首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Flowering occurrence and allozymic variation were studied in eight local populations of Lemna minor in eastern Ontario, Canada. After 2 years of survey, not a single flower was observed. This absence of flowering suggests the possibility of loss of sexual reproduction. This may have had no net adverse effect on fitness given the simple life history and prolific vegetative propagation in L. minor. However, the absence of sexual reproduction may limit genotypic diversity. The allozymic analysis detected 18 loci from 13 enzyme systems. Large deviations from Hardy-Weinberg equilibrium were common because of an excess of homozygotes for several enzyme systems. The genotypic diversity within these eight populations had a mean D value of 0.973 with an average number of genotypes per population of 19.6. These results suggest that genotypic diversity within these populations is not severely limited by the rarity of sexual reproduction. The mean genotypic distance index (D14 = 0.801) suggests a high degree of differentiation between populations. The mean number of populations per genotype was 1.78. Using a Mantel test, the genotypic distance matrix was not significantly related to the population-to-population distance matrix (t = -0.161, P = 0.413). Although rare events of sexual reproduction may help maintain genetic variation, somatic mutations and multiple origins of clones may be important factors maintaining genetic diversity both within and between populations of L. minor.  相似文献   

2.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

3.
Vitex rotundifolia L.f. is a woody perennial and has sexual and asexual modes of reproduction. Allozyme study was conducted on 550 plants in 13 Korean populations. The levels of genetic variability and divergence within and among populations, respectively, are considerably lower and higher than the mean values for woody plants with similar life history tralts. Mean percentage of polymorphic loci (P P), mean number of alleles per locus (A P), and mean genetic diversity (He P) within populations ofV. rotundifolia were: 16.7%, 1.21, and 0.047. On average, about 79% of the total variation inV. rotundifolia was common to all populations (meanG ST=0.208). In addition, significant differences in allele frequencies among populations were found in all polymorphic loci examined (P<0.001). On the other hand, levels of genotypic diversity within and among populations were moderate. About 44% (18/41) of multilocus genotypes were “local genotypes” (genotypes occurring in only one population), whereas only one “widespread genotype” (genotypes occurring in more than 75% of the populations) were detected. The mean number of multilocus genotypes per population (G) and mean genotypic diversity index (D G) were 8.4 and 0.74, respectively. Most common multilocus genotypes found in populations were homozygous for five polymorphic loci. The abundance of ramets of these genets is responsible for the low levels of expected heterozygosity within populations. The results indicate that clonal reproduction may act as an enhancer of genetic drift by reducing effective size of local populations ofV. rotundifolia.  相似文献   

4.
Genetic and genotypic diversity found within populations of threatened plant species can have important implications for their conservation and management. In this study we describe genetic and genotypic diversity found within 10 populations of the endemic shrub Elliottiaracemosa (Ericaceae), the Georgia plume. E. racemosa is a threatened species known from fewer than 50 locations, all within the state of Georgia, USA. Seedset is limited to nonexistent in some E. racemosa populations and sexual recruitment has not been documented. However, the species is known to spread vegetatively via root-sprouts. Twenty-one allozyme loci were resolved for E. racemosa, nine of which were polymorphic. Compared with other woody taxa, E. racemosa has low genetic (i.e. allelic) diversity within populations (Hep = 0.063) and at the species level (Hes = 0.091). Most of the genetic variation (82%) was found within populations, and genetic identities between populations were high (mean I = 0.96). However, genotypic diversity (i.e. the number of multilocus genotypes) differed markedly among populations. Two of the 10 populations consisted almost entirely of single multilocus genotypes, whereas more than 20 multilocus genotypes (in samples of 48 stems) were detected at three sites. Sites in which few multilocus genotypes were detected have low seedset, suggesting that the lack of clonal diversity limits reproduction in some populations of this reportedly self-incompatible species.  相似文献   

