首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Seedlings of Vicia faba L. were grown in open-top growth chambers at present (P=350μmol?1) and at elevated (E=700μmol mol?1) atmospheric CO2 concentration. The effects of CO2 enrichment on the first phase of growth after germination were examined over 45 d. There were no positive effects of CO2 enrichment on growth of the seedlings during this early phase. No differences were observed in leaf area or in total dry weight. No differences were found in morphology or anatomy of the leaves. The numbers of stomatal and epidermal cells, thickness of leaf, of epidermis and of mesophyll cell-layers were unaffected by CO2 enrichment. Also, no differences were observed in leaf concentrations of chlorophyll, reducing carbohydrates or starch. These results contrast markedly with results from similar experiments on poplar hybrids and Phaseolus vulgaris obtained in the same growth facility. It seems that the intitial growth is under internal control such that the atmospheric CO2 concentration has no effects. The lack of response in this case may be attributed to the presence and longevity of the large cotyledons which provided available substrate for growth.  相似文献   

2.
Net grassland carbon flux over a subambient to superambient CO2 gradient   总被引:2,自引:0,他引:2  
Increasing atmospheric CO2 concentrations may have a profound effect on the structure and function of plant communities. A previously grazed, central Texas grassland was exposed to a 200‐µmol mol?1 to 550 µmol mol?1 CO2 gradient from March to mid‐December in 1998 and 1999 using two, 60‐m long, polyethylene‐ covered chambers built directly onto the site. One chamber was operated at subambient CO2 concentrations (200–360 µmol mol?1 daytime) and the other was regulated at superambient concentrations (360–550 µmol mol?1). Continuous CO2 gradients were maintained in each chamber by photosynthesis during the day and respiration at night. Net ecosystem CO2 flux and end‐of‐year biomass were measured in each of 10, 5‐m long sections in each chamber. Net CO2 fluxes were maximal in late May (c. day 150) in 1998 and in late August in 1999 (c. day 240). In both years, fluxes were near zero and similar in both chambers at the beginning and end of the growing season. Average daily CO2 flux in 1998 was 13 g CO2 m?2 day?1 in the subambient chamber and 20 g CO2 m?2 day?1 in the superambient chamber; comparable averages were 15 and 26 g CO2 m?2 day?1 in 1999. Flux was positively and linearly correlated with end‐of‐year above‐ground biomass but flux was not linearly correlated with CO2 concentration; a finding likely to be explained by inherent differences in vegetation. Because C3 plants were the dominant functional group, we adjusted average daily flux in each section by dividing the flux by the average percentage C3 cover. Adjusted fluxes were better correlated with CO2 concentration, although scatter remained. Our results indicate that after accounting for vegetation differences, CO2 flux increased linearly with CO2 concentration. This trend was more evident at subambient than superambient CO2 concentrations.  相似文献   

3.
The growth and chemical composition of most plants are influenced by elevated CO2, but accompanying effects on soil organic matter pools and mineralization are less clearly defined, partly because of the short‐term nature of most studies. Herein we describe soil properties from a naturally occurring cold CO2 spring (Hakanoa) in Northland, New Zealand, at which the surrounding vegetation has been exposed to elevated CO2 for at least several decades. The mean annual temperature at this site is ≈ 15.5 °C and rainfall ≈ 1550 mm. The site was unfertilized and ungrazed, with a vegetation of mainly C3 and C4 grasses, and had moderate levels of ‘available’ P. Two soils were present ? a gley soil and an organic soil – but only the gley soil is examined here. Average atmospheric CO2 concentrations at 17 sampling locations in the gley soil area ranged from 372 to 670 ppmv. In samples at 0–5 cm depth, pH averaged 5.4; average values for organic C were 150 g, total N 11 g, microbial C 3.50 g, and microbial N 0.65 g kg?1, respectively. Under standardized moisture conditions at 25 °C, average rates of CO2‐C production (7–14 days) were 5.4 mg kg?1 h?1 and of net mineral‐N production (14 ?42 days) 0.40 mg kg?1 h?1. These properties were all correlated positively and significantly (P < 0.10) with atmospheric CO2 concentrations, but not with soil moisture (except for CO2‐C production) or with clay content; they were, however, correlated negatively and mainly significantly with soil pH. In spite of uncertainties associated with the uncontrolled environment of naturally occurring springs, we conclude that storage of C and N can increase under prolonged exposure to elevated CO2, and may include an appreciable labile fraction in mineral soil with an adequate nutrient supply.  相似文献   

