首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phytoplankton productivity and chlorphyll-a concentration of Oguta Lake, the largest natural lake in south-eastern Nigeria, are presented (Dec. 1983. Nov. 1984). The gross productivity ranged from 1.3 to 3.77 g C.m–2.day–1 for the water column, dropped during the period of heavy rainfall and varied with depth. The chlorophyll-a concentration had monthly means ranging from 2.31 to 4.00 mg.m–3, with a drop during the rains, but little depth variation. Both productivity and chlorophyll-a showed non-significant correlation with the physico-chemical features of the water. The values of the biological parameters showed the lake as mesotrophic. The values are compared with those of other African lakes.  相似文献   

2.
Ministik Lake (longitude 113°01; latitude 53°21), a well-mixed, shallow (mean depth 1.83 m), eutrophic lake is characterized by eutrophic chlorococcalean and cyanophycean phytoplankton associations, and little change in standing crop size with increasing depth. Standing crops and primary productivity are low during the winter but pronounced spring and late summer/early autumn maxima occur. Mean yearly areal standing crop (B) and primary productivity (A) were 199.2 mg m–2 chlorophyll a and 319.5 mg C hr–1 m–2 respectively. Annual productivity was estimated at 1399,6 g C m–2yr–1. The mean increase in the extinction coefficient () per unit increase in standing crop (B) was 0.03 In units m–1. High non-algal light attenuation (q) occurred averaging 46% which prevented the ratio B from attaining more than 74.2% of the theoretical maximum except once when selfshading occurred. Insignificant relationships existed between B (mg m–3 chlorophyll a) and Amax (mg C hr–1 m–3), A and B and A and B. Close correlations existed between A and Amax/ and A and I0 (W m–2). The depth of the euphotic zone (Zeu) varied between 0.6 and 2.0 m; the average relationship between zeu and was zeu = 3.78/te, and the mean standing crop in the euphotic zone represented 58.3% of the theoritical maximum. The high q values made the model of Talling (1957) inapplicable to this lake. The Q10 value for the lake was 1.20. max (mg C chlorophyll a –1 hr–1) was closely related to both temperature and irradiance, and depressed by high pH values.Growth of the cyanophycean algae was correlated with temperature, chlorophycean algae with phosphate-phosphorus and temperature and the diatoms with dissolved silica and phosphate-phosphorus, but only in the case of Chaetoceros elmorii did any nutrient appear limiting. Indirect evidence that free CO2 limited photosynthetic rates is provided by the max:pH relationship.  相似文献   

3.
Wen  Zhao  Shuang-Lin  Dong 《Hydrobiologia》2003,492(1-3):181-190
Primary productivity, biomass and chlorophyll-a of size fractionated phytoplankton (<0.22 m, <3 m, <8 m, <10 m, <40 m, <64 m, <112 m and <200 m) were estimated in 6 ponds and 5 experimental enclosures. The results showed that the planktonic algae less than 10 m are important in the biomass and production of phytoplankton in saline–alkaline ponds. The production of size fractionated phytoplankton corresponding to <112 m, <10 m and <3 m in saline–alkaline ponds were 10.5 ± 6.6 , 8.6 ± 5.4 and 0.33 ± 0.1 mgC l–1 d–1, respectively. Mean community respiration rate was 1.80 ± 0.73, 1.69 ± 0.90 and 1.38 ± 1.12 mgC l–1 d–1, respectively. The average production of phytoplankton corresponding to micro- (10–112 m), nano- (3–10 m) and pico- (<3 m) were 1.61, 8.30 and 0.33 mgC l–1 d–1, respectively. The ratio of those to the total phytoplankton production was 15%, 79% and 3%, respectively. The mean respiration rate of the different size groups was 0.11, 0.31 and 1.38 mgC l–1 d–1; the ratio of those to total respiration of phytoplankton was 6%, 17% and 77%, respectively. The production of size-fractionated phytoplankton corresponding to <200 m, <10 m and <3 m in enclosures was 2.19 ± 1.63, 2.08 ± 1.75 and 0.22 ± 0.08 mgC l–1 d-1, respectively. Mean community respiration rates were 1.25 ± 1.55, 1.17 ± 1.42 and 0.47 ± 0.32 mgC l–1 d–1, respectively. The average production of phytoplankton corresponding to micro- (10–200 m), nano- (3–10 m) and pico- (<3 m) plankton was 0.11, 1.86 and 0.22 mgC l–1 d–1, respectively. The ratio of those to the total production of phytoplankton was 5%, 85% and 10%, respectively. The mean respiration rate of different size groups were 0.08, 0.72 and 0.46 mgC l–1 d–1, the ratio of those to total respiration of phytoplankton was 6%, 57% and 37%, respectively. The concentrations of chlorophyll-a of the phytoplankton in the corresponding size of micro- (10–112 m), nano- (3–10 m) and pico- (<3 m) plankton in the experimental ponds were 19.3, 98.2 and 11. 9 g l–1, respectively. The ratio of those to the total chlorophyll-a was 15%, 76% and 9%, respectively. The concentrations of chlorophyll-a of phytoplankton micro- (10–200 m), nano- (3–10 m) and pico- (<3 m) plankton in enclosures were 1.7, 34.3 and 3.0 g l–1, respectively. The ratio of those to the total chlorophyll-a was 4%, 88% and 8%, respectively.  相似文献   

