首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human immunodeficiency virus (HIV)-associated lipodystrophy syndrome (HALS) is a side effect of highly active antiretroviral therapy of HIV-infected patients; however, the mechanism of the lipodystrophy and insulin resistance seen in this syndrome remains elusive. Adiponectin, an adipocyte-specific protein, is thought to play an important role in regulating insulin sensitivity. We investigated circulating levels and gene expression of adiponectin in subcutaneous abdominal adipose tissue (AT) from 18 HIV-infected patients with HALS compared with 18 HIV-infected patients without HALS. Implications of cytokines for adiponectin levels were investigated by determining circulating levels of TNF-alpha, IL-6, and IL-8 as well as gene expression of these cytokines in AT. HALS patients exhibited 40% reduced plasma adiponectin levels (P < 0.05) compared with non-HALS subjects. Correspondingly, adiponectin mRNA levels in AT were reduced by >50% (P = 0.06). HALS patients were insulin resistant, and a positive correlation was found between plasma adiponectin and insulin sensitivity (r = 0.55, P < 0.01) and percent limb fat (r = 0.61, P < 0.01). AT mRNA of TNF-alpha, IL-6, and IL-8 was increased in AT of HALS subjects (P < 0.05), and both AT TNF-alpha mRNA and plasma TNF-alpha were negatively correlated to plasma adiponectin (P < 0.05). Finally, TNF-alpha was found in vitro to inhibit human AT adiponectin mRNA by 80% (P < 0.05). In conclusion, HALS patients have reduced levels of plasma adiponectin and adiponectin mRNA in AT. Increased cytokine mRNA in AT is hypothesized to exert an inhibitory effect on adiponectin gene expression and, consequently, to play a role in the reduced plasma adiponectin levels found in HALS patients.  相似文献   

2.
Adiponectin is an adipose tissue-specific protein that is abundantly present in the circulation and suggested to be involved in insulin sensitivity and development of atherosclerosis. Because cytokines are suggested to regulate adiponectin, the aim of the present study was to investigate the interaction between adiponectin and three adipose tissue-derived cytokines (IL-6, IL-8, and TNF-alpha). The study was divided into three substudies as follows: 1) plasma adiponectin and mRNA levels in adipose tissue biopsies from obese subjects [mean body mass index (BMI): 39.7 kg/m2, n = 6] before and after weight loss; 2) plasma adiponectin in obese men (mean BMI: 38.7 kg/m2, n = 19) compared with lean men (mean BMI: 23.4 kg/m2, n = 10) before and after weight loss; and 3) in vitro direct effects of IL-6, IL-8, and TNF-alpha on adiponectin mRNA levels in adipose tissue cultures. The results were that 1) weight loss resulted in a 51% (P < 0.05) increase in plasma adiponectin and a 45% (P < 0.05) increase in adipose tissue mRNA levels; 2) plasma adiponectin was 53% (P < 0.01) higher in lean compared with obese men, and plasma adiponectin was inversely correlated with adiposity, insulin sensitivity, and IL-6; and 3) TNF-alpha (P < 0.01) and IL-6 plus its soluble receptor (P < 0.05) decreased adiponectin mRNA levels in vitro. The inverse relationship between plasma adiponectin and cytokines in vivo and the cytokine-induced reduction in adiponectin mRNA in vitro suggests that endogenous cytokines may inhibit adiponectin. This could be of importance for the association between cytokines (e.g., IL-6) and insulin resistance and atherosclerosis.  相似文献   