4.
In this study, we investigated the impact of elevated atmospheric CO2 (ambient + 350 μmol mol–1) on fine root production and respiration in Scots pine (Pinus sylvestris L.) seedlings. After six months exposure to elevated CO2, root production measured by root in-growth bags, showed significant increases in mean total root length and biomass, which were more than 100% greater compared to the ambient treatment. This increased root length may have lead to a more intensive soil exploration. Chemical analysis of the roots showed that the roots in the elevated treatment accumulated more starch and had a lower C/N-ratio. Specific root respiration rates were significantly higher in the elevated treatment and this was probably attributed to increased nitrogen concentrations in the roots. Rhizospheric respiration and soil CO2 efflux were also enhanced in the elevated treatment. These results clearly indicate that under elevated atmospheric CO2 root production and development in Scots pine seedlings is altered and respiratory carbon losses through the root system are increased.  相似文献   

5.
An increase in concentration of atmospheric CO2 is one major factor influencing global climate change. Among the consequences of such an increase is the stimulation of plant growth and productivity. Below‐ground microbial processes are also likely to be affected indirectly by rising atmospheric CO2 levels, through increased root growth and rhizodeposition rates. Because changes in microbial community composition might have an impact on symbiotic interactions with plants, the response of root nodule symbionts to elevated atmospheric CO2 was investigated. In this study we determined the genetic structure of 120 Rhizobium leguminosarum bv. trifolii isolates from white clover plants exposed to ambient (350 μmol mol?1) or elevated (600 μmol mol?1) atmospheric CO2 concentrations in the Swiss FACE (Free‐Air‐Carbon‐Dioxide‐Enrichment) facility. Polymerase Chain Reaction (PCR) fingerprinting of genomic DNA showed that the isolates from plants grown under elevated CO2 were genetically different from those isolates obtained from plants grown under ambient conditions. Moreover, there was a 17% increase in nodule occupancy under conditions of elevated atmospheric CO2 when strains of R. leguminosarum bv. trifolii isolated from plots exposed to CO2 enrichment were evaluated for their ability to compete for nodulation with those strains isolated from ambient conditions. These results indicate that a shift in the community composition of R. leguminosarum bv. trifolii occurred as a result of an increased atmospheric CO2 concentration, and that elevated atmospheric CO2 affects the competitive ability of root nodule symbionts, most likely leading to a selection of these particular strains to nodulate white clover.  相似文献   

6.
A free-air CO2 enrichment (FACE) system was designed to permit the experimental exposure of tall vegetation such as stands of forest trees to elevated atmospheric CO2 concentrations ([CO2]a) without enclosures that alter tree microenvironment. We describe a prototype FACE system currently in operation in forest plots in a maturing loblolly pine (Pinus taeda L.) stand in North Carolina, USA. The system uses feedback control technology to control [CO2] in a 26 m diameter forest plot that is over 10 m tall, while monitoring the 3D plot volume to characterize the whole-stand CO2 regime achieved during enrichment. In the second summer season of operation of the FACE system, atmospheric CO2 enrichment was conducted in the forest during all daylight hours for 96.7% of the scheduled running time from 23 May to 14 October with a preset target [CO2] of 550 μmol mol–1, ≈ 200 μmol mol–1 above ambient [CO2]. The system provided spatial and temporal control of [CO2] similar to that reported for open-top chambers over trees, but without enclosing the vegetation. The daily average daytime [CO2] within the upper forest canopy at the centre of the FACE plot was 552 ± 9 μmol mol–1 (mean ± SD). The FACE system maintained 1-minute average [CO2] to within ± 110 μmol mol–1 of the target [CO2] for 92% of the operating time. Deviations of [CO2] outside of this range were short-lived (most lasting < 60 s) and rare, with fewer than 4 excursion events of a minute or longer per day. Acceptable spatial control of [CO2] by the system was achieved, with over 90% of the entire canopy volume within ± 10% of the target [CO2] over the exposure season. CO2 consumption by the FACE system was much higher than for open-top chambers on an absolute basis, but similar to that of open-top chambers and branch bag chambers on a per unit volume basis. CO2 consumption by the FACE system was strongly related to windspeed, averaging 50 g CO2 m–3 h–1 for the stand for an average windspeed of 1.5 m s–1 during summer. The [CO2] control results show that the free-air approach is a tractable way to study long-term and short-term alterations in trace gases, even within entire tall forest ecosystems. The FACE approach permits the study of a wide range of forest stand and ecosystem processes under manipulated [CO2]a that were previously impossible or intractable to study in true forest ecosystems.  相似文献   

