首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The distribution and abundance of fish in a rocky reef environment were investigated at the subantarctic Auckland Islands of New Zealand, in June 1986. Fish were counted in transects and specimens were taken. The diversity and abundance of species of large reef fish was low; a total of eight species were observed. Most fish were benthic carnivores. These findings are similar to studies of reef fish in subantarctic waters of Chile. Large differences in species composition were found among locations at the Auckland Islands. The number of species and their abundance was highest near exposed headlands. Few fish were found on reefs at more sheltered inlets. At most locations the nototheniids Paranotothenia angustata and P. microlepidota ranked first in abundance at deep and shallow sites. There were some species that showed differences in abundance with depth. Highest abundance of Bovichthys variegatus, Latridopsis cilaris, Latris lineata and Pseudolabrus cinctus were in deep water on reefs. Large numbers of juvenile P. microlepidota were found only in shallow water. No depth related patterns were found for P. angustata and Mendosoma lineatum. Specimens, other than those counted in transects, were also collected. There were small fish, 4 species of tripterygiids, 1 gobiescocid and 2 syngnathids. The Auckland Islands had closer zoogeographic affinities with islands of temperate and subantarctic New Zealand than with other landmasses of the westwind drift. Although most fish found at the Auckland Islands are found also in temperature New Zealand, the converse of this pattern was not found. The proportional representation of species and trophic groups differed markedly between these regions.  相似文献   

2.
The composition and trophic structure of reef fish communities in two natural and two artificial reefs along the coast of Paraíba State in north‐eastern Brazil were investigated. A total of 114 species of fish belonging to 47 families were recorded during 120 stationary visual surveys, slightly less than half (46·55%) of which were recorded at all four surveyed localities. Most species are widely distributed on the western Atlantic coast, but several are endemic to Brazil. The greatest diversity and equitability indexes were recorded at the reefs of Sapatas and Cabeço dos Cangulos, whereas the greatest richness and abundance were found at the Queimado shipwreck. The Alvarenga shipwreck reef had the least richness, diversity and equitability. The four localities studied had very similar ichthyofaunas, especially in relation to species composition. The reefs along the Paraíba coast are considered priority conservation areas by the Brazilian Ministry of the Environment, and the information generated by this study will be useful for comparison with other reefs in the region and can be directly applied to programmes seeking to protect and manage these environments.  相似文献   

3.
The diversity and abundance of ichthyofauna associated with Thalassia testudinum in the Lobos coral reef, Veracruz, Mexico, were studied in September and October 2002. Thirty six visual censuses in four sample sites were made using a 50 x 2 m transect belt. On each census, fish species, abundance and size were recorded. Leaf size and cover of T. testudinum were estimated. The similarity of fish groups was calculated with the Gower coefficient. The most abundant coral reef fishes were: Scarus iseri, Halichoeres bivittatus, Sparisoma radians, Stegastes adustus and Stegastes leucostictus. The highest density (0.04078 ind/m2) and biomass (0.72408 g/m2) of fish species were recorded in site II, where leaf size was greater (30.8 cm). The analysis of variance showed significant differences between sites in leaf size (F = 18.30856; p = 0.00001) and cover (H = 33.8119; p = 0.00001). These differences suggest a relationship between fish diversity and abundance, and T. testudinum leaf size and cover. The Gower similarity index produced two groups of fishes; one of them (site II) showed the highest abundance. In this reef, the fishes associated to sea grasses seem to reflect the characteristics of T. testudinum.  相似文献   

4.
Increased habitat complexity is supposed to promote increased diversity, abundance and biomass. This study tested the effect of the macroalgal cover on temperate reef fishes by mimicking macroalgae on artificial reefs in NW Sicily (Mediterranean Sea). Macroalgal cover affected reef fishes in different ways and independently of intrinsic temporal trends. The fish assemblages of manipulated and control artificial reef units differed in the relative abundances of the associated species, but little in species composition. In line with studies in seagrass habitats, fishes were most abundant in reefs covered by artificial macroalgae. Three species (Boops boops, Serranus scriba and Symphodus ocellatus) exhibited consistently greater abundance on vegetated reef units than on control reef units. The total number of species and the abundance of three particular species (S. scriba, S. ocellatus and Thalassoma pavo) displayed temporal trends which were independent on short and large temporal scales. Only fish total biomass and one species (Spicara flexuosa) displayed strong effects of interaction among the experimental factors. Mechanisms to explain these findings are discussed from observational evidence on habitat use and interactions among multiple species. This study highlights that manipulative experiments involving repeated sampling of fish in artificial habitats appear to be a valid approach to study fish-habitat relationships in fluctuating environments. It is also concluded that macroalgae mimics may serve as a tool for restoring lost marine vegetated habitats when current human-induced conditions prevent the recovery of pristine macroalgal stands.  相似文献   