4.
Marc W. Beutel 《Hydrobiologia》2001,466(1-3):107-117
Walker Lake (area = 140 km2, Z mean = 19.3 m) is a large, terminal lake in western Nevada. As a result of anthropogenic desiccation, the lake has decreased in volume by 75% since the 1880s. The hypolimnion of the lake, now too small to meet the oxygen demand exerted by decaying matter, rapidly goes anoxic after thermal stratification. Field and laboratory studies were conducted to examine the feasibility of using oxygenation to avoid hypolimnetic anoxia and subsequent accumulation of ammonia in the hypolimnion, and to estimate the required DO capacity of an oxygenation system for the lake. The accumulation of inorganic nitrogen in water overlaying sediment was measured in laboratory chambers under various DO levels. Rates of ammonia accumulation ranged from 16.8 to 23.5 mg-N m–2 d–1 in chambers with 0, 2.5 and 4.8 mg L–1 DO, and ammonia release was not significantly different between treatments. Beggiatoa sp. on the sediment surface of the moderately aerated chambers (2.5 and 4.8 mg L–1 DO) indicated that oxygen penetration into sediment was minimal. In contrast, ammonia accumulation was reversed in chambers with 10 mg L–1 DO, where oxygen penetration into sediment stimulated nitrification and denitrification. Ammonia accumulation in anoxic chambers (18.1 and 20.6 mg-N m–2 d–1) was similar to ammonia accumulation in the hypolimnion from July through September of 1998 (16.5 mg-N m–2 d–1). Areal hypolimnetic oxygen demand averaged 1.2 g O2 m–2 d–1 for 1994–1996 and 1998. Sediment oxygen demand (SOD) determined in experimental chambers averaged approximately 0.14 g O2 m–2 d–1. Continuous water currents at the sediment-water interface of 5–6 cm s–1 resulted in a substantial increase in SOD (0.38 g O2 m–2 d–1). The recommended oxygen delivery capacity of an oxygenation system, taking into account increased SOD due to mixing in the hypolimnion after system start-up, is 215 Mg d–1. Experimental results suggest that the system should maintain high levels of DO at the sediment-water interface (10 mg L–1) to insure adequate oxygen penetration into the sediments, and a subsequent inhibition of ammonia accumulation in the hypolimnion of the lake.  相似文献   

