首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sympathetic adaptations to one-legged training.   总被引:3,自引:0,他引:3  
The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.  相似文献   

2.
Ten foxhounds were studied during maximal and submaximal exercise on a motor-driven treadmill before and after 8-12 wk of training. Training consisted of working at 80% of maximal heart rate 1 h/day, 5 days/wk. Maximal O2 consumption (VO2max) increased 28% from 113.7 +/- 5.5 to 146.1 +/- 5.4 ml O2 X min-1 X kg-1, pre- to posttraining. This increase in VO2max was due primarily to a 27% increase in maximal cardiac output, since maximal arteriovenous O2 difference increased only 4% above pretraining values. Mean arterial pressure during maximal exercise did not change from pre- to posttraining, with the result that calculated systemic vascular resistance (SVR) decreased 20%. There were no training-induced changes in O2 consumption, cardiac output, arteriovenous O2 difference, mean arterial pressure, or SVR at any level of submaximal exercise. However, if post- and pretraining values are compared, heart rate was lower and stroke volume was greater at any level of submaximal exercise. Venous lactate concentrations during a given level of submaximal exercise were significantly lower during posttraining compared with pretraining, but venous lactate concentrations during maximal exercise did not change as a result of exercise training. These results indicate that a program of endurance training will produce a significant increase in VO2max in the foxhound. This increase in VO2max is similar to that reported previously for humans and rats but is derived primarily from central (stroke volume) changes rather than a combination of central and peripheral (O2 extraction) changes.  相似文献   

3.
To quantify the relative contributions of convective and peripheral diffusive components of O2 transport to the increase in leg O2 uptake (VO2leg) at maximum O2 uptake (VO2max) after 9 wk of endurance training, 12 sedentary subjects (age 21.8 +/- 3.4 yr, VO2max 36.9 +/- 5.9 ml.min-1.kg-1) were studied. VO2max, leg blood flow (Qleg), and arterial and femoral venous PO2, and thus VO2leg, were measured while the subjects breathed room air, 15% O2, and 12% O2. The sequence of the three inspirates was balanced. After training, VO2max and VO2leg increased at each inspired O2 concentration [FIO2; mean over the 3 FIO2 values 25.2 +/- 17.8 and 36.5 +/- 33% (SD), respectively]. Before training, VO2leg and mean capillary PO2 were linearly related through the origin during hypoxia but not during room air breathing, suggesting that, at 21% O2, VO2max was not limited by O2 supply. After training, VO2leg and mean capillary PO2 at each FIO2 fell along a straight line with zero intercept, just as in athletes (Roca et al. J. Appl. Physiol. 67: 291-299, 1989). Calculated muscle O2 diffusing capacity (DO2) rose 34% while Qleg increased 19%. The relatively greater rise in DO2 increased the DO2/Qleg, which led to 9.9% greater O2 extraction. By numerical analysis, the increase in Qleg alone (constant DO2) would have raised VO2leg by 35 ml/min (mean), but that of DO2 (constant Qleg) would have increased VO2leg by 85 ml/min, more than twice as much. The sum of these individual effects (120 ml/min) was less (P = 0.013) than the observed rise of 164 ml/min (mean). This synergism (explained by the increase in DO2/Qleg) seems to be an important contribution to increases in VO2max with training.  相似文献   