5.
马鞍列岛多种生境中鱼类群聚的昼夜变化   总被引:4,自引:0,他引:4  
汪振华  王凯  章守宇 《生态学报》2011,31(22):6912-6925
为了解岛礁水域鱼类群聚的昼夜变化特征,以便更全面地设计采样方法和掌握采样的时间尺度,于2009年9月对马鞍列岛7种生境进行了共计24网次的刺网昼夜采样,结合排序和聚类方法,从种类组成、相对生物量和丰度、种类丰富度、多样性和相似性等方面对研究海域鱼类群聚特征的昼夜变化作了探讨.在采获的55种鱼类中,昼夜出现的分别为41和46种,数量差别不大,但其昼夜组成却随栖息水层的变化而不同,底层鱼类更趋向于夜间在硬相生境集群活动;近底层鱼类的昼夜集群随生境变化而变化,在同一生境中既有偏向白天也有趋向夜间的;中上层鱼类更多地出现在白天的人工生境(AH).AH白天的丰度渔获率显著大于晚上,而天然生境(NH)昼夜差别不大;生物量渔获率无论NH还是AH皆无显著昼夜差异.具体到种类,仅有小黄鱼Larimichthys polyactis和赤鼻棱鳗Thryssa kammalensis等少数种类的数量在AH有显著的昼夜差别,其他多数种类虽然昼夜的出现率大多有别,但渔获率昼夜差异皆不明显.多样性差异更多的表现在不同生境之间,而同一生境的昼夜差异往往不甚显著.各个生境中鱼类的昼夜种类交替现象非常明显,形成了以褐菖(鲐)Sebastiscus marmoratus和鳗鲇Plotosus anguillaris为代表的夜间优势类群为主的硬相生境群聚格局、以丝背细鳞鲀Stephanolepis cirrhifer和细刺鱼Microcanthus strigatus为代表的白天优势类群为主的硬相生境群聚格局以及缺乏底层优势类群、以石首鱼科鱼类为代表的近底层鱼类为绝对优势类群的软相生境群聚格局.因此,采用被动性渔具在近岸典型生境进行鱼类等相关生物调查时,应使采样时间覆盖昼夜两个时段,且至少保证24h.  相似文献   

6.
Bluefish, Pomatomus saltatrix, are recreationally valuable finfish along the Atlantic seaboard and in the Chesapeake Bay. Diet and habitat use patterns for bluefish life history intervals in Chesapeake Bay estuaries are poorly described although it is widely acknowledged that this apex piscivorous species relies on estuarine habitat for feeding and nursery grounds after oceanic spawning and inshore migration of larvae. Bluefish diet, distribution, and abundance patterns were examined in relation to oyster reef, oyster bar, and sand bottom habitat in the Piankatank River, Virginia. Bluefish from all sites were predominantly piscivorous and were more abundant at reef sites than non-reef sites. Bluefish caught in association with the oyster reef consumed a wider diversity of prey items than fish from other sites; diet diversity may contribute to bluefish success during periods when small pelagic food fish abundance is reduced. Bluefish estuarine habitat use is positively correlated with the presence of oyster shell habitat and the complex trophic communities centering on oyster reefs.  相似文献   