5.
Photosynthetic activity by phytoplankton was measured during the ice-free seasons of 1984, 1985 and 1987 using the 14C radioassay in high altitude Emerald Lake (California). Relative quantum yield (B) and light-saturated chlorophyll-specific carbon uptake (Pm B) were calculated from the relationship of light and photosynthesis fitted to a hyperbolic tangent function. Temporal changes in Pm B showed no regular pattern. Seasonal patterns of B generally had peaks in the summer and autumn. Phytoplankton biomass (as measured by chlorophyll a) and light-saturated carbon uptake (Pm) had peaks in the summer and autumn which were associated with vertical mixing. Estimates of mean daily carbon production were similar among the three years: 57 mg C m–2 2 d–1 in 1984, 70 mg C m–2 2 d–1 in 1985 and 60 mg C m–2 d–1 in 1987. Primary productivity in Emerald Lake is low compared to other montane lakes of California and similar to high-altitude or high-latitude lakes in other regions.  相似文献   

6.
The biomass and primary production of phytoplankton in Lake Awasa, Ethiopia was measured over a 14 month period, November 1983 to March 1985. The lake had a mean phytoplankton biomass of 34 mg chl a m–3 (n = 14). The seasonal variation in phytoplankton biomass of the euphotic zone (mg chl a m–2 h–1) was muted with a CV (standard deviation/mean) of 31%. The vertical distribution of photosynthetic activity was of a typical pattern for phytoplankton with light inhibition on all but overcast days. The maximum specific rates of photosynthesis or photosynthetic capacity (Ømax) for the lake approached 19 mg O2 (mg chl a)–1 h–1, with high values during periods of low phytoplankton biomass. Areal rates of photosynthesis ranged between 0.30 to 0.73 g O2 m–2 h–1 and 3.3 to 7.8 g O2 m–2 d–1. The efficiency of utilisation of PhAR incident on the lake surface varied from 2.4 to 4.1 mmol E–1 with the highest efficiency observed corresponding to the lowest surface radiation. Calculated on a caloric basis, the efficiency ranged between 1.7 and 2.9%. The temporal pattern of primary production by phytoplankton showed limited variability (CV = 21 %).  相似文献   

7.
Summary Chlorophyll-a and primary production on the euphotic zone of the N-NW Spanish shelf were studied at 125 stations between 1984 and 1992. Three geographic areas (Cantabrian Sea, Rías Altas and Was Baixas), three bathymetric ranges (20 to 60 m, 60 to 150 m and stations deeper than 200 m), and four oceanographic stages (spring and autumn blooms, summer upwelling, summer stratification and winter mixing) were considered. One of the major sources of variability of chlorophyll and production data was season. Bloom and summer upwelling stages have equivalent mean and maximum values. Average chlorophyll-a concentrations approximately doubled in every step of the increasing productivity sequence: winter mixing — summer stratification — high productivity (upwelling and bloom) stages. Average primary production rates increased only 60% in the described sequence. Mean (± sd) values of chlorophyll-a and primary production rates during the high productivity stages were 59.7 ± 39.5 mg Chl-a m–2 and 86.9 ± 44.0 mg C m–2 h–1, respectively. Significant differences in both chlorophyll and primary production resulted between geographic areas in most stages. Only 27 stations showed the effects of the summer upwelling that affected coastal areas in the Cantabrian Sea and Rías Baixas shelf, but also shelf-break stations in the Rías Altas area. The Rías Baixas area had lower chlorophyll than both the Rías Altas and the Cantabrian Sea areas during spring and autumn blooms, but higher during summer upwelling events. On the contrary, primary production rates were higher in the Rías Baixas area during blooms in spring and autumn. Mid-shelf areas showed the highest chlorophyll concentrations during high productivity stages, probably due to the existence of frontal zones in all geographic areas considered. The estimated phytoplankton growth rates were comparable to those of other coastal upwelling systems, with average values lower than the maximum potential growth rates. Doubling rates for upwelling and stratification stages in the northern and Rías Altas shelf areas were equivalent, despite larger biomass accumulations during upwelling events. Low turnover rates of the existing biomass in the Rías Baixas shelf in upwelling stages suggests that the accumulation of phytoplankton was due mainly to the export from the highly productive rías, while the contribution of in situ production to these accumulations was relatively lower.  相似文献   