5.
Most plants combine sexual reproduction with asexual clonal reproduction in varying degrees, yet the genetic consequences of reproductive variation remain poorly understood. The aquatic plant Butomus umbellatus exhibits striking reproductive variation related to ploidy. Diploids produce abundant viable seed whereas triploids are sexually sterile. Diploids also produce hundreds of tiny clonal bulbils, whereas triploids exhibit only limited clonal multiplication through rhizome fragmentation. We investigated whether this marked difference in reproductive strategy influences the diversity of genotypes within populations and their movement between populations by performing two large-scale population surveys (n = 58 populations) and assaying genotypic variation using random amplified polymorphic DNA (RAPDs). Contrary to expectations, sexually fertile populations did not exhibit higher genotypic diversity than sterile populations. For each cytotype, we detected one very common and widespread genotype. This would only occur with a very low probability (< 10-7) under regular sexual recombination. Compatibility analysis also indicated that the pattern of genotypic variation largely conformed to that expected with predominant clonal reproduction. The potential for recombination in diploids is not realized, possibly because seeds are outcompeted by bulbils for safe sites during establishment. We also failed to find evidence for more extensive movement of fertile than sterile genotypes. Aside from the few widespread genotypes, most were restricted to single populations. Genotypes in fertile populations were very strongly differentiated from those in sterile populations, suggesting that new triploids have not arisen during the colonization of North America. The colonization of North America involves two distinct forms of B. umbellatus that, despite striking reproductive differences, exhibit largely clonal population genetic structures.  相似文献   

6.
Studies on clonal plants indicate that the proportion between clonal and sexual reproduction can be variable, depending on local habitat conditions and the biological characteristics of the species. In the present study, we assessed this question in Trifolium alpestre by assaying genetic diversity and spatial genotypic structure of natural populations with the use of allozyme markers. Populations revealed high genetic diversity as well as strong spatial structure of multilocus genotypes. The values of genetic diversity were moderately high. Spatially aggregated, identical genotypes spread up to 15 m along linear transects and across 4‐m2 plots indicate extensive clonal propagation within populations. However, the existence of numerous unique and small‐sized clones reflects significant contribution from sexual reproduction. Spatially and temporarily stochastic soil disturbances have evidently opened new opportunities for the successful sexual recruitment from the permanent soil seed bank and thus counteracted losses of genetic and genotypic diversity. Seed production in all populations during the three study years was low, in average up to 1.5–2.4 seeds per shoot. The almost total lack of seed set for 57 bagged flower heads on genotypes grown in a common garden indicates that T. alpestre needs pollinators for seed production.  相似文献   

7.
Long-distance colonization and rapid range expansion associated with biological invasion may have major evolutionary consequences via both stochastic processes and selection. Using large-scale population genetic surveys, we demonstrate a major shift in the relative frequency of sexually fertile diploid versus sexually sterile triploid populations associated with the invasion of North America by a clonal aquatic plant, Butomus umbellatus. Most populations across the native European range were triploid (84% of 108), whereas most introduced populations were diploid (71% of 136). We evaluated the roles of stochastic processes versus natural selection in causing this shift by surveying predominantly neutral genetic variation at 28 RAPD loci. In Europe (EU) we detected 47 distinct genotypes among 142 plants sampled from 71 populations, whereas in North America (NA) we detected only six genotypes among 138 plants from 69 populations. Of the six NA genotypes, a set of four closely related genotypes were found only in triploid populations and a pair of closely related genotypes were found only in diploid populations, and these were genetically divergent from the triploid genotypes. This result is consistent with severe founder effect. Because sex creates genotypic variation and produces offspring with greater dispersal potential than those produced clonally, we tested the hypothesis that sexual reproduction characteristic of diploids has given them a colonization advantage that accounts for their high frequency in NA. However, we found little or no evidence of sexual recruitment in introduced diploids. One very widespread heterozygous genotype occurred in 95% of 38 introduced diploid populations (i.e., 72 of 76 plants surveyed) suggesting predominant clonal reproduction. Moreover genotypic diversity was not higher within or among diploid than triploid populations in either the native or introduced range. Low genetic diversity in diploid populations was also supported by a comparison of within-population quantitative variation for plant size under a common greenhouse environment. Thus, diploids have not been favored during colonization owing to their sexual fertility. However, concurrent studies have shown that NA diploids exhibit a much higher capacity for clonal reproduction, via small vegetative bulbils, than NA triploids, which almost never produce bulbils. The same difference in clonal capacity is not a consistent feature of the native EU populations. Taken together, these results suggest that strong founder effect has set the stage for a major increase in diploid frequency due to the particular, and possibly idiosyncratic, features of the diploid and triploid lineages introduced to North America.  相似文献   