3.
Reduced circulating natriuretic peptide concentrations are independently associated with insulin resistance and type 2 diabetes, while increased natriuretic peptide levels appear to be protective. Observations in vitro and in heart failure patients suggest that atrial natriuretic peptide (ANP) promotes adiponectin release, an adipokine with insulin sensitizing properties. We tested the hypothesis that ANP acutely raises adiponectin levels in 12 healthy men. We infused ANP intravenously over 135 minutes while collecting venous blood and adipose tissue microdialysates at baseline and at the end of ANP-infusion. We obtained blood samples at identical time-points without ANP infusion in 7 age and BMI matched men. With infusion, venous ANP concentrations increased ~10 fold. Systemic and adipose tissue glycerol concentrations increased 70% and 80%, respectively (P<0.01). ANP infusion increased total adiponectin 14±5% and high molecular-weight (HMW)-adiponectin 13±5% (P<0.05). Adiponectin did not change in the control group (P<0.05 vs. infusion). ANP-induced changes in HMW adiponectin and adipose tissue lipolysis were directly correlated with each other, possibly suggesting a common mechanism. Our data show that ANP acutely increases systemic total and HMW-adiponectin concentrations in healthy subjects. Our study could have implications for the physiological regulation of adiponectin and for disease states associated with altered natriuretic peptide availability.  相似文献   

4.
Aging is associated with redistribution of body fat and the development of insulin resistance. White adipose tissue emerges as an important organ in controlling life span. Caloric restriction (CR) delays the rate of aging possibly modulated partly by altering the amount and function of adipose tissue. Adiponectin is a major adipose-derived adipokine that has anti-inflammatory and insulin-sensitizing properties. This study examined the effects of CR on adiposity and gene expression of adiponectin, its receptors (AdipoR1 and AdipoR2) in adipose tissue and in isolated adipocytes of Brown Norway rats that had undergone CR for 4 months or fed ad libitum. The study also determined plasma concentrations of adiponectin and insulin in these animals and whether insulin infusion for 7 days affects adiponectin expression and its circulating concentrations under CR conditions. CR markedly reduced body weight as anticipated, epididymal fat mass and adipocyte size. CR led to an increase in plasma free fatty acid and glycerol (both twofold), and adipose triglyceride lipase messenger RNA (mRNA) in adipose tissue and isolated adipocytes (both >2-fold). Adiponectin mRNA levels were elevated in adipose tissue and adipocytes (both >2-fold) as was plasma adiponectin concentration (2.8-fold) in CR rats. However, CR did not alter tissue or cellular AdipoR1 and AdipoR2 expression. Seven days of insulin infusion decreased adiponectin mRNA in adipose tissue but did not reverse the CR-induced up-regulation of circulating adiponectin levels. Our results suggest that the benefits of CR could be, at least in part, dependent on enhanced expression and secretion of adiponectin by adipocytes.  相似文献   

5.
6.
To investigate the effects of recombinant human adiponectin on the metabolism of diabeticswine induced by feeding a high-fat/high-sucrose diet (HFSD),diabetic animal models were constructedby feeding swine with HFSD for 6 months.The effects of recombinant adiponectin were assessed bydetecting the change of plasma glucose levels by commercially available enzymatic method test kits andevaluating the insulin sensitivity by oral glucose tolerance test (OGTT). About 1.5 g purified recombinantadiponectin was produced using a 15-liter fermenter.A single injection of purified recombinant humanadiponectin to diabetic swine led to a 2- to 3-fold elevation in circulating adiponectin,which triggered atransient decrease in basal glucose level (P<0.05).This effect on glucose was not associated with anincrease in insulin level.Moreover,after adiponectin injection,swine also showed improved insulin sensitivitycompared with the control (P<0.05).Adiponectin might have the potential to be a glucose-lowering agentfor metabolic disease.Adiponectin as a potent insulin enhancer linking adipose tissue and glucose metabolismcould be useful to treat insulin resistance.  相似文献   