7.
Derelict ships are commonly deployed as artificial reefs in the United States, mainly for recreational fishers and divers. Despite their popularity, few studies have rigorously examined fish assemblages on these structures and compared them to natural reefs. Six vessel-reefs off the coast of southeast Florida were censused quarterly (two ships per month) to characterize their associated fish assemblages. SCUBA divers used a non-destructive point-count method to visually assess the fish assemblages over 13- and 12-month intervals (March 2000 to March 2001 and March 2002 to February 2003). During the same intervals, fish assemblages at neighboring natural reefs were also censused. A total of 114,252 fishes of 177 species was counted on natural and vessel-reefs combined. Mean fish abundance and biomass were significantly greater on vessel-reefs in comparison to surrounding natural reef areas. Haemulidae was the most abundant family on vessel-reefs, where it represented 46% of total fish abundance. The most abundant family on natural reefs was Labridae, where it accounted for 24% of total fish abundance. Mean species richness was significantly greater on vessel-reefs than neighboring natural reefs and also differed among vessel-reefs. Both mean fish abundance and mean species richness were not significantly different between natural reefs neighboring vessel-reefs and natural reefs with no artificial structures nearby. This suggests the vessel-reefs are not, in general, attracting fish away from neighboring natural reefs in our area. Additionally, economically important fish species seem to prefer vessel-reefs, as there was a greater abundance of these species on vessel-reefs than surrounding natural reef areas. Fish assemblage structure on natural versus artificial reefs exhibited a low similarity (25.8%). Although no one species was responsible for more than 6% of the total dissimilarity, fish assemblage trophic structure differed strikingly between the two reef types. Planktivores dominated on vessel-reefs, accounting for 54% of the total abundance. Conversely, planktivores only made up 27% of total abundance on natural reefs. The results of this study indicate vessel-reef fish assemblages are unique and that these fishes may be utilizing food resources and habitat characteristics not accessible from or found at natural reefs in our area. Production may also be occurring at vessel-reefs as the attraction of fish species from nearby natural reefs seems to be minimal. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users  相似文献   

8.
The non-native kelp, Undaria pinnatifida, is considered one of the world’s worst invasive species. The northeast Atlantic is a hotspot of Undaria invasion, yet there is limited knowledge on its invasion dynamics. In the UK its distribution is strongly associated with artificial structures, primarily marina and harbour pontoons, with relatively few records of Undaria on natural substrates. Here, the southwest UK is used as a case region, to explicitly link Undaria distribution-abundance patterns in artificial marina habitats with those in natural rocky reef habitats. Using a mixture of in situ recording and video survey techniques, Undaria was found at all thirteen marina sites surveyed; but in only 17 of 35 rocky reef sites, all of which were in 2 of the 5 larger systems surveyed (Plymouth Sound and Torbay). The distribution-abundance patterns of Undaria at reef sites were analysed using zero-inflated models. The probability of finding Undaria on rocky reef increased with increasing proximity to marinas with high abundances of Undaria. Total propagule pressure from marinas also increased the probability of occurrence, and was positively related to Undaria abundance and cover at reef sites. Increases in the cover of native kelps, Laminaria spp., and wave exposure at reef sites were linked to a reduced probability of Undaria occurrence, and lower abundance and cover. Identifying high risk areas, natural boundaries and factors affecting the spread and abundance of non-native species in natural habitats is key to future management prioritisation. Where Undaria is confined to artificial substrates management may be deemed a low priority. However, the results of this study suggest that controlling the abundance and propagule pressure in artificial habitats may limit, to some extent, the spillover of Undaria into natural rocky reef habitats, where it has the potential to interact with and influence native communities.  相似文献   

9.
Additive partitioning was applied to variation in reef fish spatial diversity at Isla Isabel National Park, Nayarit state, Mexico, and to identify the environmental and spatial variables that best explains it. Analyses included expected and observed species curves, rare species analysis, additive partitioning of alpha- and beta-diversity, and canonical redundancy analysis. A total of 10,517 individuals were recorded from 75 species and 33 reef fish families, representing 85% of expected richness. Species richness beta-diversity was dependent on the site scale, while the alpha-diversity of the Shannon diversity was most significant at the transect scale. Canonical partitioning showed species richness and Shannon diversity was explained by spatially-structured environmental components. Variation in species composition and abundance was explained by a purely environmental component. Therefore, elements of habitat structure (especially corals), topographic complexity, and refuge availability determine fish species diversity. Our results suggest that greater emphasis is required to conserve sites that promote β-diversity, increasing fish spatial diversity. In Isla Isabel, these sites would be mostly those located at eastern and southern of protected sides, where coral reef patches are well represented. The results of this multi-scale analysis are valuable and useful as an addition and complement to the holistic management strategies implemented at Isla Isabel.  相似文献   