4.
We evaluated the hypothesis that net leg total FFA, LDL-C, and TG uptake and HDL-C release during moderate-intensity cycling exercise would be increased following endurance training. Eight sedentary men (26 +/- 1 yr, 77.4 +/- 3.7 kg) were studied in the postprandial state during 90 min of rest and 60 min of exercise twice before (45% and 65% V(O2 peak)) and twice after 9 wk of endurance training (55% and 65% posttraining V(O2 peak)). Measurements across an exercising leg were taken to be a surrogate for active skeletal muscle. To determine limb lipid exchange, femoral arterial and venous blood samples drawn simultaneously at rest and during exercise were analyzed for total and individual FFA (e.g., palmitate, oleate), LDL-C, HDL-C, and TG concentrations, and limb blood flow was determined by thermodilution. The transition from rest to exercise resulted in a shift from net leg total FFA release (-44 +/- 16 micromol/min) to uptake (193 +/- 49 micromol/min) that was unaffected by either exercise intensity or endurance training. The relative net leg release and uptake of individual FFA closely resembled their relative abundances in the plasma with approximately 21 and 41% of net leg total FFA uptake during exercise accounted for by palmitate and oleate, respectively. Endurance training resulted in significant changes in arterial concentrations of HDL-C (49 +/- 5 vs. 52 +/- 5 mg/dl, pre vs. post) and LDL-C (82 +/- 9 vs. 76 +/- 9 mg/dl, pre vs. post), but there was no net TG or LDL-C uptake or HDL-C release across the resting or active leg before or after endurance training. In conclusion, endurance training favorably affects blood lipoprotein profiles, even in young, healthy normolipidemic men, but muscle contractions per se have little effect on net leg LDL-C, or TG uptake or HDL-C release during moderate-intensity cycling exercise. Therefore, the favorable effects of physical activity on the lipid profiles of young, healthy normolipidemic men in the postprandial state are not attributable to changes in HDL-C or LDL-C exchange across active skeletal muscle.  相似文献   

5.
Active muscle and whole body lactate kinetics after endurance training in men.   总被引:10,自引:0,他引:10  
We evaluated the hypotheses that endurance training decreases arterial lactate concentration ([lactate](a)) during continuous exercise by decreasing net lactate release () and appearance rates (R(a)) and increasing metabolic clearance rate (MCR). Measurements were made at two intensities before [45 and 65% peak O(2) consumption (VO(2 peak))] and after training [65% pretraining VO(2 peak), same absolute workload (ABT), and 65% posttraining VO(2 peak), same relative intensity (RLT)]. Nine men (27.4 +/- 2.0 yr) trained for 9 wk on a cycle ergometer, 5 times/wk at 75% VO(2 peak). Compared with the 65% VO(2 peak) pretraining condition (4.75 +/- 0.4 mM), [lactate](a) decreased at ABT (41%) and RLT (21%) (P < 0.05). decreased at ABT but not at RLT. Leg lactate uptake and oxidation were unchanged at ABT but increased at RLT. MCR was unchanged at ABT but increased at RLT. We conclude that 1) active skeletal muscle is not solely responsible for elevated [lactate](a); and 2) training increases leg lactate clearance, decreases whole body and leg lactate production at a given moderate-intensity power output, and increases both whole body and leg lactate clearance at a high relative power output.  相似文献   

6.
The purpose was to test the hypothesis that twice daily, short-term, variable intensity isotonic and intermittent high-intensity isokinetic leg exercise would maintain peak O2 uptake (VO2) and muscular strength and endurance, respectively, at or near ambulatory control levels during 30 days of -6 degrees head-down bed rest (BR) deconditioning. Nineteen men (aged 32-42 yr) were divided into no exercise control (peak VO2 once/wk, n = 5), isokinetic (Lido ergometer, n = 7), and isotonic (Quinton ergometer, n = 7) groups. Exercise training was conducted in the supine position for two 30-min periods/day for 5 days/wk. Isotonic training was at 60-90% of peak VO2, and isokinetic training (knee flexion-extension) was at 100 degrees/s. Mean (+/- SE) changes (P less than 0.05) in peak VO2 (ml.m-1.kg-1) from ambulatory control to BR day 28 were 44 +/- 4 to 36 +/- 3, -18.2% (3.27-2.60 l/m) for no exercise, 39 +/- 4 to 40 +/- 3, +2.6% (3.13-3.14 l/min) for isotonic, and 44 +/- 3 to 40 +/- 2, -9.1% (3.24-2.90 l/min) for isokinetic. There were no significant changes in any groups in leg peak torque (right knee flexion or extension), leg mean total work, arm total peak torque, or arm mean total work. Mean energy costs for the isotonic and isokinetic exercise training were 446 kcal/h (18.8 +/- 1.6 ml.min-1.kg-1) and 214 kcal/h (8.9 +/- 0.5 ml.m-1.kg-1), respectively. Thus near-peak, variable intensity, isotonic leg exercise maintains peak VO2 during 30 days of BR, while this peak, intermittent, isokinetic leg exercise protocol does not.  相似文献   