7.
Objective: Adiponectin is the only adipose‐specific hormone that, despite its exclusive production by adipose tissue, is reduced in obesity and is inversely correlated with leptin levels in adults. The aim of this study was to evaluate the adiponectin concentration in umbilical cord blood at different gestational ages and to investigate its possible associations with leptin levels and birth weight. Research Methods and Procedures: Umbilical cord blood was obtained from 132 newborns (male = 65, female = 67, gestational age: 35 to 42 weeks). The anthropometric variables of the newborns studied were birth weight, birth length, body weight/body length, and ponderal index. Adiponectin, insulin, and leptin levels were measured by radioimmunoassay methods. Results: Adiponectin levels in males were not different from those in females (24.10 ± 0.81 vs. 25.62 ± 0.84 μg/mL, p = 0.280). Adiponectin concentrations were positively correlated with birth weight (p < 0.05), birth length (p < 0.05), body weight/body length (p < 0.05), gestational age (p < 0.01), and leptin levels (p < 0.01). Discussion: These findings indicate that adiponectin is present in umbilical cord blood after 35 to 42 weeks of gestation, with higher levels than those usually found in adults, no gender differences, and a positive correlation with birth weight and leptin. These results suggest that not only could neonatal hyperadiponectinemia be associated with the increase of adiponectin production by fetal adipose tissue but also with a possible reduction in an unknown mechanism related to the suppression of adiponectin observed in adults.  相似文献   

8.
Adiponectin is a hormone secreted from adipose tissue, and serum levels are decreased with obesity and insulin resistance. Because prolactin (PRL) and growth hormone (GH) can affect insulin sensitivity, we investigated the effects of these hormones on the regulation of adiponectin in human adipose tissue in vitro and in rodents in vivo. Adiponectin secretion was significantly suppressed by PRL and GH in in vitro cultured human adipose tissue. Furthermore, PRL increased adiponectin receptor 1 (AdipoR1) mRNA expression and GH decreased AdipoR2 expression in the cultured human adipose tissue. In transgenic mice expressing GH, and female mice expressing PRL, serum levels of adiponectin were decreased. In contrast, GH receptor deficient mice had elevated adiponectin levels, while PRL receptor deficient mice were unaffected. In conclusion, we demonstrate gene expression of AdipoR1 and AdipoR2 in human adipose tissue for the first time, and show that these are differentially regulated by PRL and GH. Both PRL and GH reduced adiponectin secretion in human adipose tissue in vitro and in mice in vivo. Decreased serum adiponectin levels have been associated with insulin resistance, and our data in human tissue and in transgenic mice suggest a role for adiponectin in PRL and GH induced insulin resistance.  相似文献   

9.
Obesity is associated with low-grade inflammation, insulin resistance, type 2 diabetes, and cardiovascular disease. This study investigated the effect of a 15-wk lifestyle intervention (hypocaloric diet and daily exercise) on inflammatory markers in plasma, adipose tissue (AT), and skeletal muscle (SM) in 27 severely obese subjects (mean body mass index: 45.8 kg/m2). Plasma samples, subcutaneous abdominal AT biopsies, and vastus lateralis SM biopsies were obtained before and after the intervention and analyzed by ELISA and RT-PCR. The intervention reduced body weight (P < 0.001) and increased insulin sensitivity (homeostasis model assessment; P < 0.05). Plasma adiponectin (P < 0.001) increased, and C-reactive protein (P < 0.05), IL-6 (P < 0.01), IL-8 (P < 0.05), and monocyte chemoattractant protein-1 (P < 0.01) decreased. AT inflammation was reduced, determined from an increased mRNA expression of adiponectin (P < 0.001) and a decreased expression of macrophage-specific markers (CD14, CD68), IL-6, IL-8, and tumor necrosis factor-alpha (P < 0.01). After adjusting for macrophage infiltration in AT, only IL-6 mRNA was decreased (P < 0.05). Only very low levels of inflammatory markers were found in SM. The intervention had no effect on adiponectin receptor 1 and 2 mRNA in AT or SM. Thus hypocaloric diet and increased physical activity improved insulin sensitivity and reduced low-grade inflammation. Markers of inflammation were particularly reduced in AT, whereas SM does not contribute to this attenuation of whole body inflammation.  相似文献   