7.
System-level adjustments to elevated CO2 in model spruce ecosystems   总被引:6,自引:0,他引:6  
Atmospheric carbon dioxide enrichment and increasing nitrogen deposition are often predicted to increase forest productivity based on currently available data for isolated forest tree seedlings or their leaves. However, it is highly uncertain whether such seedling responses will scale to the stand level. Therefore, we studied the effects of increasing CO2 (280, 420 and 560 μL L-1) and increasing rates of wet N deposition (0, 30 and 90 kg ha-1 y-1) on whole stands of 4-year-old spruce trees (Picea abies). One tree from each of six clones, together with two herbaceous understory species, were established in each of nine 0.7 m2 model ecosystems in nutrient poor forest soil and grown in a simulated montane climate for two years. Shoot level light-saturated net photosynthesis measured at growth CO2 concentrations increased with increasing CO2, as well as with increasing N deposition. However, predawn shoot respiration was unaffected by treatments. When measured at a common CO2 concentration of 420 μL L-1 37% down-regulation of photosynthesis was observed in plants grown at 560 μL CO2 L-1. Length growth of shoots and stem diameter were not affected by CO2 or N deposition. Bud burst was delayed, leaf area index (LAI) was lower, needle litter fall increased and soil CO2 efflux increased with increasing CO2. N deposition had no effect on these traits. At the ecosystem level the rate of net CO2 exchange was not significantly different between CO2 and N treatments. Most of the responses to CO2 studied here were nonlinear with the most significant differences between 280 and 420 μL CO2 L-1 and relatively small changes between 420 and 560 μL CO2 L-1. Our results suggest that the lack of above-ground growth responses to elevated CO2 is due to the combined effects of physiological down-regulation of photosynthesis at the leaf level, allometric adjustment at the canopy level (reduced LAI), and increasing strength of below-ground carbon sinks. The non-linearity of treatment effects further suggests that major responses of coniferous forests to atmospheric CO2 enrichment might already be under way and that future responses may be comparatively smaller.  相似文献   

8.
N2 fixation by Acacia species increases under elevated atmospheric CO2   总被引:1,自引:0,他引:1  
In the present study the effect of elevated CO2 on growth and nitrogen fixation of seven Australian Acacia species was investigated. Two species from semi‐arid environments in central Australia (Acacia aneura and A. tetragonophylla) and five species from temperate south‐eastern Australia (Acacia irrorata, A. mearnsii, A. dealbata, A. implexa and A. melanoxylon) were grown for up to 148 d in controlled greenhouse conditions at either ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 concentrations. After establishment of nodules, the plants were completely dependent on symbiotic nitrogen fixation. Six out of seven species had greater relative growth rates and lower whole plant nitrogen concentrations under elevated versus normal CO2. Enhanced growth resulted in an increase in the amount of nitrogen fixed symbiotically for five of the species. In general, this was the consequence of lower whole‐plant nitrogen concentrations, which equate to a larger plant and greater nodule mass for a given amount of nitrogen. Since the average amount of nitrogen fixed per unit nodule mass was unaltered by atmospheric CO2, more nitrogen could be fixed for a given amount of plant nitrogen. For three of the species, elevated CO2 increased the rate of nitrogen fixation per unit nodule mass and time, but this was completely offset by a reduction in nodule mass per unit plant mass.  相似文献   