7.
During maximal whole body exercise VO2 peak is limited by O2 delivery. In turn, it is though that blood flow at near-maximal exercise must be restrained by the sympathetic nervous system to maintain mean arterial pressure. To determine whether enhancing vasodilation across the leg results in higher O2 delivery and leg VO2 during near-maximal and maximal exercise in humans, seven men performed two maximal incremental exercise tests on the cycle ergometer. In random order, one test was performed with and one without (control exercise) infusion of ATP (8 mg in 1 ml of isotonic saline solution) into the right femoral artery at a rate of 80 microg.kg body mass-1.min-1. During near-maximal exercise (92% of VO2 peak), the infusion of ATP increased leg vascular conductance (+43%, P<0.05), leg blood flow (+20%, 1.7 l/min, P<0.05), and leg O2 delivery (+20%, 0.3 l/min, P<0.05). No effects were observed on leg or systemic VO2. Leg O2 fractional extraction was decreased from 85+/-3 (control) to 78+/-4% (ATP) in the infused leg (P<0.05), while it remained unchanged in the left leg (84+/-2 and 83+/-2%; control and ATP; n=3). ATP infusion at maximal exercise increased leg vascular conductance by 17% (P<0.05), while leg blood flow tended to be elevated by 0.8 l/min (P=0.08). However, neither systemic nor leg peak VO2 values where enhanced due to a reduction of O2 extraction from 84+/-4 to 76+/-4%, in the control and ATP conditions, respectively (P<0.05). In summary, the VO2 of the skeletal muscles of the lower extremities is not enhanced by limb vasodilation at near-maximal or maximal exercise in humans. The fact that ATP infusion resulted in a reduction of O2 extraction across the exercising leg suggests a vasodilating effect of ATP on less-active muscle fibers and other noncontracting tissues and that under normal conditions these regions are under high vasoconstrictor influence to ensure the most efficient flow distribution of the available cardiac output to the most active muscle fibers of the exercising limb.  相似文献   

8.
We combined tracer and arteriovenous (a-v) balance techniques to evaluate the effects of exercise and endurance training on leg triacylglyceride turnover as assessed by glycerol exchange. Measurements on an exercising leg were taken to be a surrogate for working skeletal muscle. Eight men completed 9 wk of endurance training [5 days/wk, 1 h/day, 75% peak oxygen consumption (Vo(2peak))], with leg glycerol turnover determined during two pretraining trials [45 and 65% Vo(2peak) (45% Pre and 65% Pre, respectively)] and two posttraining trials [65% of pretraining Vo(2peak) (ABT) and 65% of posttraining Vo(2peak) (RLT)] using [(2)H(5)]glycerol infusion, femoral a-v sampling, and measurement of leg blood flow. Endurance training increased Vo(2peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 mlxkg(-1)xmin(-1), P < 0.05). At rest, there was tracer-measured leg glycerol uptake (41 +/- 8 and 52 +/- 15 micromol/min for pre- and posttraining, respectively) even in the presence of small, but significant, net leg glycerol release (-68 +/- 19 and -50 +/- 13 micromol/min, respectively; P < 0.05 vs. zero). Furthermore, while there was no significant net leg glycerol exchange during any of the exercise bouts, there was substantial tracer-measured leg glycerol turnover during exercise (i.e., simultaneous leg muscle uptake and leg release) (uptake, release: 45% Pre, 194 +/- 41, 214 +/- 33; 65% Pre, 217 +/- 79, 201 +/- 84; ABT, 275 +/- 76, 312 +/- 87; RLT, 282 +/- 83, 424 +/- 75 micromol/min; all P < 0.05 vs. corresponding rest). Leg glycerol turnover was unaffected by exercise intensity or endurance training. In summary, simultaneous leg glycerol uptake and release (indicative of leg triacylglyceride turnover) occurs despite small or negligible net leg glycerol exchange, and furthermore, leg glycerol turnover can be substantially augmented during exercise.  相似文献   