10.
11.
Adiponectin is an adipocyte-derived hormone associated with insulin sensitivity and atherosclerotic risk. As central rather than gluteofemoral fat is known to increase the risk of type 2 diabetes and cardiovascular disease, we investigated the mRNA and protein expression of adiponectin in human adipose tissue depots. RNA was extracted from 46 human adipose tissue samples from non-diabetic subjects aged 44.33 +/- 12.4 with a BMI of 28.3 +/- 6.0 (mean +/- SD). The samples were as follows: 21 abdominal subcutaneous, 13 omentum, 6 thigh; samples were also taken from diabetic subjects aged 66.6 +/- 7.5 with BMI 28.9 +/- 3.17; samples were: 6 abdominal subcutaneous; 3 thigh. Quantitative PCR and Western analysis was used to determine adiponectin content. Protein content studies determined that when compared with non-diabetic abdominal subcutaneous adipose tissue (Abd Sc AT) (values expressed as percentage relative to Abd Sc AT -100 %). Adiponectin protein content was significantly lower in non-diabetic omental AT (25 +/- 1.6 %; p < 0.0001, n = 6) and in Abd Sc AT from diabetic subjects (36 +/- 1.5 %; p < 0.0001, n = 4). In contrast, gluteal fat maintained high adiponectin protein content from non-diabetic patients compared with diabetic patients. An increase in BMI was associated with lower adiponectin protein content in obese ND Abd Sc AT (25 +/- 0.4 %; p < 0.0001). These findings were in agreement with the mRNA expression data. In summary, this study indicates that adiponectin protein content in non-diabetic subjects remains high in abdominal subcutaneous fat, including gluteal fat, explaining the high serum adiponectin levels in these subjects. Omental fat, however, expresses little adiponectin. Furthermore, abdominal and gluteal subcutaneous fat appears to express significantly less adiponectin once diabetic status is reached. In conclusion, the adipose tissue depot-specific expression of adiponectin may influence the pattern of serum adiponectin concentrations and subsequent disease risk.  相似文献   

12.
Circulating adiponectin is reduced in disorders associated with insulin resistance. This study was conducted to determine whether an exercise/diet intervention would alter adiponectin multimer distribution and adiponectin receptor expression in skeletal muscle. Impaired glucose-tolerant older (>60 yr) obese (BMI 30-40 kg/m(2)) men (n = 7) and women (n = 14) were randomly assigned to 12 wk of supervised aerobic exercise combined with either a hypocaloric (ExHypo, approximately 500 kcal reduction, n = 11) or eucaloric diet (ExEu, n = 10). Insulin sensitivity was determined by the euglycemic (5.0 mM) hyperinsulinemic (40 mU x m(-2) x min(-1)) clamp. Adiponectin multimers [high (HMW), middle (MMW), and low molecular weight (LMW)] were measured by nondenaturing Western blot analysis. Relative quantification of adiponectin receptor expression through RT-PCR was determined from skeletal muscle biopsy samples. Greater weight loss occurred in ExHypo compared with ExEu subjects (8.0 +/- 0.6 vs. 3.2 +/- 0.6%, P < 0.0001). Insulin sensitivity improved postintervention in both groups (ExHypo: 2.5 +/- 0.3 vs. 4.4 +/- 0.5 mg x kg FFM(-1) x min(-1), and ExEu: 2.9 +/- 0.4 vs. 4.1 +/- 0.4 mg x kg FFM(-1) x min(-1), P < 0.0001). Comparison of multimer isoforms revealed a decreased percentage in MMW relative to HMW and LMW (P < 0.03). The adiponectin SA ratio (HMW/total) was increased following both interventions (P < 0.05) and correlated with the percent change in insulin sensitivity (P < 0.03). Postintervention adiponectin receptor mRNA expression was also significantly increased (AdipoR1 P < 0.03, AdipoR2 P < 0.02). These data suggest that part of the improvement in insulin sensitivity following exercise and diet may be due to changes in the adiponectin oligomeric distribution and enhanced membrane receptor expression.  相似文献   