9.
Arbutus unedo is a sclerophyllous evergreen, characteristic of Mediterranean coastal scrub vegetation. In Italy, trees of A. unedo have been found close to natural CO2 vents where the mean atmospheric carbon dioxide concentration is about 2200 μmol mol?1. Comparisons were made between trees growing in elevated and ambient CO2 concentrations to test for evidence of adaptation to long-term exposure to elevated CO2. Leaves formed at elevated CO2 have a lower stomatal density and stomatal index and higher specific leaf area than those formed at ambient CO2, but there was no change in carbon to nitrogen ratios of the leaf tissue. Stomatal conductance was lower at elevated CO2 during rapid growth in the spring. In mid-summer, under drought stress, stomatal closure of all leaves occurred and in the autumn, when stress was relieved, the conductance of leaves at both elevated and ambient CO2 increased. In the spring, the stomatal conductance of the new flush of leaves at ambient CO2 was higher than the leaves at elevated CO2, increasing instantaneous water use efficiency at elevated CO2. Chlorophyll fluorescence measurements suggested that elevated CO2 provided some protection against photoinhibition in mid-summer. Analysis of A/Ci curves showed that there was no evidence of either upward or downward regulation of photosynthesis at elevated CO2. It is therefore anticipated that A. unedo will have higher growth rates as the ambient CO2 concentrations increase.  相似文献   

10.
Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported. Here we examine the effects of both short- and long-term exposure to soil CO2 on the root respiration of intact plants and on plant growth for bean (Phaseolus vulgaris L.) and citrus (Citrus volkameriana Tan. & Pasq.). For rapidly growing bean plants, the growth and maintenance components of root respiration were separated to determine whether they differ in sensitivity to soil CO2. Respiration rates of citrus roots were unaffected by the CO2 concentration used during the respiration measurements (200 and 2000 μmol mol−1), regardless of the soil CO2, concentration during the previous month (600 and 20 000 μmol mol−1). Bean plants were grown with their roots exposed to either a natural CO2 diffusion gradient, or to an artificially maintained CO2 concentration of 600 or 20 000 μmol mol−1. These treatments had no effect on shoot and root growth. Growth respiration and maintenance respiration of bean roots were also unaffected by CO2 pretreatment and the CO2 concentration used during the respiration measurements (200–2000 μmol mol−1). We conclude that soil CO2 concentrations in the range likely to be encountered in natural soils do not affect root respiration in citrus or bean.  相似文献   

11.
Growing seasons are getting longer, a phenomenon partially explained by increasing global temperatures. Recent reports suggest that a strong correlation exists between warming and advances in spring phenology but that a weaker correlation is evident between warming and autumnal events implying that other factors may be influencing the timing of autumnal phenology. Using freely rooted, field‐grown Populus in two Free Air CO2 Enrichment Experiments (AspenFACE and PopFACE), we present evidence from two continents and over 2 years that increasing atmospheric CO2 acts directly to delay autumnal leaf coloration and leaf fall. In an atmosphere enriched in CO2 (by ~45% of the current atmospheric concentration to 550 ppm) the end of season decline in canopy normalized difference vegetation index (NDVI) – a commonly used global index for vegetation greenness – was significantly delayed, indicating a greener autumnal canopy, relative to that in ambient CO2. This was supported by a significant delay in the decline of autumnal canopy leaf area index in elevated as compared with ambient CO2, and a significantly smaller decline in end of season leaf chlorophyll content. Leaf level photosynthetic activity and carbon uptake in elevated CO2 during the senescence period was also enhanced compared with ambient CO2. The findings reveal a direct effect of rising atmospheric CO2, independent of temperature in delaying autumnal senescence for Populus, an important deciduous forest tree with implications for forest productivity and adaptation to a future high CO2 world.  相似文献   