8.
Nutrient limitation of primary production was experimentally assessed using an in situ bioassay technique in the Quebrada Salto, a third-order tropical stream draining the northern foothills of the Cordillera Central in Costa Rica. Bioassays employed artificial substrata enriched with nutrients that slowly diffuse through an agar-sand matrix (Pringle & Bowers, 1984). Multiple comparisons of regression coefficients, describing chlorophyll-a accrual through time for different nutrient treatments, revealed positive micronutrient effect(s). Micronutrient treatment combinations (Fe, B, Mn, Zn, Co, Mo, EDTA), supplemented with and without nitrate and phosphate, exhibited significantly greater chlorophyll-a accrual over all other treatments (P < 0.05), supporting over three times that of the control after 14-d of substratum colonization. Neither of the major nutrients (N or P) produced a significant stimulation, although the N treatment displayed 50% more chlorophyll-a than the control after 14-d. Similarly, Si, EDTA, and Si + N + P treatments did not exhibit chlorophyll-a response curves that were significantly different from the control. During the experiment, mean NH4-N and (NO2 + NO3)-N concentrations in the Salto were 2.0 µM (28.6 µg · l–1) and 7.2 µM (100.2 µg · l –1), respectively. High concentrations of PO4-P ( = 2.0 µM; 60.9 µg · l–1) and TP ( = 3.0 µM; 94.0 µg · l–1) were also found, and consequently low molar N:P ratios = 4.7). Despite the potential for N limitation in the system, both N and P appear to be at growth saturating levels. This may be due to micronutrient limitation and/or light limitation of periphyton growth in densely shaded upstream portions of the stream.  相似文献   

9.
Light conditions in laboratory scale enclosures (LSE) of shallow, eutrophic Lake Loosdrecht (The Netherlands), including a method for simulating a natural incident light course, are described. Total PAR (400–700 nm) and spectral irradiance distribution were measured at sestonic chlorophyll a and dry weight concentrations 100 mg m–3 and 16 g m–3, respectively. Phytoplankton was dominated by Oscillatoria spp. The euphotic depth (Z eu) was 0.7–1.0 m. Shortly after filling the LSE with lake water, diffuse attenuation coefficients ranged from 14 m–1 for blue to 5 m–1 for red light. Around Z eu, attenuation in the blue region was markedly lower and irradiance reflectance (R) continued to increase; these anomalies were caused by lateral incident light from the LSE's waterbath. Spectrophotometry indicated that absorption was mainly by particles, but dissolved humic substances (gilvin) were also important. The particles were likely to be dominated by detritus absorbing more blue relative to red light. Subsurface R in lake water in the LSE had a maximum around 705 nm and low values in the blue band, but was lower than that previously reported for measurements in situ. Wash-out of detritus, presumably both dissolved and particulate fractions, by flow-through with synthetic medium, greatly affected the spectral reflectance measured outside the LSE. The maximum value of R decreased from 0.022 to 0.009, and the peak shifted to 550 nm.  相似文献   

10.
Danilov  Roman A.  Ekelund  Nils G. A. 《Hydrobiologia》2001,444(1-3):203-212
Impacts of solar radiation, humic substances and nutrients on phytoplankton abundance at different depths were investigated in a temperate dimictic lake, Lake Solumsjö. Penetration of solar radiation profiles at different depths, represented as light attenuation coefficient (K d) were examined. Water sampling and downward irradiance of photosynthetically active radiation (PAR), ultraviolet-A (UV-A, 320–400 nm) and ultraviolet-B (UV-B, 280–320 nm) radiation were performed once a week and at three different times of the day (08.00, 12.00 and 16.00 hrs, local time) between September 13 and November 1, 1999. During the period of investigation, solar radiation above the water surface declined from 474 to 94 mol m–2 s–1 for PAR, from 1380 to 3.57 W m–2 for UV-A and from 13.1 to 0.026 W m–2 for UV-B, respectively. The attenuation coefficient (K d) for UV-B radiation ranged from 3.7 to 31 m–1 and UV-B radiation could not be detected at depths greater than 0.25 m. Humic substances measured at 440 nm ranged from 35.5 to 57.7 Pt mg l–1. Mean values of biomass, estimated from chlorophyll a, in the whole water column (0–10 m) varied between 2.3 and 5.6 g l–1 and a diel fluctuation was observed. During stratified conditions, high levels of iron (1.36 mg l–1) and manganese (4.32 mg l–1) were recorded in the hypolimnion, suggesting that the thermocline played a major role in the vertical distribution of phytoplankton communities in Lake Solumsjö. The high levels of iron and manganese stimulated the growth of Trachelomonas volvocinopsis in the hypolimnion at a depth of 10 m. Negative impacts of UV-B radiation on phytoplankton in lake Solumsjö are reduced due to the high levels of humic substances and the high degree of solar zenith angle at the latitude studied.  相似文献   