10.
Ecological theory suggests that the behaviour, growth and abundance of predators will be strongly influenced by the abundance of prey. Predators may in turn play an important role in structuring prey populations and communities. Responses of predators to variation in prey abundance have most commonly been demonstrated in low-diversity communities where food webs are relatively simple. How predators respond in highly diverse assemblages such as in coral reef habitats is largely unknown. This study describes an experiment that examined how the movement, diet and growth of the coral reef piscivore, Cephalopholis boenak (Serranidae) responded to variation in the abundance of its prey. Predator densities were standardised on small patch reefs made from the lagoonal reef-building coral, Porites cylindrica. These patch reefs exhibited natural variation in the abundance and community structure of multiple species of prey. However, our experiment generated a relatively simple predator–prey relationship, with C. boenak primarily responding to the most abundant species of prey. Three responses of predators were observed: aggregative, functional and developmental. Thirty-one per cent of individuals moved between patch reefs during the experiment, all from areas of relatively low to high prey density. Feeding rates were higher on patch reefs of high prey density, while growth rates of fish that remained on low prey density reefs throughout the experiment were lower. Growth rates of C. boenak on the experimental reefs were also much higher than for those living on natural patch reefs over the same time period, corresponding with overall differences in prey abundance. These results suggest that local abundance, feeding rate and growth of C. boenak were closely linked to the abundance of their main prey. This combination of predatory responses is a potential mechanism behind recent observations of density-dependent mortality and population regulation of prey in coral reef fish communities.  相似文献   

11.
Caribbean coral reefs have transformed into algal-dominated habitats over the past half-century, but the role of specific anthropogenic drivers is unresolved due to the lack of ecosystem-level data predating human disturbance. To better understand the extent and causes of long-term Caribbean reef declines, we produced a continuous 3000-yr record of the ecosystem state of three reefs in Bocas del Toro, Caribbean Panama. From fossils and sediments obtained from reef matrix cores, we tracked changes in reef accretion rates and the taxonomic and functional group composition of fish, coral, urchin, bivalve and benthic foraminifera. This dataset provided a comprehensive picture of reef community and environmental change. At all sites, reefs shifted from systems with greater relative abundance of herbivorous fish, epifaunal suspension feeding bivalves and Diadema urchins to systems with greater relative abundance of micropredator fish, infaunal bivalves and Echinometra urchins. These transitions were initiated a millennium ago at two less-degraded reefs fringing offshore islands and ~250 yr ago at a degraded patch reef near the continental coast. Ecosystem shifts were accompanied by a decline in reef accretion rates, and at the patch reef, a decline in water quality since the 18th century. Within all cores, synchronous increases in infaunal bivalves and declines in herbivorous fish regardless of water quality suggest a loss of hard substrate and increasingly hypoxic sediment conditions related to herbivore loss. While the early timing of ecosystem transitions at the fringing reefs implicates large-scale hydrological change, the more recent timing of change and loss of water quality at the patch reef implicates terrigenous runoff from land-clearing. Our whole-ecosystem reconstruction reveals that reef ecosystem deterioration appears to follow a predictable trajectory whether driven by natural or anthropogenic disturbances and that historical local human activities have quickly unraveled reefs at a scale similar to longer-term natural environmental change.  相似文献   

12.

