首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Malignant rhabdoid tumors are highly aggressive neoplasms found primarily in infants and young children. The majority of rhabdoid tumors arise as a result of homozygous inactivating deletions or mutations of the INI1 gene located in chromosome band 22q11.2. Germline mutations of INI1 predispose to the development of rhabdoid tumors of the brain, kidney and extra-renal tissues, consistent with its function as a tumor suppressor gene. We now describe five patients with germline deletions in chromosome band 22q11.2 that included the INI1 gene locus, leading to the development of rhabdoid tumors. Two patients had phenotypic findings that were suggestive but not diagnostic for DiGeorge/Velocardiofacial syndrome (DGS/VCFS). The other three infants had highly aggressive disease with multiple tumors at the time of presentation. The extent of the deletions was determined by fluorescence in situ hybridization and high-density oligonucleotide based single nucleotide polymorphism arrays. The deletions in the two patients with features of DGS/VCFS were distal to the region typically deleted in patients with this genetic disorder. The three infants with multiple primary tumors had smaller but overlapping deletions, primarily involving INI1. The data suggest that the mechanisms underlying the deletions in these patients may be similar to those that lead to DGS/VCFS, as they also appear to be mediated by related, low copy repeats (LCRs) in 22q11.2. These are the first reported cases in which an association has been established between recurrent, interstitial deletions mediated by LCRs in 22q11.2 and a predisposition to cancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  相似文献   

5.
DiGeorge syndrome (DGS), a developmental field defect of the third and fourth pharyngeal pouches, is characterized by aplasia or hypoplasia of the thymus and parathyroid glands and by conotruncal cardiac malformations. Cytogenetic studies support the presence of a DGS critical region in band 22q11. In the present study, we report the results of clinical, cytogenetic, and molecular studies of 14 patients with DGS. Chromosome analysis, utilizing high-resolution banding techniques, detected interstitial deletions in five probands and was inconclusive for a deletion in three probands. The remaining six patients had normal karyotypes. In contrast, molecular analysis detected DNA deletions in all 14 probands. Two of 10 loci tested, D22S75 and D22S259, are deleted in all 14 patients. A third locus, D22S66, is deleted in the eight DGS probands tested. Physical mapping using somatic cell hybrids places D22S66 between D22S75 and D22S259, suggesting that it should be deleted in the remaining six cases. Parent-of-origin studies were performed in five families. Four probands failed to inherit a maternal allele, and one failed to inherit a paternal allele. On the basis of these families, and of six maternally and five paternally derived unbalanced-translocation DGS probands in the literature, parent of origin or imprinting does not appear to play an important role in the pathogenesis of DGS. Deletion of the same three loci in all 14 DGS probands begins to delineate the region of chromosome 22 critical for DGS and confirms the hypothesis that submicroscopic deletions of 22q11 are etiologic in the vast majority of cases.  相似文献   

6.
Funke B  Pandita RK  Morrow BE 《Genomics》2001,73(3):264-271
Three congenital disorders, cat-eye syndrome (CES), der(22) syndrome, and velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), result from tetrasomy, trisomy, and monosomy, respectively, of part of 22q11. They share a 1.5-Mb region of overlap, which contains 24 known genes. Although the region has been sequenced and extensively analyzed, it is expected to contain additional genes, which have thus far escaped identification. To understand completely the molecular etiology of VCFS/DGS, der(22) syndrome, and CES, it is essential to isolate all genes in the interval. We have identified and characterized a novel human gene, located within the 1.5-Mb region deleted in VCFS/DGS, trisomic in der(22) syndrome and tetrasomic in CES. The deduced amino acid sequence of the human gene and its mouse homologue contain several WD40 repeats, but lack homology to known proteins. We termed this gene WDR14 (WD40 repeat-containing gene deleted in VCFS). It is expressed in a variety of human and mouse adult and fetal tissues with substantial expression levels in the adult thymus, an organ hypoplastic in VCFS/DGS.  相似文献   

7.
Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent ~3 Mb deletion or a smaller, less common, ~1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking low-copy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the ~3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a ~1.4 Mb or ~2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.  相似文献   