11.
Phytoplankton dynamics in a deep, tropical, hyposaline lake   总被引:3,自引:3,他引:0  
The annual variation of the phytoplankton assemblage of deep (64.6 m), hyposaline (8.5 g l–1) Lake Alchichica, central Mexico (19 ° N, 97° W), was analyzed in relation to thermal regime, and nutrients concentrations. Lake Alchichica is warm monomictic with a 3-month circulation period during the dry, cold season. During the stratified period in the warm, wet season, the hypolimnion became anoxic. N–NH3 ranged between non detectable (n.d.) and 0.98 mg l–1, N–NO2 between n.d. and 0.007 mg l–1, N–NO3 from 0.1 to 1.0 mg l–1 and P–PO4 from n.d. to 0.54 mg l–1. Highest nutrient concentrations were found in the circulation period. Chlorophyll a varied from <1 to 19.8 g l–1 but most values were <5 g l–1. The euphotic zone (>1% PAR) usually comprised the top 15–20 m. Nineteen algae species were identified, most of them are typical inhabitants of salt lakes. Diatoms showed the highest species number (10) but the small chlorophyte Monoraphidium minutum, the single-cell cyanobacteria, Synechocystis aquatilis, and the colonial chlorophyte, Oocystis parva, were the numerical dominant species over the annual cycle. Chlorophytes, small cyanobacteria and diatoms dominated in the circulation period producing a bloom comparable to the spring bloom in temperate lakes. At the end of the circulation and at the beginning of stratification periods, the presence of a bloom of the nitrogen-fixing cyanobacteria, N. spumigena, indicated nitrogen-deficit conditions. The well-stratified season was characterized by low epilimnetic nutrients levels and the dominance of small single-cell cyanobacteria and colonial chlorophytes. Phytoplankton dynamics in tropical Lake Alchichica is similar to the pattern observed in some deep, hyposaline, North American temperate lakes.  相似文献   

12.
Succession of phytoplankton in a deep stratifying lake: Mondsee,Austria   总被引:6,自引:6,他引:0  
Phytoplankton numbers, biovolume, chlorophyll-a and various physico-chemical characteristics were followed at weekly intervals in Mondsee, Austria during the year 1982. Secchi-disk transparency varied from 10 m in winter to 2 m in September. Prior to the onset of stratification phosphate-phosphorus concentration was 4 µg 1–1 decreasing to undetectable values thereafter. Nitrate-nitrogen dropped from 590 µg 1–1 to about 100 µg 1–1 during the same time. The vernal bloom was dominated by Asterionella formosa Hass. which abruptly declined after silicon depletion. Spring growth ceased in early June, when Tabellaria flocculosa (Lyngb.) Kütz var. asterionelloides Grun. dominated. Oscillatoria rubescens D.C. and Microcystis aeruginosa Kütz. dominated summer and early autumn followed by the chrysophyte Dinobryon divergens Imh. and D. sociale Ehr. which formed up to 69% of total biovolume in October. Thereafter diatoms and Cryptophyceae (Rhodomonas lacustris Pascher and Ruttner, Cryptomonas pusilla Bach.) became abundant again.Maximum chlorophyll-a concentration in the epilimnion (16 µg 1–1) was reached during spring growth of the diatoms. During summer higher chlorophyll-a levels were always associated with the metalimnetic layer of Oscillatoria.Compared with earlier studies, both the total biovolume and the share of Oscillatoria rubescens significantly decreased because of reduced nutrient loading of the lake and wash-out of Oscillatoria (theor. renewal time of the lake: 1.7 years).  相似文献   