8.
Many plants combine sexual reproduction with some form of asexual reproduction to different degrees, and lower genetic diversity is expected with asexuality. Moreover, the ratios of sexual morphs in species with gender dimorphism are expected to vary in proportion to the reproductive success of the sexual process. Hence, sex ratios can directly influence the genetic structure and diversity of a population. We investigated genotypic diversity in 23 populations of a facultative, apomictic gynodioecious orchid, Satyrium ciliatum, to examine the effect on genotypic diversity of variation in the frequency of females and in the amount of sexual reproduction. The study involved one pure female, seven gynodioecious (both females and hermaphrodites present) and 15 hermaphroditic populations. Pollinia receipt was higher in hermaphroditic than in gynodioecious populations. Analyses of variation in ISSRs demonstrated that genotypic diversity was high in all populations and was not significantly different between hermaphroditic and gynodioecious populations. We used character compatibility analysis to determine the extent to which recombination by sexual reproduction contributed to genotypic diversity. The results indicate that the contribution of recombination to genotypic diversity is higher in hermaphroditic than in gynodioecious populations, consistent with the finding that hermaphroditic populations received higher amounts of pollinia. Our finding of reduced recombination in gynodioecious populations suggests that maintenance of sex in hermaphrodites plays an important role in generating genotypic diversity in this apomictic orchid.  相似文献   

9.
Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (Go) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective population sizes should promote inbreeding in clonal species, inbreeding does not appear to contribute significantly to the population structure of A. rudyi. Genet genotype frequencies conformed to Hardy-Weinberg expectations in all populations, and inbreeding coefficients (f) were close to zero. In general, the population structure of A. rudyi did not differ significantly from that observed among outcrossing sexual species with philopatric larval dispersal. Age estimates suggest, however, that genets of A. rudyi live for many decades. Genet longevity may promote high genotypic diversity within A. rudyi populations and may be the most important evolutionary consequence of clonal reproduction in this species and the many others that share its dispersal characteristics.  相似文献   

10.
Most perennial plants combine sexual reproduction with some form of clonal propagation. These mixed strategies may produce considerable variation among populations in levels of clonal diversity in response to ecological factors limiting one or other reproductive mode. Surveys of style morph frequencies in 163 populations of the eastern North American, clonal, tristylous aquatic, Decodon verticillatus (L.) Ell. (Lythraceae) suggested a wide range of clonal diversity among populations. Populations consisting of a single style morph were most common at the northern margin of the species' range and could have arisen through severe founder events followed by exclusive clonal propagation. Here, we test this hypothesis by comparing allozyme variation in populations monomorphic and polymorphic for style length located in Ontario and Michigan. Each of the four populations monomorphic for style length were fixed for a single three-locus allozyme genotype while the seven trimorphic and five dimorphic populations contained an average of 26 multilocus genotypes each. Measures of genotypic diversity were high in polymorphic populations (average D = 0.93 ± 0.02 standard error; D = 0.00 for all populations monomorphic for style length). Three of the populations monomorphic for style length were fixed for a heterozygous genotype at one of the loci surveyed, suggesting that each consists of a single clone. In contrast, genotype frequencies in polymorphic populations conformed to Hardy-Weinberg proportions indicative of sexual reproduction. The range of clonal diversity found in D. verticillatus is the largest reported for a clonal plant species, although the literature is too limited to determine whether this is truly unusual. Clonal diversity in D. verticillatus is likely to be regulated largely by ecological factors affecting seed production and establishment. However, genetically based sexual sterility also occurs in some populations.  相似文献   

11.
Cyclical parthenogenesis allows study of the genetic and evolutionary characteristics of groups exhibiting both asexual and sexual reproduction. The cladoceran genus Daphnia contains species which vary with respect to the relative incidence of sexual reproduction; pond species tend to undergo sexual reproduction more regularly than species found in large lakes. Previous genetic studies have focused on pond populations, generating expectations about large-lake populations that have not been fully met by recent studies. The present study of the Palearctic species Daphnia galeata further examines the genetic structure of large-lake populations. Nine local populations, from lakes in northern Germany, are examined for genetic variation at seven enzyme loci. Populations exhibit similar allelic arrays and often similar allele frequencies at the five polymorphic loci; values of Nei's genetic distance (D) ranged from 0.002 to 0.239, with a mean of 0.084. FST values range from 0.012 to 0.257, and spatial autocorrelation coefficients range from -0.533 to 0.551, for the eight alleles analyzed. With few exceptions, within-population genotypic frequencies were in Hardy-Weinberg equilibrium. There was, however, significant heterogeneity in genotypic frequencies among populations. The number of coexisting clonal groups, as determined by three locus genotypes, is high within populations. Clonal groups are widely distributed among localities. The amount of genetic divergence observed among these large-lake populations is smaller than that previously observed among pond populations and suggests that different processes may be important in determining the genetic structure and subsequent phenotypic divergence of lake versus pond populations.  相似文献   