9.
The study investigated the effect of training on lactate and H+ release from human skeletal muscle during one-legged knee-extensor exercise. Six subjects were tested after 7-8 wk of training (fifteen 1-min bouts at approximately 150% of thigh maximal O2 uptake per day). Blood samples, blood flow, and muscle biopsies were obtained during and after a 30-W exercise bout and an incremental test to exhaustion of both trained (T) and untrained (UT) legs. Blood flow was 16% higher in the T than in the UT leg. In the 30-W test, venous lactate and lactate release were lower in the T compared with the UT leg. In the incremental test, time to fatigue was 10.6 +/- 0.7 and 8.2 +/- 0.7 min, respectively, in the T and UT legs (P < 0.05). At exhaustion, venous blood lactate was 10.7 +/- 0.4 and 8.0 +/- 0.9 mmol/l in T and UT legs (P < 0.05), respectively, and lactate release was 19.4 +/- 3.6 and 10.6 +/- 2.0 mmol/min (P < 0.05). H+ release at exhaustion was higher in the T than in the UT leg. Muscle lactate content was 59.0 +/- 15.1 and 96.5 +/- 14.5 mmol/kg dry wt in the T and UT legs, and muscle pH was 6.82 +/- 0.05 and 6.69 +/- 0.04 in the T and UT legs (P = 0.06). The membrane contents of the monocarboxylate transporters MCT1 and MCT4 and the Na+/H+ exchanger were 115 +/- 5 (P < 0.05), 111 +/- 11, and 116 +/- 6% (P < 0.05), respectively, in the T compared with the UT leg. The reason for the training-induced increase in peak lactate and H+ release during exercise is a combination of an increased density of the lactate and H+ transporting systems, an improved blood flow and blood flow distribution, and an increased systemic lactate and H+ clearance.  相似文献   

10.
We sought to test the hypothesis that the carotid baroreflex (CBR) alters mean leg blood flow (LBF) and leg vascular conductance (LVC) at rest and during exercise. In seven men and one woman, 25 +/- 2 (SE) yr of age, CBR control of LBF and LVC was determined at rest and during steady-state one-legged knee extension exercise at approximately 65% peak O(2) uptake. The application of 5-s pulses of +40 Torr neck pressure and -60 Torr neck suction significantly altered mean arterial pressure (MAP) and LVC both at rest and during exercise. CBR-mediated changes in MAP were similar between rest and exercise (P > 0.05). However, CBR-mediated decreases in LVC (%change) to neck pressure were attenuated in the exercising leg (16.4 +/- 1.6%) compared with rest (33 +/- 2.1%) and the nonexercising leg (23.7 +/- 1.9%) (P < 0.01). These data suggest CBR control of blood pressure is partially mediated by changes in leg vascular tone both at rest and during exercise. Furthermore, despite alterations in CBR-induced changes in LVC during exercise, CBR control of blood pressure was well maintained.  相似文献   

11.
Four male subjects aged 23-34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad.s-1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30 degrees before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad.s-1. After 60 days T leg CSA had increased by 8.5% +/- 1.4% (mean +/- SEM, n = 4, p less than 0.001), iEMG by 42.4% +/- 16.5% (p less than 0.01) and MVC by 20.8% +/- 5.4% (p less than 0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8% +/- 10% (N.S.) and 8.7% +/- 4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0% +/- 1.5%, p less than 0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5% +/- 1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The purpose of the present study was to investigate the effect of short-term resistance training and detraining on shot put throwing performance. Eleven young healthy subjects with basic shot put skills participated in 14 weeks of resistance training, which was followed by 4 weeks of detraining. Shot put performance in four field tests was measured before (T1) and after (T2) resistance training and after detraining (T3). At the same time points, one repetition maximum (1RM) was measured in squat, bench press, and leg press. Fat-free mass (FFM) was determined with dual x-ray absorptiometry and muscle biopsies obtained from vastus lateralis for the determination of fiber type composition and cross-sectional area (CSA). 1RM strength increased 22-34% (p < 0.01) at T2 and decreased 4-5% (not significantly different) at T3. Shot put performance increased 6-12% (p < 0.05) after training and remained unaltered after detraining. FFM increased at T2 (p < 0.05) but remained unchanged between T2 and T3. Muscle fiber CSA increased 12-18% (p < 0.05) at T2. Type I muscle fiber CSA was not altered after detraining, but type IIa and IIx fiber CSA was reduced 10-12% (p < 0.05). The percentage of type IIx muscle fibers was reduced after training (T1 = 18.7 +/- 4, T2 = 10.4 +/- 1; p < 0.05), and it was increased at T3 compared with T2 (T3 = 13.7 +/- 1; p < 0.05). These results suggest that shot put performance remains unaltered after 4 weeks of complete detraining in moderately resistance-trained subjects. This might be linked to the concomitant reduction of muscle fiber CSA and increase in the percentage of type IIx muscle fibers.  相似文献   