13.
Ulva rigida was cultivated in 7501 tanks at different densities with direct and continuous inflow (at 2, 4, 8 and 12 volumes d–1) of the effluents from a commercial marine fishpond (40 metric tonnes, Tm, of Sparus aurata, water exchange rate of 16 m3 Tm–1) in order to assess the maximum and optimum dissolved inorganic nitrogen (DIN) uptake rate and the annual stability of the Ulva tank biofiltering system. Maximum yields (40 g DW m–2 d–1) were obtained at a density of 2.5 g FW 1–1 and at a DIN inflow rate of 1.7 g DIN m–2 d–1. Maximum DIN uptake rates were obtained during summer (2.2 g DIN M–2 d–1), and minimum in winter (1.1 g DIN m–2 d–1) with a yearly average DIN uptake rate of 1.77 g DIN m–2 d–1 At yearly average DIN removal efficiency (2.0 g DIN m–2 d–1, if winter period is excluded), 153 m2 of Ulva tank surface would be needed to recover 100% of the DIN produced by 1 Tm of fish.Abbreviations DIN= dissolved inorganic nitrogen (NH inf4 sup+ + NO inf3 sup– + NO inf2 sup– ); - FW= fresh weight; - DW= dry weight; - PFD= photon flux density; - V= DIN uptake rate  相似文献   

14.
The organic carbon cycle of a shallow, tundra lake (mean depth 1.45 m) was followed for 5 weeks of the open water period by examining CO2 fluxes through benthic respiration and anaerobic decomposition, photosynthesis of benthic and phytoplankton communities and gas exchange at the air-water interface. Total photosynthesis (as consumption of carbon dioxide) was 37.5 mmole C m–2 d–1, 83% of which was benthic and macrophytic. By direct measurement benthic respiration exceeded benthic photosynthesis by 6.6 mmole C m–2 d–1. The lake lost 1.4 × 106 moles C in two weeks after ice melted by degassing C02, and 6.8 mmole C m–2 d–1 (1.5 × 106 moles) during the remainder of the open water period; 2.2 mmole C m2 d–1 of this was release Of CO2 stored in the sediments by cryoconcentration the previous winter. Anaerobic microbial decomposition was only 4% of the benthic aerobic respiration rate of 38 mmole C m–2 d–1. An annual budget estimate for the lake indicated that 50% of the carbon was produced by the benthic community, 20% by phytoplankton, and 30% was allochthonous material. The relative contribution of allochthonous input was in accordance with measurement of the 15N of sedimented organic matter.  相似文献   

15.
The physical and chemical environment, and the phytoplankton primary production of southeastern Brazil were studied in relation to the general oceanographic structure during two research cruises (winter and summer). In each cruise, a total of 91 stations were occupied. Data were collected on the spatial distribution of nutrients, phytoplankton biomass and photosynthetic capacity over the coastal, shelf and oceanic areas off São Paulo, Paraná and Santa Catarina States.During wintertime, the mixing processes between tropical warm waters of the Brazil Current and subantarctic waters of the Malvinas Current formed strong environmental gradients. The drainings of Rio de La Plata and Lagoa dos Patos are transported northwards by coastal currents, enriching the shelf waters off Santa Catarina State with inorganic nutrients and consequently increasing the chlorophyll a to the highest concentrations (> 3.5 mg m –3) measured during the two cruises. In slope waters chlorophyll values were always low (0.05–0.45 mg m –3). The chlorophyll within the euphotic layer varied from 8.8–36.7 and 1.2–18.5 mg m–2 during winter and summer, respectively.The surface photosynthetic rates during winter and summer cruises ranged respectively from 0.21–9.17 and 0.66–19.60 mgC/mgChl.a/h. The mean rates were higher in nearshore waters and decreased seaward.The thermal structure of the water column affected the vertical distribution of chlorophyll a and photosynthesis within the euphotic zone; During unstratified periods (winter) they were uniformly distributed but the occurrence of subsurface peaks of chlorophyll and strong photosynthetic inhibition of low light adapted cells in deeper layers are associated to the seasonal thermocline. Occasionally, upwelling of deep waters from shelf break enriched the deeper euphotic layers in offshore areas. Intensive upwelling was observed off Paranagua Bay (Parana State) and the mechanisms of its formation are discussed.  相似文献   