8.
Chen YF  Kou PL  Tsai SJ  Chen KF  Chan HH  Chen CM  Sun HS 《Genomics》2006,87(2):290-297
The low-copy repeat (LCR) is a new class of repetitive DNA element and has been implicated in many human disorders, including DiGeorge/velocardiofacial syndrome (DGS/VCFS). It is now recognized that nonallelic homologous recombination (NAHR) through LCRs flanking the chromosome 22q11.2 region leads to genome rearrangements and results in the DGS/VCFS. To refine the structure and content of chromosome 22q11.2 LCRs, we applied computational analysis to dissect region-specific LCRs using publicly available sequences. Nine distinct duplicons between 1.6 and 65 kb long and sharing >95% sequence identity were identified. The presence of these sequence motifs supports the NAHR mechanism. Further sequence analysis suggested that the previously defined 3-Mb deletion may actually comprise two deletion intervals of similar size close to each other and thus indistinguishable when using fluorescence in situ hybridization (FISH) analysis. The differentially deleted regions contain several hypothetical proteins and UniGene clusters and may partially explain the clinical heterogeneity observed in DGS/VCFS patients with the 3-Mb common deletion. To implement further sequence information in molecular medicine, we designed a real-time quantitative PCR assay and validated the method in 122 patients with suspected DGS/VCFS. The assay detected 28 patients with chromosome 22q11.2 deletion later confirmed using FISH. Our results indicated that the developed assay is reliable as well as time and cost effective for clinical diagnosis of chromosome 22q11.2 deletion. They also suggest that this methodology can be applied to develop a molecular approach for clinical detection and diagnosis of other genomic disorders.  相似文献   

9.
Velo-cardio-facial syndrome (VCFS) is a common genetic disorder among individuals with cleft palate and is associated with hemizygous deletions in human chromosome 22q11. Toward the molecular definition of the deletions, we constructed a physical map of 22q11 in the form of overlapping YACs. The physical map covers >9 cM of genetic distance, estimated to span 5 Mb of DNA, and contains a total of 64 markers. Eleven highly polymorphic short tandem-repeat polymorphic (STRP) markers were placed on the physical map, and 10 of these were unambiguously ordered. The 11 polymorphic markers were used to type the DNA from a total of 61 VCFS patients and 49 unaffected relatives. Comparison of levels of heterozygosity of these markers in VCFS patients and their unaffected relatives revealed that four of these markers are commonly hemizygous among VCFS patients. To confirm these results and to define further the breakpoints in VCFS patients, 15 VCFS individuals and their unaffected parents were genotyped for the 11 STRP markers. Haplotypes generated from this study revealed that 82% of the patients have deletions that can be defined by the STRP markers. The results revealed that all patients who have a deletion share a common proximal breakpoint, while there are two distinct distal breakpoints. Markers D22S941 and D22S944 appear to be consistently hemizygous in patients with deletions. Both of these markers are located on a single nonchimeric YAC that is 400 kb long. The results also show that the parental origin of the deleted chromosome does not have any effect on the phenotypic manifestation  相似文献   

10.
Genomic disorders on 22q11   总被引:12,自引:0,他引:12       下载免费PDF全文
The 22q11 region is involved in chromosomal rearrangements that lead to altered gene dosage, resulting in genomic disorders that are characterized by mental retardation and/or congenital malformations. Three such disorders-cat-eye syndrome (CES), der(22) syndrome, and velocardiofacial syndrome/DiGeorge syndrome (VCFS/DGS)-are associated with four, three, and one dose, respectively, of parts of 22q11. The critical region for CES lies centromeric to the deletion region of VCFS/DGS, although, in some cases, the extra material in CES extends across the VCFS/DGS region. The der(22) syndrome region overlaps both the CES region and the VCFS/DGS region. Molecular approaches have revealed a set of common chromosome breakpoints that are shared between the three disorders, implicating specific mechanisms that cause these rearrangements. Most VCFS/DGS and CES rearrangements are likely to occur by homologous recombination events between blocks of low-copy repeats (e.g., LCR22), whereas nonhomologous recombination mechanisms lead to the constitutional t(11;22) translocation. Meiotic nondisjunction events in carriers of the t(11;22) translocation can then lead to offspring with der(22) syndrome. The molecular basis of the clinical phenotype of these genomic disorders has also begun to be addressed. Analysis of both the genomic sequence for the 22q11 interval and the orthologous regions in the mouse has identified >24 genes that are shared between VCFS/DGS and der(22) syndrome and has identified 14 putative genes that are shared between CES and der(22) syndrome. The ability to manipulate the mouse genome aids in the identification of candidate genes in these three syndromes. Research on genomic disorders on 22q11 will continue to expand our knowledge of the mechanisms of chromosomal rearrangements and the molecular basis of their phenotypic consequences.  相似文献   