13.
To further explore the limitations to maximal O(2) consumption (.VO(2 max)) in exercise-trained skeletal muscle, six cyclists performed graded knee-extensor exercise to maximum work rate (WR(max)) in hypoxia (12% O(2)), hyperoxia (100% O(2)), and hyperoxia + femoral arterial infusion of adenosine (ADO) at 80% WR(max). Arterial and venous blood sampling and thermodilution blood flow measurements allowed the determination of muscle O(2) delivery and O(2) consumption. At WR(max), O(2) delivery rose progressively from hypoxia (1.0 +/- 0.04 l/min) to hyperoxia (1.20 +/- 0.09 l/min) and hyperoxia + ADO (1.33 +/- 0.05 l/min). Leg .VO(2 max) varied with O(2) availability (0.81 +/- 0.05 and 0.97 +/- 0.07 l/min in hypoxia and hyperoxia, respectively) but did not improve with ADO-mediated vasodilation (0.80 +/- 0.09 l/min in hyperoxia + ADO). Although a vasodilatory reserve in the maximally working quadriceps muscle group may have been evidenced by increased leg vascular conductance after ADO infusion beyond that observed in hyperoxia (increased blood flow but no change in blood pressure), we recognize the possibility that the ADO infusion may have provoked vasodilation in nonexercising tissue of this limb. Together, these findings imply that maximally exercising skeletal muscle may maintain some vasodilatory capacity, but the lack of improvement in leg .VO(2 max) with significantly increased O(2) delivery (hyperoxia + ADO), with a degree of uncertainty as to the site of this dilation, suggests an ADO-induced mismatch between O(2) consumption and blood flow in the exercising limb.  相似文献   

14.
Chronic heart failure (CHF) may impair lung gas diffusion, an effect that contributes to exercise limitation. We investigated whether diffusion improvement is a mechanism whereby physical training increases aerobic efficiency in CHF. Patients with CHF (n = 16) were trained (40 min of stationary cycling, 4 times/wk) for 8 wk; similar sedentary patients (n = 15) were used as controls. Training increased lung diffusion (DlCO, +25%), alveolar-capillary conductance (DM, +15%), pulmonary capillary blood volume (VC, +10%), peak exercise O2 uptake (peak VO2, +13%), and VO2 at anaerobic threshold (AT, +20%) and decreased the slope of exercise ventilation to CO2 output (VE/VCO2, -14%). It also improved the flow-mediated brachial artery dilation (BAD, from 4.8 +/- 0.4 to 8.2 +/- 0.4%). These changes were significant compared with baseline and controls. Hemodynamics were obtained in the last 10 patients in each group. Training did not affect hemodynamics at rest and enhanced the increase of cardiac output (+226 vs. +187%) and stroke volume (+59 vs. +49%) and the decrease of pulmonary arteriolar resistance (-28 vs. -13%) at peak exercise. Hemodynamics were unchanged in controls after 8 wk. Increases in DlCO and DM correlated with increases in peak VO2 (r = 0.58, P = 0.019 and r = 0.51, P = 0.04, respectively) and in BAD (r = 0.57, P < 0.021 and r = 0.50, P = 0.04, respectively). After detraining (8 wk), DlCO, DM, VC, peak VO2, VO2 at AT, VE/VCO2 slope, cardiac output, stroke volume, pulmonary arteriolar resistance at peak exercise, and BAD reverted to levels similar to baseline and to levels similar to controls. Results document, for the first time, that training improves DlCO in CHF, and this effect may contribute to enhancement of exercise performance.  相似文献   