16.
Cellulase enzyme production was enhanced using the mutant strain Trichoderma reesei, E-12, which was shown to be partially resistant to catabolite repression. An optimal profile for pH, which was found to be the critical environmental parameter, was determined using a rigorous mathematical optimization procedure. Semi-empirical models were used to minimize complications in the computation. A 30% increase in enzyme activity and productivity was obtained using the optimal pH strategy as compared to the pH cycling strategy.List of Symbols a 1 , a 2 , a 3 d–1, d–2, d–3 coefficients of the polynomial in the generalized logistic growth model - a 4, a 5, a 6 d–1, d–2, d–3 coefficients of the polynomial in the generalized logistic product model - b 1 d–1 enzyme synthesis rate constant - b 2 d –1 enzyme decay rate constant - b 3 power coefficient in the polynomial model for enzyme synthesis - H Hamiltonian function - J Objective function of the maximization procedure - K 1 kg/m3 limiting cell mass concentration in biomass logistic model - K s kg/m3 saturation constant - K s kg/m3 saturation death rate constant - q power coefficient in polynomial model - s kg/m3 substrate concentration - t d fermentation time - T d total fermentation time (=7 d) - x 10 kg/m3 initial biomass concentration - x 1 kg/m3 biomass concentration at time t - x 2 F.P.A enzyme activity at time t - x 3 d state variable replacing time term on the right hand side of biomass equation - x f kg/m3 final biomass concentration - z 1, z 2, z 3 adjoint variable corresponding to state variable x 1, x 2, x 3 - d–1 specific death rate - d–1 specific growth rate  相似文献   

17.
The magnitude and frequency of events leading to changes in turbidity have been studied in a large (61 km2), shallow (mean depth 3.4 m) wind-exposed lake basin at the western end of Lake Mälaren, Sweden. In this paper we couple changes in suspended particulate inorganic material (SPIM) resulting from wind driven sediment resuspension, and variations in the discharge and sediment load, to spectral variations in subsurface light and estimates of photosynthetically active radiation (PAR). To accomplish this we use a semi-analytical model which predicts the spectral variations in downwelling irradiance (E d()) and the attenuation coefficient of downwelling irradiance (K d()), as a function of the concentrations of chlorophyll, dissolved yellow substances, and suspended inorganic and organic particulate material. Unusually high river discharge, led to large inputs of yellow substances and large in lake yellow substance concentrations (a ys(420) 20 m–1), causing variations in yellow substance concentration to have the greatest role in influencing temporal trends in the attenuation of PAR and variations in the depth of the euphotic zone (Z eup). In spite of this, variations in SPIM could account for approximately 60% of the variation in Z eup attributed to changes in yellow substances alone. Our results show that changes in suspended sediment concentration leads to both long-term and short-term changes in the attenuation of PAR, even in the presence of high concentrations of dissolved yellow substances.  相似文献   