Poleward range extensions of coral reef species can reshuffle temperate communities by generating competitive interactions that did not exist previously. However, novel environmental conditions and locally adapted native temperate species may slow tropical invasions by reducing the ability of invaders to access local resources (e.g. food and shelter). We test this hypothesis on wild marine fish in a climate warming hotspot using a field experiment encompassing artificial prey release. We evaluated seven behaviours associated with foraging and aggressive interactions in a common range-extending coral reef fish (Abudefduf vaigiensis) and a co-shoaling temperate fish (Microcanthus strigatus) along a latitudinal temperature gradient (730 km) in SE Australia. We found that the coral reef fish had reduced foraging performance (i.e. slower prey perception, slower prey inspection, decreased prey intake, increased distance to prey) in their novel temperate range than in their subtropical range. Furthermore, higher abundance of temperate fishes was associated with increased retreat behaviour by coral reef fish (i.e. withdrawal from foraging on released prey), independent of latitude. Where their ranges overlapped, temperate fish showed higher foraging and aggression than coral reef fish. Our findings suggest that lower foraging performance of tropical fish at their leading range edge is driven by the combined effect of environmental factors (e.g. lower seawater temperature and/or unfamiliarity with novel conditions in their extended temperate ranges) and biological factors (e.g. increased abundance and larger body sizes of local temperate fishes). Whilst a future increase in ocean warming is expected to alleviate current foraging limitations in coral reef fishes at leading range edges, under current warming native temperate fishes at their trailing edges appear able to slow the range extension of coral reef fishes into temperate ecosystems by limiting their access to resources.

  相似文献   

13.
The ecological significance of cleaner fish on coral reefs was investigated. I removed all cleaner fish, Labroides dimidiatus, from eight small reefs, measured the subsequent effect on the abundance and species composition of all reef fish after 3 and 6 months, and compared it with eight control reefs with cleaner fish. The removal of cleaner fish had no detectable effect on the total abundance of fish on reefs and the total number of fish species at both times. Multivariate analysis by non-metric multidimensional scaling and ANOSIM pairwise tests based on 191 fish species revealed no effect of cleaners on the community structure of fish. Similar results were obtained using principal components analysis on subsets of the data using the 33 most common fish species and the 15 most abundant species (≥5 individuals per reef ) with both log10 (x + 1) transformed data and with fish numbers standardized for abundance. This study demonstrates that the removal of cleaner fish for 6 months did not result in fish suffering increased mortality nor in fish leaving reefs to seek cleaning elsewhere. Received: 28 October 1996 / Accepted: 7 February 1997  相似文献   

14.
Habitat use by the resident coral reef anemonefish, Amphiprion frenatus, was examined in the complex coral reef landscape of Shiraho Reef, Ishigaki Island, Okinawa, Japan, using an enlarged color aerial photograph processed using image analysis software as an accurate field map. The anemonefish inhabit assemblages of the host sea anemone, Entacmaea quadricolor (clonal type), which inhabit various patch reefs in the back reef moat. We located all patch reefs inhabited by the host in the map based on snorkel observations: 297 anemonefish were found in 93 host assemblages in the study site of 2.9 ha. These patch reefs could be recognized by the reef colors, including the shadows (blackish color) in the photograph. Using image analysis software, the colors of the patch reefs were chosen and pixels with the same color values were regarded as potential habitat patches for the fish (PHPs). PHPs were 3D patch reefs (>0.5 m in height). Total areas (TA) and total perimeters (TP) of PHPs were measured in nine quadrats in the digitized aerial photograph. Host abundance and anemonefish abundance in a quadrat showed stronger correlations with the product of TA and TP of PHPs than TA alone. A site with numerous large 3D patch reefs (≥0.75 m2 in situ) can be a better habitat for the fish than other sites consisting of several huge 3D patch reefs of the same total area. The methodology applied here may be useful for assessing the quality of habitats for small resident animals in shallow subtidal reefs.  相似文献   

15.
We tested the hypothesis for several Caribbean reef fish species that there is no difference in nursery function among mangrove, seagrass and shallow reef habitat as measured by: (a) patterns of juvenile and adult density, (b) assemblage composition, and (c) relative predation rates. Results indicated that although some mangrove and seagrass sites showed characteristics of nursery habitats, this pattern was weak. While almost half of our mangrove and seagrass sites appeared to hold higher proportions of juvenile fish (all species pooled) than did reef sites, this pattern was significant in only two cases. In addition, only four of the six most abundant and commercially important species (Haemulon flavolineatum, Haemulon sciurus, Lutjanus apodus, Lutjanus mahogoni, Scarus iserti, and Sparisoma aurofrenatum) showed patterns of higher proportions of juvenile fish in mangrove and/or seagrass habitat(s) relative to coral reefs, and were limited to four of nine sites. Faunal similarity between reef and either mangrove or seagrass habitats was low, suggesting little, if any exchange between them. Finally, although relative risk of predation was lower in mangrove/seagrass than in reef habitats, variance in rates was substantial suggesting that not all mangrove/seagrass habitats function equivalently. Specifically, relative risk varied between morning and afternoon, and between sites of similar habitat, yet varied little, in some cases, between habitats (mangrove/seagrass vs. coral reefs). Consequently, our results caution against generalizations that all mangrove and seagrass habitats have nursery function.  相似文献   