12.
Arid ecosystems, which occupy about 35% of the Earth's terrestrial surface area, are believed to be among the most responsive to elevated [CO2]. Net ecosystem CO2 exchange (NEE) was measured in the eighth year of CO2 enrichment at the Nevada Desert Free‐Air CO2 Enrichment (FACE) Facility between the months of December 2003–December 2004. On most dates mean daily NEE (24 h) (μmol CO2 m?2 s?1) of ecosystems exposed to elevated atmospheric CO2 were similar to those maintained at current ambient CO2 levels. However, on sampling dates following rains, mean daily NEEs of ecosystems exposed to elevated [CO2] averaged 23 to 56% lower than mean daily NEEs of ecosystems maintained at ambient [CO2]. Mean daily NEE varied seasonally across both CO2 treatments, increasing from about 0.1 μmol CO2 m?2 s?1 in December to a maximum of 0.5–0.6 μmol CO2 m?2 s?1 in early spring. Maximum NEE in ecosystems exposed to elevated CO2 occurred 1 month earlier than it did in ecosystems exposed to ambient CO2, with declines in both treatments to lowest seasonal levels by early October (0.09±0.03 μmol CO2 m?2 s?1), but then increasing to near peak levels in late October (0.36±0.08 μmol CO2 m?2 s?1), November (0.28±0.03 μmol CO2 m?2 s?1), and December (0.54±0.06 μmol CO2 m?2 s?1). Seasonal patterns of mean daily NEE primarily resulted from larger seasonal fluctuations in rates of daytime net ecosystem CO2 uptake which were closely tied to plant community phenology and precipitation. Photosynthesis in the autotrophic crust community (lichens, mosses, and free‐living cyanobacteria) following rains were probably responsible for the high NEEs observed in January, February, and late October 2004 when vascular plant photosynthesis was low. Both CO2 treatments were net CO2 sinks in 2004, but exposure to elevated CO2 reduced CO2 sink strength by 30% (positive net ecosystem productivity=127±17 g C m?2 yr?1 ambient CO2 and 90±11 g C m?2 yr?1 elevated CO2, P=0.011). This level of net C uptake rivals or exceeds levels observed in some forested and grassland ecosystems. Thus, the decrease in C sequestration seen in our study under elevated CO2– along with the extensive coverage of arid and semi‐arid ecosystems globally – points to a significant drop in global C sequestration potential in the next several decades because of responses of heretofore overlooked dryland ecosystems.  相似文献   

13.
We measured soil CO2 flux over 19 sampling periods that spanned two growing seasons in a grassland Free Air Carbon dioxide Enrichment (FACE) experiment that factorially manipulated three major anthropogenic global changes: atmospheric carbon dioxide (CO2) concentration, nitrogen (N) supply, and plant species richness. On average, over two growing seasons, elevated atmospheric CO2 and N fertilization increased soil CO2 flux by 0.57 µmol m?2 s?1 (13% increase) and 0.37 µmol m?2 s?1 (8% increase) above average control soil CO2 flux, respectively. Decreases in planted diversity from 16 to 9, 4 and 1 species decreased soil CO2 flux by 0.23, 0.41 and 1.09 µmol m?2 s?1 (5%, 8% and 21% decreases), respectively. There were no statistically significant pairwise interactions among the three treatments. During 19 sampling periods that spanned two growing seasons, elevated atmospheric CO2 increased soil CO2 flux most when soil moisture was low and soils were warm. Effects on soil CO2 flux due to fertilization with N and decreases in diversity were greatest at the times of the year when soils were warm, although there were no significant correlations between these effects and soil moisture. Of the treatments, only the N and diversity treatments were correlated over time; neither were correlated with the CO2 effect. Models of soil CO2 flux will need to incorporate ecosystem CO2 and N availability, as well as ecosystem plant diversity, and incorporate different environmental factors when determining the magnitude of the CO2, N and diversity effects on soil CO2 flux.  相似文献   

14.
The effect of elevated atmospheric CO2 concentration (Ca) on the aboveground biomass of three oak species, Quercus myrtifolia, Q. geminata, and Q. chapmanii, was estimated nondestructively using allometric relationships between stem diameter and aboveground biomass after four years of experimental treatment in a naturally fire‐regenerated scrub‐oak ecosystem. After burning a stand of scrub‐oak vegetation, re‐growing plants were exposed to either current ambient (379 µL L?1 CO2) or elevated (704 µL L?1 CO2) Ca in 16 open‐top chambers over a four‐year period, and measurements of stem diameter were carried out annually on all oak shoots within each chamber. Elevated Ca significantly increased aboveground biomass, expressed either per unit ground area or per shoot; elevated Ca had no effect on shoot density. The relative effect of elevated Ca on aboveground biomass increased each year of the study from 44% (May 96–Jan 97), to 55% (Jan 97–Jan 98), 66% (Jan 98–Jan 99), and 75% (Jan 99–Jan 00). The effect of elevated Ca was species specific: elevated Ca significantly increased aboveground biomass of the dominant species, Q. myrtifolia, and tended to increase aboveground biomass of Q. chapmanii, but had no effect on aboveground biomass of the subdominant, Q. geminata. These results show that rising atmospheric CO2 has the potential to stimulate aboveground biomass production in ecosystems dominated by woody species, and that species‐specific growth responses could, in the long term, alter the composition of the scrub‐oak community.  相似文献   

