by means of nested clade phylogeographic analyses of COI and COII sequences of mitochondrial DNA and Bayesian estimates of divergence times. Intraspecific relationships were inferred and hypotheses tested to understand historical spread patterns and spatial distribution of genetic variation. Analyses revealed that all T. wilkinsoni sequences were structured in three clades, which were associated with two major biogeographic events, the colonization of the island of Cyprus and the separation of southwestern and southeastern Anatolia during the Pleistocene. Genetic variation in populations of T. wilkinsoni was also investigated using amplified fragment length polymorphisms and four microsatellite loci. Contrasting nuclear with mitochondrial data revealed recurrent gene flow between Cyprus and the mainland, related to the long-distance male dispersal. In addition, a reduction in genetic variability was observed at both mitochondrial and nuclear markers at the expanding boundary of the range, consistent with a recent origin of these populations, founded by few individuals expanding from nearby localities. In contrast, several populations fixed for one single mitochondrial haplotype showed no reduction in nuclear variability, a pattern that can be explained by recurrent male gene flow or selective sweeps at the mitochondrial level. The use of both mitochondrial and nuclear markers was essential in understanding the spread patterns and the population genetic structure of T. wilkinsoni, and is recommended to study colonizing species characterized by sex-biased dispersal.  相似文献   

8.
9.
Systematics and taxonomy of hares of the genus Lepus (Lagomorpha) are under contentious debate, and phylogenetic relationships among many taxa are not well understood. Here we study genetic differentiation and evolutionary relationships among North African hares, currently considered subspecies of Lepus capensis , cape hares ( L. capensis ) from the Cape province in South Africa, and brown hares ( L. europeaus ) from Europe and Anatolia, using maternally (mtDNA) and biparentally (allozymes) inherited markers. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of a c. 1.8 kb long segment of the mitochondrial control region using eight hexanucleotide-recognizing restriction endonucleases yielded 28 haplotypes, and horizontal starch gel electrophoresis of proteins encoded by 25 structural gene loci revealed 52 alleles at 18 polymorphic loci. Diverse phylogenetic analyses (neighbor joining dendrogram, median joining network, multidimensional scaling of pairwise distances, AMOVA, F -statistics, hierarchical F -statistics) of genetic variants revealed marked substructuring of mtDNA into three phylogeographic groups, namely an African, a central European, and an Anatolian, but a somewhat less pronounced overall differentiation of the nuclear genome, despite a relatively high number of population-specific (private) alleles. However, all our results are not incongruent with Petter's (1959: Mammalia 23 , 41; 1961: Z. f. Säugetierkunde 26 , 30; 1972 : Société Des Sciences Naturelles et Physiques du Maroc 52 , 122) hypothesis that North African hares generally belong to L. capensis and that brown hares should be included in this species as well.  相似文献   

10.
In many areas, the management of overexploited populations of brown hare (Lepus europaeus) is based on annual restocking. While in some cases exotic hares are introduced, in some others hares are captured locally within protected areas and subsequently released into hunting grounds. We evaluated the genetic effects of this management regime in an Italian province where the brown hare population has recovered in the last few decades, by sequencing the hypervariable domain 1 of the mitochondrial control region and by genotyping eight autosomal microsatellites in hares sampled in both hunting and non-hunting areas. Both nuclear (H e?=?0.68 and H o?=?0.65) and mitochondrial variability (h?=?0.853 and π?=?0.012) were in line with other European populations. When comparing our data with mitochondrial sequences retrieved from GenBank, out of the 21 detected haplotypes, 14 were private to our study area. While 4.6 % of the individuals were found to carry haplotypes attributable to past introductions, 41.5 % grouped within a well-supported lineage, previously identified with a presumed native Italian taxon, L. e. meridiei. Despite the detectable geographic partitioning of mitochondrial haplotypes across the province, no genetic structure resulted from microsatellites analysis, indicating that no reproductive barriers exist among hares carrying different mitochondrial lineages. In conclusion, the local management seems to have contributed to the recovery of the species and to a full admixture of nuclear genes in the province. However, neither the extensive translocations nor the possible introductions of exotic heads seem to have completely undermined the local mitochondrial lineages.  相似文献   