15.
This study evaluated the hypothesis that active muscle blood flow is lower during exercise at a given submaximal power output after aerobic conditioning as a result of unchanged cardiac output and blunted splanchnic vasoconstriction. Eight untrained subjects (4 men, 4 women, 23-31 yr) performed high-intensity aerobic training for 9-12 wk. Leg blood flow (femoral vein thermodilution), splanchnic blood flow (indocyanine green clearance), cardiac output (acetylene rebreathing), whole body O(2) uptake (VO(2)), and arterial-venous blood gases were measured before and after training at identical submaximal power outputs (70 and 140 W; upright 2-leg cycling). Training increased (P < 0.05) peak VO(2) (12-36%) but did not significantly change submaximal VO(2) or cardiac output. Leg blood flow during both submaximal power outputs averaged 18% lower after training (P = 0.001; n = 7), but these reductions were not correlated with changes in splanchnic vasoconstriction. Submaximal leg VO(2) was also lower after training. These findings support the hypothesis that aerobic training reduces active muscle blood flow at a given submaximal power output. However, changes in leg and splanchnic blood flow resulting from high-intensity training may not be causally linked.  相似文献   

16.
Skeletal muscle primarily relies on carbohydrate (CHO) for energy provision during high-intensity exercise. We hypothesized that sprint interval training (SIT), or repeated sessions of high-intensity exercise, would induce rapid changes in transport proteins associated with CHO metabolism, whereas changes in skeletal muscle fatty acid transporters would occur more slowly. Eight active men (22 +/- 1 yr; peak oxygen uptake = 50 +/- 2 ml.kg(-1).min(-1)) performed 4-6 x 30 s all-out cycling efforts with 4-min recovery, 3 days/wk for 6 wk. Needle muscle biopsy samples (vastus lateralis) were obtained before training (Pre), after 1 and 6 wk of SIT, and after 1 and 6 wk of detraining. Muscle oxidative capacity, as reflected by the protein content of cytochrome c oxidase subunit 4 (COX4), increased by approximately 35% after 1 wk of SIT and remained higher compared with Pre, even after 6 wk of detraining (P < 0.05). Muscle GLUT4 content increased after 1 wk of SIT and remained approximately 20% higher compared with baseline during detraining (P < 0.05). The monocarboxylate tranporter (MCT) 4 was higher after 1 and 6 wk of SIT compared with Pre, whereas MCT1 increased after 6 wk of training and remained higher after 1 wk of detraining (P < 0.05). There was no effect of training or detraining on the muscle content of fatty acid translocase (FAT/CD36) or plasma membrane associated fatty acid binding protein (FABPpm) (P > 0.05). We conclude that short-term SIT induces rapid increases in skeletal muscle oxidative capacity but has divergent effects on proteins associated with glucose, lactate, and fatty acid transport.  相似文献   

17.
Relationship between body and leg VO2 during maximal cycle ergometry.   总被引:3,自引:0,他引:3  
It is not known whether the asymptotic behavior of whole body O2 consumption (VO2) at maximal work rates (WR) is explained by similar behavior of VO2 in the exercising legs. To resolve this question, simultaneous measurements of body and leg VO2 were made at submaximal and maximal levels of effort breathing normoxic and hypoxic gases in seven trained male cyclists (maximal VO2, 64.7 +/- 2.7 ml O2.min-1.kg-1), each of whom demonstrated a reproducible VO2-WR asymptote during fatiguing incremental cycle ergometry. Left leg blood flow was measured by constant-infusion thermodilution, and total leg VO2 was calculated as the product of twice leg flow and radial arterial-femoral venous O2 concentration difference. The VO2-WR relationships determined at submaximal WR's were extrapolated to maximal WR as a basis for assessing the body and leg VO2 responses. The differences between measured and extrapolated maximal VO2 were 235 +/- 45 (body) and 203 +/- 70 (leg) ml O2/min (not significantly different). Plateauing of leg VO2 was associated with, and explained by, plateauing of both leg blood flow and O2 extraction and hence of leg VO2. We conclude that the asymptotic behavior of whole body VO2 at maximal WRs is a direct reflection of the VO2 profile at the exercising legs.  相似文献   