15.
The control of soil nitrogen (N) availability under elevated atmospheric CO2 is central to predicting changes in ecosystem carbon (C) storage and primary productivity. The effects of elevated CO2 on belowground processes have so far attracted limited research and they are assumed to be controlled by indirect effects through changes in plant physiology and chemistry. In this study, we investigated the effects of a 4‐year exposure to elevated CO2 (ambient + 400 µmol mol?1) in open top chambers under Scots pine (Pinus sylvestris L) seedlings on soil microbial processes of nitrification and denitrification. Potential denitrification (DP) and potential N2O emissions were significantly higher in soils from the elevated CO2 treatment, probably regulated indirectly by the changes in soil conditions (increased pH, C availability and NO3 production). Net N mineralization was mainly accounted for by nitrate production. Nitrate production was significantly larger for soil from the elevated CO2 treatment in the field when incubated in the laboratory under elevated CO2 (increase of 100%), but there was no effect when incubated under ambient CO2. Net nitrate production of the soil originating from the ambient CO2 treatment in the field was not influenced by laboratory incubation conditions. These results indicate that a direct effect of elevated atmospheric CO2 on soil microbial processes might take place. We hypothesize that physiological adaptation or selection of nitrifiers could occur under elevated CO2 through higher soil CO2 concentrations. Alternatively, lower microbial NH4 assimilation under elevated CO2 might explain the higher net nitrification. We conclude that elevated atmospheric CO2 has a major direct effect on the soil microbial processes of nitrification and denitrification despite generally higher soil CO2 concentrations compared to atmospheric concentrations.  相似文献   

16.
Inter-generational effects on the growth of Poa annua (L.) in ambient and elevated atmospheric CO2 conditions (350 and 550 μl l–1, respectively) were studied in two different experiments. Both experiments showed similar results. In a greenhouse experiment growth, measured as the numbers of tillers produced per week, was compared for plants grown from first and second generation seeds. Second generation seeds were obtained from plants grown for one whole generation in either ambient or elevated atmospheric CO2 (‘ambient’ and ‘elevated’ seeds, respectively). First generation plants and second generation ‘ambient’ plants did not respond to elevated CO2. Second generation ‘elevated’ plants produced significantly more tillers in elevated CO2. In the second experiment model terrestrial ecosystems growing in the Ecotron and which included Poa annua were used. Above-ground biomass after one and two generations of growth were compared. At the end of Generation 1 no difference was found in biomass production while at the end of Generation 2 biomass increased in elevated CO2 by 50%. The implications for climate change research are discussed.  相似文献   

17.
Hylocereus undatus (Haworth) Britton and Rose growing in controlled environment chambers at 370 and 740 μmol CO2 mol?1 air showed a Crassulacean acid metabolism (CAM) pattern of CO2 uptake, with 34% more total daily CO2 uptake under the doubled CO2 concentration and most of the increase occurring in the late afternoon. For both CO2 concentrations, 90% of the maximal daily CO2 uptake occurred at a total daily photosynthetic photon flux density (PPFD) of only 10 mol m?2 day?1 and the best day/night air temperatures were 25/15°C. Enhancement of the daily net CO2 uptake by doubling the CO2 concentration was greater under the highest PPFD (30 mol m?2 day?1) and extreme day/night air temperatures (15/5 and 45/35°C). After 24 days of drought, daily CO2 uptake under 370 μmol CO2 mol?1 was 25% of that under 740 μmol CO2 mol?1. The ratio of variable to maximal chlorophyll fluorescence (Fy/Fm) decreased as the PPFD was raised above 5 mol m?2 day?1, at extreme day/night temperatures and during drought, suggesting that stress occurred under these conditions. Fv/Fm was higher under the doubled CO2 concentration, indicating that the current CO2 concentration was apparently limiting for photosynthesis. Thus net CO2 uptake by the shade-tolerant H. undatus, the photosynthetic efficiency of which was greatest at low PPFDs. showed a positive response to doubling the CO2 concentration, especially under stressful environmental conditions.  相似文献   