12.
Abstract Genetic diversity of Korean populations in Hosta clausa was investigated using starch gel electrophoresis. Hosta clausa is widespread, grows only along streamsides, and has both sexual and asexual reproduction. Populations of the species are small and isolated. Thirty-two percent of the loci examined were polymorphic, and mean genetic diversity within populations (Hep=0.082) was lower than mean estimates for species with very similar life history characteristics (0.131), particularly for its congener H. yingeri (0.250). The mean number of multilocus genotypes per population was 8.7, and genotypic diversity index (DG) was 0.84. Significant differences in allele frequencies among populations were found in all seven polymorphic loci (P < 0.001). About one-fifth of the total allozyme variation was among populations (GST=0.192). Indirect estimate of the number of migrants per generation (Nm=0.48, calculated from mean GST) and nine private alleles found indicate that gene movement among populations was low. The low levels of genetic diversity within populations and the relatively high levels of genetic diversity among populations suggest that strong moist habitat preferences, clonal reproduction, low level of gene flow among populations, genetic drift, and historical events may have played roles in the genetic structuring of the species.  相似文献   

13.
This study surveys genetic variation in two clonal, monoecious, water-pollinated species that differ in their extent of sexuality and distributional range. Electrophoresis was used to quantify allozyme variability in 12 Wisconsin populations of the widespread Ceratophyllum demersum and the rare C. echinatum. Electrophoretic data indicate that populations of both species have low levels of sexual recombination, low levels of variation, and are structured genetically like inbreeding terrestrial plants. Ceratophyllum populations differ from “typical” clonal terrestrial plants by lower genetic diversity, lower proportions of multiclonal populations, and fewer genotypes per population. In two populations where sexual recombination is documented, heterozygosity is low with significant deficiencies. Monoecy in Ceratophyllum may be related to historical evolutionary factors, whereas vegetative reproduction has a greater influence on the genetic population structure of extant populations. The low genetic identity between C. demersum and C. echinatum supports their recognition as distinct species.  相似文献   

14.
Reproductive systems are recognized as having a profound influence on the extent and structure of genetic variation in plant populations. To investigate the spatiotemporal variation in the reproductive modes (sexual and vegetative reproduction) and population genetic structures of a monocarpic perennial herb, Cardiocrinum cordatum (liliaceae), we selected a variety of habitats (e.g. large forested area including primeval forest, small fragmented secondary forest, and so on) around Sapporo City, Japan. We conducted breeding experiments, monitored the fate and growth of marked individuals for 3 years, and also analyzed the spatiotemporal genetic variation of flowering plants within the populations using allozyme variation. Plants emasculated prior to anthesis produced mature fruits in all populations examined. However, seed production was significantly lower in the small fragmented populations, possibly because of the low availability of pollinators and subsequent pollen limitation. In these fragmented populations, the mature flowering plants tended to be more dependent on vegetative reproduction for their recruitment, because they can only produce flowers once in their lifetime. Genetic diversity using samples from mature flowering plants in each population was lower in the small fragmented populations than in the large populations. In addition, although genotypic compositions in the fragmented populations were more or less similar during the 3 years of the study, the dominant genotypes changed temporally and spatially every year in the large populations. The present study demonstrated that the reproductive features of C. cordatum can be altered in various environmental conditions, such as habitat fragmentation, and these changes considerably affected the population genetic structures and vice versa.  相似文献   