11.
The mtDNA of bees from 84 colonies of Turkish honeybees (Apis mellifera) was surveyed for variation at four diagnostic restriction sites and the sequence of a noncoding intergenic region. These colonies came from 16 locations, ranging from European Turkey and the western Mediterranean coast to the Caucasus Mountains along the Georgian border, the eastern Lake Van region, and the extreme south. Combined restriction site and sequence data revealed four haplotypes. Three haplotypes belonged to the eastern Mediterranean mtDNA lineage. The fourth haplotype, which had a novel restriction site pattern and noncoding sequence, was found in samples from the extreme south, near the Syrian border. We found two different noncoding sequences among the eastern Mediterranean haplotypes. The "Caucasian" sequence matches that described from A. m. caucasica, and the "Anatolian" sequence matches that of A. m. carnica. The frequency of the "Caucasian" sequence was highest (98-100%) in sites near the Georgian border and decreased steeply to the south and west. Elsewhere the Anatolian sequence was found. In European Turkey (Thrace) a restriction site polymorphism previously reported from A. m. carnica in Austria and the Balkans was present at high frequency. A novel mtDNA haplotype with a unique restriction site pattern and noncoding sequence was found among bees from Hatay, in the extreme south near the Syrian border. This haplotype differed from the three previously known lineages of honeybee mtDNA--African, western European, and eastern Mediterranean-and may represent a fourth mitochondrial lineage.  相似文献   

12.
Using the phylogeographic framework, we assessed the DNA sequence variation at the mitochondrial cytochrome b gene across the distribution range of the barbel Barbus barbus, a widely distributed European cyprinid. Reciprocal monophyly of non-Mediterranean European and Balkan/Anatolian populations is taken as evidence for a long-term barrier to gene flow, and interpreted as a consequence of survival of the species in two separate refugia during several later glacial cycles. Lack of profound genealogical divergence across Europe from western France to the northwestern Black Sea basin is consistent with recent colonization of this area from a single glacial refuge, which was probably located in the Danube River basin. This may have occurred in two steps: into the Western European river basins during the last interglacial, and throughout the Central European river basins after the last glacial. The populations from the Balkans and Anatolia apparently did not contribute mitochondrial DNA to the post-Pleistocene colonization of non-Mediterranean Europe. Lack of detectable variation within the Balkans/Anatolia is attributed mainly to recent expansion throughout these regions, facilitated by the freshwater conditions and seashore regression in the Black Sea during the Late Pleistocene and Early Holocene.  相似文献   

13.
14.
The occurrence of mountain hare mitochondrial DNA in wild brown hares   总被引:4,自引:0,他引:4  
If interspecific hybrids are fertile and backcross to either parental species, transmission of mitochondrial DNA over the species barrier can occur. To investigate if such transmission has occurred between the brown hare Lepus europeus Pall and the mountain hare L. timidus L. in Scandinavia, an analysis of genetic variation in mitochondrial DNA from 36 hares, collected from 15 localities, was performed. Sequence divergence of mtDNA between species was estimated at 8 ± 1% (SD). Intraspecific mtDNA sequence divergence varied between 0.09 and 0.38% in brown hares and 0.10 and 1.44% in mountain hares. In six out of 18 brown hares examined, two different haplotypes of mountain hare origin were detected, demonstrating a transmission of mtDNA haplotypes from mountain hares to brown hares. The results indicate that interspecific hybridization between the two species occurs in wild populations.  相似文献   

15.
The present study gives an updated overview on the distribution of species of the genus Lyristes Horváth, 1926 in the eastern Mediterranean area. Besides occurring in southern continental Europe, specimens of L. plebejus were also found along the southern Greek mainland and in the western Aegean island of Kithira. Moreover, the new data presented give L. gemellus as a new record for Greece (appearing only along most of the Anatolian coast) as well as for Cyprus. The genus seems to be absent from the Cyclades as well as from the islands of Crete and Karpathos. Therefore, the results revealed a faunal discontinuity between the Greek western and eastern islands in the Aegean Sea. Hence, the persistence of a deep sea barrier between these two groups of islands seems to explain the present distribution of Lyristes species, which is also in accordance with the paleogeography of the area and with the fact that dispersal to more geographically isolated islands might have been virtually impossible for species of this genus.  相似文献   