18.
Studies using animal models have been unable to determine the mechanical stimuli that most influence muscle architectural adaptation. We examined the influence of contraction mode on muscle architectural change in humans, while also describing the time course of its adaptation through training and detraining. Twenty-one men and women performed slow-speed (30 degrees /s) concentric-only (Con) or eccentric-only (Ecc) isokinetic knee extensor training for 10 wk before completing a 3-mo detraining period. Fascicle length of the vastus lateralis (VL), measured by ultrasonography, increased similarly in both groups after 5 wk (Delta(Con) = +6.3 +/- 3.0%, Delta(Ecc) = +3.1 +/- 1.6%, mean = +4.7 +/- 1.7%; P < 0.05). No further increase was found at 10 wk, although a small increase (mean approximately 2.5%; not significant) was evident after detraining. Fascicle angle increased in both groups at 5 wk (Delta(Con) = +11.1 +/- 4.0%, Delta(Ecc) = +11.9 +/- 5.4%, mean = 11.5 +/- 3.2%; P < 0.05) and 10 wk (Delta(Con) = +13.3 +/- 3.0%, Delta(Ecc) = +21.4 +/- 6.9%, mean = 17.9 +/- 3.7%; P < 0.01) in VL only and remained above baseline after detraining (mean = 13.2%); smaller changes in vastus medialis did not reach significance. The similar increase in fascicle length observed between the training groups mitigates against contraction mode being the predominant stimulus. Our data are also strongly indicative of 1) a close association between VL fascicle length and shifts in the torque-angle relationship through training and detraining and 2) changes in fascicle angle being driven by space constraints in the hypertrophying muscle. Thus muscle architectural adaptations occur rapidly in response to resistance training but are strongly influenced by factors other than contraction mode.  相似文献   

19.
We assessed the effects of aerobic and/or resistance training on thermoregulatory responses in older men and analyzed the results in relation to the changes in peak oxygen consumption rate (VO(2 peak)) and blood volume (BV). Twenty-three older men [age, 64 +/- 1 (SE) yr; VO(2 peak), 32.7 +/- 1.1 ml. kg(-1). min(-1)] were divided into three training regimens for 18 wk: control (C; n = 7), aerobic training (AT; n = 8), and resistance training (RT; n = 8). Subjects in C were allowed to perform walking of ~10,000 steps/day, 6-7 days/wk. Subjects in AT exercised on a cycle ergometer at 50-80% VO(2 peak) for 60 min/day, 3 days/wk, in addition to the walking. Subjects in RT performed a resistance exercise, including knee extension and flexion at 60-80% of one repetition maximum, two to three sets of eight repetitions per day, 3 days/wk, in addition to the walking. After 18 wk of training, VO(2 peak) increased by 5.2 +/- 3.4% in C (P > 0.07), 20.0 +/- 2.5% in AT (P < 0.0001), and 9.7 +/- 5.1% in RT (P < 0.003), but BV remained unchanged in all trials. In addition, the esophageal temperature (T(es)) thresholds for forearm skin vasodilation and sweating, determined during 30-min exercise of 60% VO(2 peak) at 30 degrees C, decreased in AT (P < 0.02) and RT (P < 0.02) but not in C (P > 0.2). In contrast, the slopes of forearm skin vascular conductance/T(es) and sweat rate/T(es) remained unchanged in all trials, but both increased in subjects with increased BV irrespective of trials with significant correlations between the changes in the slopes and BV (P < 0.005 and P < 0.0005, respectively). Thus aerobic and/or resistance training in older men increased VO(2 peak) and lowered T(es) thresholds for forearm skin vasodilation and sweating but did not increase BV. Furthermore, the sensitivity of the increase in skin vasodilation and sweating at a given increase in T(es) was more associated with BV than with VO(2 peak).  相似文献   

20.
The present study was performed to clarify the effects of intermittent exposure to an altitude of 4,500 m with endurance training and detraining on ventilatory chemosensitivity. Seven subjects (sea-level group) trained at sea level at 70% maximal oxygen uptake (VO2 max) for 30 min/day, 5 days/wk for 2 wk, whereas the other seven subjects (altitude group) trained at the same relative intensity (70% altitude VO2 max) in a hypobaric chamber. VO2 max, hypoxic ventilatory response (HVR), and hypercapnic ventilatory response, as an index of central hypercapnic chemosensitivity (HCVR) and as an index of peripheral chemosensitivity (HCVRSB), were measured. In both groups VO2 max increased significantly after training, and a significant loss of VO2 max occurred during 2 wk of detraining. HVR tended to increase in the altitude group but not significantly, whereas it decreased significantly in the sea-level group after training. HCVR and HCVRSB did not change in each group. After detraining, HVR returned to the pretraining level in both groups. These results suggest that ventilatory chemosensitivity to hypoxia is more variable by endurance training and detraining than that to hypercapnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号