15.
In this study morphological variation and the potential for competition to affect biomass and seedling selection of the families of five populations of Rumex acetosella L. sampled along a successional old-field gradient have been investigated. Seeds from 25 families were submitted to four competitive regimes: no competition (one plant per pot), medium competition (two plants/ pot taking plants from the same population), high within-population competition (four individuals from the same population in a pot) and high between-population competition (four individuals from two different populations in a pot). Eight traits were analysed after 3 months of growth for variation among families within populations. A significant difference among families within the two older populations was recorded for sexual biomass and related components. High sensitivity of these traits to density was observed in all populations except the youngest, suggesting specialization to particular environmental conditions in late successional populations, and a good adaptive capacity to buffer environmental variation in the pioneer population. Little significant interaction between competitive regimes and families within populations was found, i.e. genotypes within each population showed little variation in their response to environmental variation. Genotypic variance decreased with increasing competitive conditions for the majority of the traits. However, the percentage of variance in sexual reproduction explained by family was stable among treatments. Tradeoffs between vegetative reproduction and sexual reproduction were recorded at the population level along the successional gradient, with increasing competitive conditions. As succession proceeds, we observed a decrease in sexual reproduction and an increase in vegetative reproduction. At the family level, correlation among traits were similar when plants were grown in the absence of competition and at high density, with a significant negative correlation between sexual reproduction and vegetative reproduction. For both sprout number and sexual biomass, the performance of families grown under all the treatments was positively correlated. Together these results indicate allocational constraints on the reproductive biology of R. acetosella that may be favoured by natural selection and have influenced population differentiation along the successional gradient. However, they also revealed that the potential exists for evolutionary specialization through plasticity, in response to variation in environmental conditions.  相似文献   

16.
Pueraria lobata (kudzu), a clonal, leguminous vine, is invading the southeastern United States at a rate of 50 000 ha per year. Genetic variability and clonal diversity were measured in 20 southeastern U.S. populations using 14 allozyme loci. Within its U.S. range, 92.9% of the loci were polymorphic and overall genetic diversity was 0.290. Such high levels of genetic diversity are consistent with its history of multiple introductions over an extended period of time. The average proportions of polymorphic loci and genetic diversity within populations were 55.7% (range = 28.6–85.7%) and 0.213 (range = 0.114–0.317), respectively. The proportion of total genetic diversity found among populations was similar to species with equivalent life history characters (GST = 0.199). No regional patterns of variation were seen. The number of putative genotypes in each population ranged from 2 to 26. Mean genotypic diversity was 0.694, ranging from 0.223 to 0.955. Such high levels of genotypic diversity indicate that local sites are often colonized by several propagules (most likely seeds) and/or that sexual reproduction occurs within populations after establishment. An excess of heterozygosity was observed in populations with few unique genets, implying that selection for highly heterozygous individuals may occur in populations of P. lobata.  相似文献   

17.
Rust fungi are obligate parasites, of plants, with complex and in many cases poorly known life cycles which may include host alteration and up to five spore types with haploid, diploid, and dikaryotic nuclear stages. This study supports that Thekopasora areolata, the causal agent of cherry‐spruce rust in Norway spruce, is a macrocyclic heteroecious fungus with all five spore stages which uses two host plants Prunus padus and Picea abies to complete its life cycle. High genotypic diversity without population structure was found, which suggests predominantly sexual reproduction, random mating and a high gene flow within and between the populations in Fennoscandia. There was no evidence for an autoecious life cycle resulting from aeciospore infection of pistillate cones that would explain the previously reported rust epidemics without the alternate host. However, within cones and scales identical multilocus genotypes were repeatedly sampled which can be explained by vegetative growth of the fertilized mycelia or repeated mating of mycelium by spermatia of the same genotype. The high genotypic diversity within cones and haplotype inference show that each pistillate cone is infected by several basidiospores. This study provides genetic evidence for high gene flow, sexual reproduction, and multiple infections of Norway spruce cone by the rust fungus T. areolata which expands the general understanding of the biology of rust fungi.  相似文献   