18.
Soil acidification is a very important process in the functioning of earth's ecosystems. A major source of soil acidity is CO2, derived from the respiration of plant roots and microbes, which forms carbonic acid in soil waters. Because elevated atmospheric CO2 often stimulates respiration of soil biota in experiments that test ecosystem effects of elevated atmospheric CO2, we hypothesize that rising atmospheric CO2 (which has increased from ~200 ppm since the interglacial and may exceed 550 ppm by the end of the 21st century) is significantly increasing acid inputs to soils. Here, using column‐leaching experiments with contrasting soils, we demonstrate that soil CO2 is a much more potent agent of soil acidification than is generally appreciated, capable of displacing almost all exchangeable base cations in soils, and even elevating Al(III) concentrations in H2CO3‐acidified soil waters. The potent soil acidifying potential of soil H2CO3 is attributed to the low pKa,1 of molecular H2CO3 (3.76 at 25°C), which contrasts greatly with that of (a convention that combines CO2 (aq) and molecular H2CO3, the pKa,1 of which is 6.36 at 25°C). This distinction is significant for soil systems because of soil's greatly elevated CO2, their variety of sinks for H+, and the wide range of contact times between soil solids, water, and gas. Modelling suggests that a doubling of atmospheric CO2 may increase acid inputs from carbonic acid leaching by up to 50%. Combined with the results of CO2 studies in whole ecosystems, this implies that increases in atmospheric CO2 since the interglacial have gradually acidified soils, especially poorly buffered soils, throughout the world.  相似文献   

19.
It is a matter of debate if there is a direct (short‐term) effect of elevated atmospheric CO2 concentration (Ca) on plant respiration in the dark. When Ca doubles, some authors found no (or only minor) changes in dark respiration, whereas most studies suggest a respiratory inhibition of 15–20%. The present study shows that the measurement artefacts – particularly leaks between leaf chamber gaskets and leaf surface, CO2 memory and leakage effects of gas exchange systems as well as the water vapour (‘water dilution’) effect on DCO2 measurement caused by transpiration – may result in larger errors than generally discussed. A gas exchange system that was used in three different ways – as a closed system in which Ca increased continuously from 200 to 4200 mmol (CO2) mol‐1 (air) due to respiration of the enclosed leaf; as an intermittently closed system that was repeatedly closed and opened during Ca periods of either 350 or 2000 mmol mol‐1, and as an open system in which Ca varied between 350 and 2000 mmol mol‐1– is described. In control experiments (with an empty leaf chamber), the respective system characteristics were evaluated carefully. When all relevant system parameters were taken into account, no effects of short‐term changes in CO2 on dark CO2 efflux of bean and poplar leaves were found, even when Ca increased to 4200 mmol mol‐1. It is concluded that the leaf respiration of bean and poplar is not directly inhibited by elevated atmospheric CO2.  相似文献   

20.
A FACE (Free Air CO2 Enrichment) experiment was carried out on Potato (Solanum tuberosum L., cv. Primura) in 1995 in Italy. Three FACE rings were used to fumigate circular field plots of 8 m diameter while two rings were used as controls at ambient CO2 concentrations. Four CO2 exposure levels were used in the rings (ambient, 460, 560 and 660 μmol mol–1). Phenology and crop development, canopy surface temperature, above- and below-ground biomass were monitored during the growing season. Crop phenology was affected by elevated CO2, as the date of flowering was progressively anticipated in the 660, 560, 460 μmol mol–1 treatments. Crop development was not affected significantly as plant height, leaf area and the number of leaves per plant were the same in the four treatments. Elevated atmospheric CO2 levels had, instead, a significant effect on the accumulation of total nonstructural carbohydrates (TNC = soluble sugars + starch) in the leaves during a sunny day. Specific leaf area was decreased under elevated CO2 with a response that paralleled that of TNC concentrations. This reflected the occurrence of a progressive increase of photosynthetic rates and carbon assimilation in plants exposed to increasingly higher levels of atmospheric CO2. Tuber growth and final tuber yield were also stimulated by rising CO2 levels. When calculated by regression of tuber yield vs. the imposed levels of CO2concentration, yield stimulation was as large as 10% every 100 μmol mol–1 increase, which translated into over 40% enhancement in yield under 660 μmol mol–1. This was related to a higher number of tubers rather than greater mean tuber mass or size. Leaf senescence was accelerated under elevated CO2 and a linear relationship was found between atmospheric CO2 levels and leaf reflectance measured at 0.55 μm wavelength. We conclude that significant CO2 stimulation of yield has to be expected for potato under future climate scenarios, and that crop phenology will be affected as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号