16.
17.
Hares (Lepus capensis Linnaeus 1758) were probably introduced into Sardinia in historical times. Previous studies indicated North Africa as the most likely source area but did not exclude the occurrence of hybridization events with continental brown hares (L. europaeus Pallas 1778) perhaps introduced for hunting purposes. We implemented both morphometric and genetic approaches to verify the genetic isolation of the Sardinian population. Specifically, we conducted a multivariate analysis of craniometric data and analysed 461 bp of the mitochondrial control region and 12 autosomal microsatellites in Sardinian hares, using North African cape hares and European brown hares as reference populations. Sardinian hares displayed a peculiar skull shape. In agreement, both nuclear and mitochondrial markers remarked the distinctiveness of this population. Observed and expected heterozygosity were 0.52 and 0.61, while haplotype and nucleotide diversity were 0.822 and 0.0129. Self‐assignment based on Bayesian cluster analysis was high (average membership 0.98), and no evident signs of introgression from continental brown hares were found. Our results support the hypothesis that the Sardinian hares have been introduced from North Africa, remained genetically isolated since the founding event and evolved independently from the source population. This long‐lasting isolation and the consequent genetic drift resulted in a differentiation, perhaps accompanied by an adaptation to local environmental conditions.  相似文献   

18.
The brown hareLepus europaeus Pallas, 1778 occurs naturally in central Eurasia, but has been introduced to parts of northern Europe, South- and North America, Australia and New Zealand. Brown hares were introduced to Sweden from central Europe for hunting purposes during the 19th century. We investigated how the human--mediated brown hare colonisation of Sweden is reflected in the amount of genetic variation present by assessing variation and composition of mitochondrial DNA (mtDNA) lineages among Swedish brown hares. MtDNA from a total of 40 brown hare specimens from 15 localities were analysed for Restriction Fragment Length Polymorphisms. The haplotype diversity is surprisingly high (0.893 ± 0.002) when compared to the mtDNA diversity among brown hares on the European continent as well as to other mammalian species. Admixture of haplotypes from different source populations combined with a reduced effect of random genetic drift and a relaxed selection pressure due to rapid population growth after introduction are mechanisms that are likely to account for the observed high mtDNA haplotype diversity.  相似文献   

19.
We analysed 33 brown bears from the Romanian Carpathians and the Italian Apennines at sequences of the mitochondrial control region and nine polymorphic microsatellite loci with regard to genetic variability and haplotype distribution. The Italian brown bears were monomorphic for mtDNA sequences. The Romanian bears yielded the highest variability found so far in this species. Haplotypes of both previously identified mtDNA lineages (western and eastern) were found in Romania. In the eastern part of the Carpathians western and eastern haplotypes occurred sympatrically, the bears from the western part of the mountain range only exhibited western-type sequences. This pattern provides evidence of a mitochondrial phylogeographic break in the distribution of the eastern lineage within the Romanian Carpathians. Conservation implications of this finding are discussed.  相似文献   

20.
Primula vulgaris exhibits flower colour polymorphism in the eastern part of its range, especially pronounced on the NE coast of the Black Sea. This polymorphism in the Caucasian populations has been taxonomically described and some segregated species are listed as rare and endangered. We used sequence variation in two chloroplast noncoding regions (trnL–trnF and rpll32–trnL) and the complete nuclear internal transcribed spacer (ITS) of ribosomal DNA region to investigate correspondence between flower colour and geographical distribution of both nuclear and chloroplast haplotypes. It appears that variability in these DNA regions does not correlate with flower colour, being, however, clearly structured geographically. We used nested clade analysis to explore this geographical structure. It seems that the territory of the Colchis refugium on the E coast of the Black Sea contains both the highest flower colour and haplotype diversities. The results suggest that common primroses colonized the NE coast of the Black Sea from this refugium, spreading along the coast westward. At the same time, the analysis of ITS haplotypes indicates that P. vulgaris colonized the Crimea from NW Anatolia. This makes it clear that no segregated species can be recognized within flower colour polymorphic P. vulgaris in the Caucasus region. However, its phylogeography needs further detailed study on a broader scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号