18.
 In 17 populations of the tetraploid agamospecies R. variabilis, 10 enzyme systems have been studied by horizontal starch gel electrophoresis, and compared to previous data of 3 populations of the diploid sexual species R. notabilis. Allozymic and genotypic diversity of 12 polymorphic loci, and multilocus genotype diversity in R. variabilis compares to other apomictic taxa, confirming the assumed apomictic mode of reproduction previously found in 3 populations. A cluster analysis based on genetic distance values separated the two taxa, the populations of southeastern Austria sympatric with R. notabilis showing no closer relationships to the sexual species than the allopatric ones. The R. variabilis populations of the circumalpine regions are separated as a rather uniform group, those of the Bohemian massif as another, more heterogeneous group. This geographic differentiation is mainly due to genotypic variation, which is higher in the Bohemian massif than in the circumalpine group, and lower in areas where R. variabilis is sympatric with R. notabilis. Proportion of multilocus genotypes within populations (G/N), genotype diversity (D), and genotype evenness (E) measures indicate facultative recombination events with fixation and clonal reproduction of new recombined genotypes, which is regarded as the most important factor for the evolution of new lineages in goldilocks. Morphometric data of the R. variabilis and R. notabilis populations studied by cluster and principal coordinate analyses clearly separated the two taxa, and indicated a slight geographic differentiation with in R. variabilis corresponding to the results of isozyme data. A principal coordinate analysis of R. variabilis individuals based on stem and fruit characters showed a clinal variation, but no clear separation of groups. The variation found in this PCoA is almost completely covered from the most widespread clone (genotype I), and also from individual genotypes. The implications of the results on different species concepts for apomicts are discussed. For R. variabilis, no taxonomic conclusions can be drawn from the present data set. Received December 15, 1999 Accepted November 15, 2000  相似文献   

19.
Resilience is the ability of an ecosystem to recover from disturbance without loss of essential function. Seagrass ecosystems are key marine and estuarine habitats that are under threat from a variety of natural and anthropogenic disturbances. The ability of these ecosystems to recovery from disturbance will to a large extent depend on the internsity and scale of the disturbance, and the relative importance of sexual versus asexual reproduction within populations. Here, we investigated the resilience of Zostera muelleri seagrass (Syn. Zostera capricorni) to small‐scale disturbances at four locations in Lake Macquarie – Australia's largest coastal lake – and monitored recovery over a 65‐week period. Resilience of Z. muelleri varied significantly with disturbance intensity; Z. muelleri recovered rapidly (within 2 weeks) from low‐intensity disturbance (shoot loss), and rates of recovery appeared related to initial shoot length. Recovery via rhizome encroachment (asexual regeneration) from high‐intensity disturbance (loss of entire plant) varied among locations, ranging from 18‐35 weeks, whereas the ability to recover was apparently lost (at least within the time frame of this study) when recovery depended on sexual regeneration, suggesting that seeds do not provide a mechanism of recovery against intense small‐scale disturbances. The lack of sexual recruits into disturbed sites is surprising as our initial surveys of genotypic diversity (using nine polymorphic microsatellite loci) at these location indicate that populations are maintained by a mix of sexual and asexual reproduction (genotypic diversity [R] varied from 0.24 to 0.44), and populations consisted of a mosaic of genotypes with on average 3.6 unique multilocus genotypes per 300 mm diameter plot. We therefore conclude that Z. muelleri populations within Lake Macquarie rely on clonal growth to recover from small‐scale disturbances and that ongoing sexual recruitment by seeds into established seagrass beds (as opposed to bare areas arising from disturbance) must be the mechanism responsible for maintaining the observed mixed genetic composition of Z. muelleri seagrass meadows.  相似文献   

20.
Microsatellite variation was determined for three Danish and three Dutch populations of the haploid moss species Polytrichum formosum to gain insight into the relative importance of sexual vs. asexual reproduction for the amount and structure of genetic variation. In general, low levels of microsatellite variation were observed within this species. Even when estimated for polymorphic loci only, the levels of microsatellite variability (P=90.6, A=4.3 and HS=0.468) within populations were on average lower than those reported for most other plant species. In contrast, genotypic diversity was high within each of the examined populations, indicating that sexual reproduction is a very important determinant of the genetic structure of P. formosum within populations. In agreement with previous findings for allozyme data, no significant genetic differentiation (FST=0.028, RST=0.015) was observed neither between populations nor between regions approximately 450 km apart (Denmark vs. the Netherlands). These low levels of population differentiation observed for both types of genetic markers are probably best explained by a high level of effective spore dispersal (gene flow) between populations. Therefore, also on a large geographical scale sexual reproduction is the most important determinant of the genetic structure of P. formosum, despite the high potential to reproduce clonally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号