11.
12.
13.
14.
15.
22q11 deletions in isolated and syndromic patients with tetralogy of Fallot   总被引:9,自引:0,他引:9  
Tetralogy of Fallot (TF) is a congenital conotruncal heart defect commonly found in DiGeorge (DGS) and velo-cardio-facial (VCFS) syndromes. The deletion of chromosome 22q11 (de122q11) is a well established cause of DGS and VCFS, and it has been demonstrated also in sporadic or familial cases of TF. In order to investigate the prevalence of de122q11 in patients with TF, we analyzed the DNA of 137 consecutive patients with syndromic and isolated TF, using the HD7k probe, which detects hemizygosity for the D22S134 locus. De122q11 has been detected in 11/26 (42%) syndromic patients. Evidence for hemizygosity was obtained in all patients with DGS and in 8/15 patients with VCFS. None of the 107 patients with isolated TF had de122q11. Our experience suggests that children with TF and de122q11 always present major or minor extracardiac anomalies. These features, including subtle facial dysmorphisms, should be checked routinely in patients with TF and other conotruncal heart defects.  相似文献   

16.
Molecular genetics is contributing to the understanding of normal and abnormal cardiovascular development and morphogenesis. Deletions of chromosome 22q11.2 have been associated with distinct phenotypes that result from a failure to form derivatives of third and fourth branchial arches, including DiGeorge syndrome (DGS) and velo-cardio-facial syndrome (VCFS). The biochemical mechanisms underlying these phenotypes remain undetermined. A recent study provides new insight into the mechanism by which gene deletions produce the DGS and VCFS phenotypes.  相似文献   

17.
Molecular studies have shown microdeletions in region q11 of chromosome 22 in nearly all patients with DiGeorge, velocardiofacial and conotruncal anomaly face syndromes (DGS, VCFS and CTAFS, respectively) and in a high percentage of non-syndromic familial cases of conotruncal defects (CTD). CTD account for roughly a fourth to a third of all non-syndromic congenital heart defects (CHD), thus, 22q11 could harbor a major genetic factor of CHD. We searched for a 22q11 microdeletion in familial cases of non-syndromic CTD. Thirty-six cases of various isolated CTD, that is without history of hypocalcemia, immune deficiency, absent thymus, and dysmorphic appearance, were selected. With 48178, a cosmid probe localized in the smallest deleted region of the DiGeorge critical region (DGCR), we found no deletions by fluorescence in situ hybridization in these 36 affected individuals of 16 families with recurrent CTD. Moreover, D22S264, a microsatellilte localized at the distal part of the largest deleted region, was used to genotype the patients. Thirty-two patients out of 37 were heterozygous and hence not deleted at this locus, whereas 5 were uninformative. In conclusion, there are no large deletions in familial cases of various CTD, whether these defects are identical or not within a family. This result does not rule out other minor anomalies in this chromosomal region.  相似文献   

18.
19.
The presence of highly homologous sequences, known as low copy repeats, predisposes for unequal recombination within the 22q11 region. This can lead to genomic imbalances associated with several known genetic disorders. We report here a developmentally delayed patient carrying different rearrangements on both chromosome 22 homologues, including a previously unreported rearrangement within the 22q11 region. One homologue carries a deletion of the proximal part of chromosome band 22q11. To our knowledge, a ‘pure’ deletion of this region has not been described previously. Four copies of this 22q11 region, however, are associated with Cat eye syndrome (CES). While the phenotypic impact of this deletion is unclear, familial investigation revealed five normal relatives carrying this deletion, suggesting that haplo-insufficiency of the CES region has little clinical relevance. The other chromosome 22 homologue carries a duplication of the Velocardiofacial/DiGeorge syndrome (VCFS/DGS) region. In addition, a previously undescribed deletion of 22q12.1, located in a relatively gene-poor region, was identified. As the clinical features of patients suffering from a duplication of the VCFS/DGS region have proven to be extremely variable, it is impossible to postulate as to the contribution of the 22q12.1 deletion to the phenotype of the patient. Additional patients with a deletion within this region are needed to establish the consequences of this copy number alteration. This study highlights the value of using different genomic approaches to unravel chromosomal alterations in order to study their phenotypic impact.  相似文献   

20.
Velo-cardio-facial syndrome (VCFS)/DiGeorge syndrome (DGS) is a human disorder characterized by a number of phenotypic features including cardiovascular defects. Most VCFS/DGS patients are hemizygous for a 1.5-3.0 Mb region of 22q11. To investigate the etiology of this disorder, we used a cre-loxP strategy to generate mice that are hemizygous for a 1.5 Mb deletion corresponding to that on 22q11. These mice exhibit significant perinatal lethality and have conotruncal and parathyroid defects. The conotruncal defects can be partially rescued by a human BAC containing the TBX1 gene. Mice heterozygous for a null mutation in Tbx1 develop conotruncal defects. These results together with the expression patterns of Tbx1 suggest a major role for this gene in the molecular etiology of VCFS/DGS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号