13.
14.
Thyroid hormones as well as the recently discovered secretory products of adipose tissue adiponectin and resistin take part in energy metabolism. To study the changes in the adipocyte hormones with changes in the thyroid functional status, we measured adiponectin, resistin, and leptin in 69 subjects with Graves' disease before and 32 patients at follow up after treatment for hyperthyroidism at hypothyroid state. Concentrations of serum adiponectin and resistin were higher in hyperthyroid state than in hypothyroid state (adiponectin: 5.73 +/- 1.1 vs. 3.0 +/- 0.5 ng/ml, P = 0.03) (resistin: 6.378 +/- 0.6 vs. 5.81 +/- 0.57 ng/ml, P < 0.0001). Resistin levels correlate positively with free t4(r = 0.37, P < 0.01), free t3 levels(r = 0.33, P < 0.01) and negatively with TSH(r = -0.22, P < 0.05). Adiponectin levels correlate with free t4(r = 0.33, P < 0.01) and free t3 (r = 0.44, P < 0.01). Though the adiponectin levels did not correlate with leptin or resistin levels, strong positive correlation of both resistin and adiponectin with thyroid hormones is noted. Serum levels of leptin did not change with change in the thyroid functional status (leptin: 53.38 +/- 2.47 vs. 55.10 +/- 2.58 NS). Leptin levels did not correlate with resistin and adiponectin. We conclude that thyroid function has effect on adipocyte hormones adiponectin and resistin but not leptin.  相似文献   

15.
16.
Adiponectin is a novel adipocytokine negatively correlated with parameters of the metabolic syndrome, such as body mass index (BMI), body fat mass (BFM), and circulating insulin levels. Furthermore, metabolic actions directly on the liver have been described. The aim of the present study was to characterize circulating adiponectin levels, hepatic turnover, and the association of adiponectin with key parameters of hepatic as well as systemic metabolism in cirrhosis, a catabolic disease. Circulating adiponectin levels and hepatic turnover were investigated in 20 patients with advanced cirrhosis. Hepatic hemodynamics [portal pressure, liver blood flow, hepatic vascular resistance, indocyanine green (ICG) half-life], body composition, resting energy expenditure, hepatic free fatty acids (FFA) and glucose turnover, and circulating levels of hormones (catecholamines, insulin, glucagon) and proinflammatory cytokines (IL-1beta, TNF-alpha, IL-6) were also assessed. Circulating adiponectin increased dependently on the clinical stage in cirrhosis compared with controls (15.2 +/- 1.7 vs. 8.2 +/- 1.1 microg/ml, respectively, P < 0.01), whereas hepatic extraction decreased. Adiponectin was negatively correlated with parameters of hepatic protein synthesis (prothrombin time: r = -0.62, P = 0.003; albumin: r = -0.72, P < 0.001) but not with transaminases or parameters of lipid metabolism. In addition, circulating adiponectin increased with portal pressure (r = 0.67, P = 0.003), hepatic vascular resistance (r = 0.60, P = 0.008), and effective hepatic blood flow (ICG half-life: r = 0.69, P = 0.001). Adiponectin in cirrhosis was not correlated with BMI, BFM, parameters of energy metabolism, insulin levels, hepatic FFA and glucose turnover, and circulating proinflammatory cytokines. These results demonstrate that 1) adiponectin plasma levels in cirrhosis are significantly elevated, 2) the liver is a major source of adiponectin extraction, and 3) adiponectin levels in cirrhosis do not correlate with parameters of body composition or metabolism but exclusively with reduced liver function and altered hepatic hemodynamics.  相似文献   