16.
Aim To investigate how reef fish trophic structure responds to latitudinal changes, using a simple model: the extensive Brazilian coast. Location Six Brazilian tropical and subtropical coral and rocky coastal reefs, and the oceanic island of Atol das Rocas, between latitudes 0° and 27° S. Methods Underwater visual census data collected by the authors (five locations) or obtained from the literature (two locations) were used to estimate the relative abundance of 123 fish species belonging to 33 reef‐associated families. Cryptic species were excluded from the analysis. Fishes were grouped in eight trophic categories: roving herbivores, territorial herbivores, mobile invertebrate feeders, sessile invertebrate feeders, omnivores, planktivores, piscivores and carnivores. After a series of detailed predictions based on phylogeny, physiological constraints and anthropogenic impacts was established, the community trophic structure was analysed along a latitudinal gradient and among coastal, mid‐shore and oceanic sites. Results The trophic structure of Brazilian reef fish assemblages clearly changed with latitude. Roving herbivores such as scarids and acanthurids were proportionally more abundant at low latitudes. The browsing herbivores kyphosids followed an opposite latitudinal pattern. The parrotfish genus Sparisoma, more plastic in its feeding habits than Scarus, presented wider distribution. The relative abundance of territorial herbivores did not decrease towards higher latitudes. Mobile invertebrate feeders were the most important (in low latitudes) or the second most important trophic guild (in high latitudes) at all coastal sites. Sessile invertebrate feeders did not show any clear latitudinal trend, despite an expected increase in abundance towards low latitudes. Omnivores dominated high latitude reefs (27° S) and planktivores the oceanic island Atol das Rocas. Piscivores and carnivores were proportionally better represented in high latitudes. Main conclusions Latitudinal patterns seem to be influenced by phylogeny, physiological constraints (mainly related to temperature), and also by anthropogenic impacts. Grazing scarids and acanthurids are largely restricted to tropical reefs and show an abrupt decline beyond 23° S. This does not reflect the amount of algae present, but probably temperature‐dependent physiological constraints. Other herbivores seem to overcome this through symbiotic microbial digestive processes (kyphosids), manipulating the structure of algal turfs or increasing animal protein from within the territory (pomacentrids). Omnivores dominate the southern sites Arraial do Cabo and Arvoredo, being more adapted to environment constraints related to seasonal and/or stochastic shifts. Large carnivores (including piscivores) extend farther into high‐latitude habitats, apparently not constrained by thermal thresholds that limit the herbivores. Overfishing and/or ornamental harvesting certainly has been modifying local fish communities, but could not be detected properly at the large‐scale patterns found in this study. The data presented put in evidence for the first time how reef fish trophic structure behave in the extensive south‐western Atlantic latitudinal gradient.  相似文献   

17.
The present study was conducted on Tamandaré reefs, northeast Brazil and aimed to analyse the importance of different factors (e.g. tourism activity, fishing activity, coral abundance and algal abundance) on reef fish abundance and species richness. Two distinct reef areas (A ver o mar and Caieiras) with different levels of influence were studied. A total of 8239 reef fish individuals were registered, including 59 species. Site 1 (A ver o mar) presented higher reef fish abundance and richness, with dominance of roving herbivores (29.9 %) and mobile invertebrate feeders (28.7 %). In contrast, at Site 2 (Caieiras) territorial herbivores (40.9 %) predominated, followed by mobile invertebrate feeders (24.6 %). Concerning the benthic community, at Site 1 macroalgae were recorded as the main category (49.3 %); however, Site 2 was dominated by calcareous algae (36.0 %). The most important variable explaining more than 90 % of variance on reef fish abundance and species richness was macroalgae abundance, followed by fishing activity. Phase shifts on coral reefs are evident, resulting in the replacement of coral by macroalgae and greatly influencing reef fish communities. In this context, it is important to understand the burden of the factors that affect reef fish communities and, therefore, influence the extinction vulnerability of coral reef fishes.  相似文献   