18.
The ecology of Lake Nakuru (Kenya)   总被引:11,自引:0,他引:11  
E. Vareschi 《Oecologia》1982,55(1):81-101
Summary Abiotic factors, standing crop and photosynthetic production were studied in the equatorial alkaline-saline closed-basin Lake Nakuru (cond. 10,000–160,000 S). Meteorological conditions and abiotic factors offer suppositions for a high primary productivity: mean solar radiation is 450–550 kerg·cm-2·s-1, with little seasonal variation, regular winds circulate the lake every day and nutrient concentrations are usually high (>100 g P–PO4·l-1). Oxygen concentrations near sediments were <1 gO2·m-3 for at least 6 h·d-1 in 1972/73, resulting in a release of 45 mg P–PO4·m-2·d-1. Attenuation coefficients vary from 3.6–16.5 according to algal densities and mean depth from 0–400 cm. Algal biomass was 200 g·m-3 (d.w.) in 1972/73, due to a lasting Spirulina platensis bloom (98.5% of algal biomass). In 1974 algal biomass suddenly dropped to 50 g·m-3 (d.w.). Spirulina and several consumer organisms almost vanished, but coccoid cyanobacteria, Anabaenopsis and diatoms increased. Several causes for this change in ecosystem structure are discussed. The use of the light/dark bottle method to measure photosynthetic production in eutrophic alkaline lakes is discussed and relevant experiments were done. Oxygen tensions of 2–35 gO2·m-3 do not influence primary production rates. Net photosynthetic rates (mgO2·m-3·h-1; photosynthetic quotient=1.18) reached 12–17.7 in 1972/73 and 2–3 in 1974, but vertically integrated rates were only 1–1.4 in 1972/73 and 0.8 in 1974, and daily net photosynthetic rates (gO2·m-3·24 h-1) 3.5 in 1972/73 and 1 in 1974. 50% of areal rates were produced within the 10 most productive cm of the depth profile. The disproportion between high algal standing crops and relatively low production rates is due to self-shading of the algae, reducing the euphotic zone to 35 cm in 1972/73 and 77 cm in 1974. Efficiency of light utilization is 0.4–2%, varying with time of day and phytoplankton density. In situ efficiencies show an inverse relationship to light intensities. Photosynthetic rates of L. Nakuru remain within the range of other African lakes (0.1–3 gO2·m-2·h-1). The relation of O2 produced/Chl a of the euphotic zone is 50% lower then in tropical African freshwater lakes and conforms to lakes of temperate regions.  相似文献   

19.
Phytoplankton production was measured in situ in Kainji lake from December 1970 to September 1972 using the oxygen light and dark bottle technique. Seasonal variations in solar radiation, transparency, temperature, and composition of subsurface light were also measured. Oxygen production per unit area varied from 220 to 4500 mg O2 m–2 day–1, the maximum production rate from 95 to 400 mg O2 m–3 h–1. Seasonal mixing of lake water and river water of varying turbidity changed the optical properties of the lake water and consequently affected phytoplankton production. The annual flood pattern was found to be an important factor regulating phytoplankton production in the lake.  相似文献   

20.
The results collected at different temperatures for ethanol acetylation by cell-bound carboxylesterase from lyophilized cells of Aspergillus oryzae have been used to investigate the kinetics and thermodynamics of this esterification in n-heptane. The occurrence of reversible unfolding followed by irreversible denaturation of the enzyme has been proposed to explain the increase in the starting rate of ethyl acetate formation with temperature observed up to 55 °C and the consequent fall beyond this threshold. The Arrhenius model has been used to estimate the apparent activation enthalpies of both the acetylation reaction (H = 29–33 kJ mol–1) and reversible enzyme unfolding (H u = 56–63 kJ mol–1). The results of residual activity tests performed with cells previously exposed at different temperatures for variable times enabled us also to estimate the first-order rate constant of irreversible denaturation (2.40 × 10–3 h–1 < k d < 8.11 × 10–3 h–1) as well as the related thermodynamic parameters (H d = 22 kJ mol–1; S d = –0.29 kJ mol–1 K–1). This last phenomenon proved particularly slow for the system under consideration, probably because the biocatalyst link to the mycelium was able to improve its thermostability. In view of future continuous application, the effects of operating time, starting substrate concentration and temperature on the theoretical integral productivity of a fixed-bed column filled with this biocatalyst have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号