17.
18.
In spite of association between high plasma adiponectin and high metabolic and cardiovascular (CV) risk, highest adiponectin increments retain CV and metabolic protective effects in advanced chronic kidney disease (CKD). Passive accumulation can favor CKD-associated hyperadiponectinemia but potential additional regulation by adipose tissue remains undefined. Oxidative stress (OS) is associated with metabolic and CV disease and with CKD [increasing from conservative treatment (CT) to maintenance hemodialysis (MHD)], and OS can reduce adiponectin expression in experimental models. OS (in the form of plasma thiobarbituric acid-reactive substances: TBARS), subcutaneous adipose adiponectin mRNA, and plasma adiponectin were studied in CKD patients (stages 4 and 5) on CT (n = 7) or MHD (n = 11). Compared with CT and controls (C: n = 6) MHD had highest TBARS and lowest adiponectin mRNA (P < 0.05) with lower adipose adiponectin protein (P < 0.05 vs. CT). MHD also had lower plasma adiponectin than CT, although both had higher adiponectin than C (P < 0.05). In renal transplant recipients (RT: CKD stage 3; n = 5) normal TBARS were, in turn, associated with normal adiponectin mRNA (P < 0.05 vs. MHD). In all CKD (n = 23), adiponectin mRNA was associated positively with adiponectin plasma concentration (P < 0.01). In all subjects (n = 29), adiponectin mRNA was related (P < 0.05) negatively with TBARS after adjusting for plasma C-reactive protein (CRP) or CRP and creatinine. Thus altered OS, adiponectin expression, and plasma concentration represent a novel cluster of metabolic and CV risk factors in MHD that are normalized in RT. The data suggest novel roles of 1) MHD-associated OS in modulating adiponectin expression and 2) adipose tissue in contributing to circulating adiponectin in advanced CKD.  相似文献   

19.
Baboons show significant variation in body weight and composition, coupled with insulin resistance and phenotypes associated with the metabolic syndrome. An omental adipose tissue biopsy and a fasting blood sample were collected from 40 unrelated adult baboons from the colony at Southwest Foundation for Biomedical Research in San Antonio, TX. Serum was separated for analyses of circulating levels of glucose, insulin, adiponectin, resistin, interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1 or CCL-2). Adipose tissue biopsies were analyzed for cell volume and number. Total RNA was isolated from adipose tissue and adiponectin, resistin, delta-resistin, MCP-1 and IL-6 mRNA abundance were measured using real time, quantitative RT-PCR. Partial correlation coefficients were calculated among adipokine expression, fat tissue cell volume, and circulating levels of proteins. Cell volume was significantly correlated with expression of MCP-1 (r=0.44, p<0.05) and IL-6 mRNA (r=0.47, p<0.01). A step wise regression analysis was conducted with adipose tissue cell volume as dependent variable. The model identified IL-6 mRNA levels in adipose tissue as the only predictor. These observations support the role of IL-6 as a possible paracrine regulator in adipose tissue.  相似文献   

20.
Chemerin, a recognized chemoattractant, is expressed in adipose tissue and plays a role in adipocytes differentiation and metabolism. Gender- and adipose tissue-specific differences in human chemerin expression have not been well characterized. Therefore, these differences were assessed in the present study. The body mass index (BMI) and the circulating levels of chemerin and other inflammatory, adiposity and insulin resistance markers were assessed in female and male adults of varying degree of obesity. Chemerin mRNA expression was also measured in paired subcutaneous and visceral adipose tissue samples obtained from a subset of the study subjects. Serum chemerin concentrations correlated positively with BMI and serum leptin levels and negatively with high density lipoprotein (HDL)-cholesterol levels. No correlation was found between serum chemerin concentrations and fasting glucose, total cholesterol, low density lipoprotein (LDL)-cholesterol, triglycerides, insulin, C-reactive protein or adiponectin. Similarly, no relation was observed with the homeostasis model assessment for insulin resistance (HOMA-IR) values. Gender- and adipose tissue-specific differences were observed in chemerin mRNA expression levels, with expression significantly higher in women than men and in subcutaneous than visceral adipose tissue. Interestingly, we found a significant negative correlation between circulating chemerin levels and chemerin mRNA expression in subcutaneous fat. Among the subjects studied, circulating chemerin levels were associated with obesity markers but not with markers of insulin resistance. At the tissue level, fat depot-specific differential regulation of chemerin mRNA expression might contribute to the distinctive roles of subcutaneous vs. visceral adipose tissue in human obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号