18.
Objectives of the study were ascertaining the temporal variation of fish density and biomass as well as the changes in fish species composition in a surveyed area before and after deployment of an artificial reef. The study was initiated within an area of 0.25 km2 in response to a strong demand for fisheries enhancement and resource conservation in Xiangshan Bay, Zhejiang Province, China. This survey data was collected through a SIMRAD EY60 system and bottom trinal nets pre‐ and post‐construction of the artificial reefs, May 2011 to September 2012 in Xiangshan Bay. The raw data were analyzed using fisheries acoustic Echoview (Myriax) software combined with bottom trinal net data. The results showed that estimated fish density, represented by a nautical area scattering coefficient (NASC) at the artificial reef increased by 14.04, 31.10, 17.35% in May, July and September 2012 after construction of the artificial reef, and that the fish biomass increased by 8.92, 29.06, and 18.09% in these three months of 2012 in contrast to 2011. The numbers of fish species varied from 7 to 9 in May, from 10 to 14 in July and from 9 to 12 in September of 2012. These temporal changes in the fishery status were considered as being mainly due to deployment of the artificial reefs in early April 2012.  相似文献   

19.
George  Robert Y. 《Hydrobiologia》2002,471(1-3):71-81
This paper deals with two deep water coral ecosystems off the North Carolina coast, both under the depositional, erosional, and biological influence of the Gulf Stream and its eddies and episodic upwelling processes. The first coral community, Ben Franklin temperate reef, is located at 20 meters in Onslow Bay and is characterized by the ahermatypic coral Oculina arbuscula Verrill and unusually high abundance of the small predatory isopod Eurydice bowmani George and Longerbeam. The deep sea coral community, Agassiz Coral Hills, is located over the Blake Plateau at 650 meters, dominated by the fossilized, dead and living coral Bathypsammia tintinnabulum, with rare occurrence of the deep sea solitary coral Flabellum goodei. The deep sea coral sites were sampled with an otter trawl, outfitted with `Benthos' flotation spheres. The results suggest that the fish and shrimp fauna exhibits high species richness in the Agassiz Coral Hills off North Carolina in comparison with a control site over the Blake Plateau off Florida. Species richness may be linked to episodic upwelling events along the Gulf Stream meanders. The fish fauna in the Agassiz Coral Hills includes the following two commercially important deep sea fish species: the wreck fish Polyprion americanus and the eel Synaphobranchus koupi. The Ben Franklin reef and the Agassiz Coral Hills are recommended as Marine Protected Areas.  相似文献   

20.
Aim The objective of this study was to investigate the influence of protection duration (years of fishing closure) and location (distance from shore) on reef fish diversity. Location Danajon Double Barrier Reef, Bohol, Philippines. Methods Reef fish abundance and size structure, by species, were obtained monthly using replicated underwater visual belt transects (n = 8; 70 × 5‐m belt transects) over 3 years (2002–2005) at eight sites that included six marine reserves and two unprotected reef areas. We analysed species accumulation curves, diversity indices and abundance–biomass comparison (ABC) curves within and across the study sites to assess the influence of protection duration and location. Results Analyses showed that longer protection duration impacted reef fish diversity at both inshore and offshore sites by shifting ABC curves from higher abundance than biomass curves at fished sites to higher biomass than abundance curves at most of the protected sites. Protection duration did not significantly influence either the rate of species accumulation within sites or the 12 diversity indices measured across the study sites. The offshore sites consistently showed higher rates of species accumulation and diversity indices values than inshore sites with similar protection duration. One protected offshore young marine reserve site that has been assessed as the least well‐managed showed patterns more consistent with the fished sites. Main conclusions Analyses showed that protection duration mainly impacted diversity by increasing the dominance of large‐bodied species and enhancing total biomass. Besides protection duration, reserve location influenced species accumulation curves and diversity indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号