首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wu JR  Yeh YC 《Journal of virology》1975,15(5):1096-1106
Suppressors of gene 59-defective mutants were isolated by screening spontaneous, temperature-sensitive (ts) revertants of the amber mutant, amC5, in gene 59. Six ts revertants were isolated. No gene 59-defective ts recombinant was obtained by crossing each ts revertant with the wild type, T4D. However, suppressors of gene 59-defective mutants were obtained from two of these ts revertants. These suppressor mutants are referred to as dar (DNA arrested restoration). dar mutants specifically restored the abnormalities, both in DNA synthesis and burst size, caused by gene 59-defective mutants to normal levels. It is unlikely that dar mutants are nonsense suppressors since theý failed to suppress amber mutations in 11 other genes investigated. The genetic expression of dar is controlled by gene 55; therefore, dar is a late gene. The genetic location of dar has been mapped between genes 24 and 25, a region contiguous to late genes. dar appears to be another nonessential gene of T4 since burst sizes of dar were almost identical to those of the wild type. Mutations in dar did not affect genetic recombination and repair of UV-damaged DNA, but caused a sensitivity to hydroxyurea in progeny formation. The effect of the dar mutation on host DNA degradation cannot account for its hydroxyurea sensitivity. dar mutant alleles were recessive to the wild-type allele as judged by restoration of arrested DNA synthesis. The possible mechanisms for the suppression of defects in gene 59 are discussed.  相似文献   

3.
Conditional temperature-sensitive (ts) mutations are important reagents to study essential genes. Although it is commonly assumed that the ts phenotype of a specific mutation arises from thermal denaturation of the mutant enzyme, the possibility also exists that the mutation decreases the enzyme activity to a certain level at the permissive temperature and aggravates the negative effect further upon temperature upshifts. Resolving these possibilities is important for exploiting the ts mutation for studying the essential gene. The trmD gene is essential for growth in bacteria, encoding the enzyme for converting G37 to m1G37 on the 3′ side of the tRNA anticodon. This conversion involves methyl transfer from S-adenosyl methionine and is critical to minimize tRNA frameshift errors on the ribosome. Using the ts-S88L mutation of Escherichia coli trmD as an example, we show that although the mutation confers thermal lability to the enzyme, the effect is relatively minor. In contrast, the mutation decreases the catalytic efficiency of the enzyme to 1% at the permissive temperature, and at the nonpermissive temperature, it renders further deterioration of activity to 0.1%. These changes are accompanied by losses of both the quantity and quality of tRNA methylation, leading to the potential of cellular pleiotropic effects. This work illustrates the principle that the ts phenotype of an essential gene mutation can be closely linked to the catalytic defect of the gene product and that such a mutation can provide a useful tool to study the mechanism of catalytic inactivation.  相似文献   

4.
ts Cl mouse L cells are temperature-sensitive (ts) in DNA synthesis. The protein involved undergoes inactivation at 38.5 °C, with an apparent half-life of 3–4 h. A variety of experimental approaches yield data indicating that the ts Cl gene product acts directly during the DNA-synthesis period, probably late during the duplication of chromosomal DNA. The specificity of the ts lesion is reflected in the fact that replication of mitochondrial DNA is unaffected for many hours after nuclear DNA synthesis is almost totally inhibited. Temperature inactivation is not due to degradation or to loss of template capacity of preformed DNA. ts Cl cells are able to enter a DNA-synthesis phase at the higher temperature, as indicated by radioautographic experiments and by studies in which cells, blocked at the permissive temperature (34 °C) in a pre-DNA synthesis phase by isoleucine deprivation, are subsequently incubated at 38.5 °C. Cells arrested early in DNA synthesis by hydroxyurea treatment at 34 °C continue such synthesis for a short interval after up-shift to 38.5 °C. However, they are then unable to complete the S phase in progress nor can they proceed into cell division. The kinetics of DNA synthesis in cells incubated at 38.5 °C and back-shifted to 34 °C are compatible with the model that the ts Cl locus encodes an S phase function.  相似文献   

5.
In this paper we show that the tabD mutants, selected with ts553 or tsCB53, and described in the accompanying paper (Coppo et al., 1975): (a) are recessive to tab+; (b) fail to complement each other, and thus map in the same cistron; (c) by their linkage to rif and their dominance relationships with well characterized amber mutations in the Escherichia coli RNA polymerase operon, probably all map in the gene controlling the synthesis of the β′ subunit of the enzyme. We also describe the isolation of a ts+, kD mutant in phage T4 gene 55, used in the selection of a new tabD mutant (tabDk292). This tab mutant: (a) generates a defective phenotype which differs somewhat from that of the other tabD mutants; (b) complements the other tabD mutants; (c) by its dominance relationship to amber mutants in the RNA polymerase operon, can be assigned to the structural gene coding for the β subunit of the enzyme.A new type of interaction between T4 genes 55 and 45 is also described. The kD properties of ts553 (gene 55) are suppressed at 30 °C, by a temperature-sensitive mutation in gene 45. This type of interaction between missense mutations in genes 45 and 55 apparently occurs even in tab+ strains, since temperature-sensitive mutations in gene 45 accumulate in lysates of two gene 55 mutants (ts553 and tsA81).  相似文献   

6.
Involvement of bacteriophage T4 genes in radiation repair   总被引:9,自引:0,他引:9  
One interpretation of Ebisuzaki's (1966) observation that the functional survival of certain early phage T4 genes is identical in v+ and v -infected cells is that the product of the early gene being studied is essential for the successful completion of excision repair (which is known to be mediated by the v gene). An experiment designed to test this hypothesis is described, with results which fully support the idea. Assuming then that this interpretation is valid, it became possible to determine the involvement in excision repair of a much wider range of early genes by establishing whether or not the v allele affects their functional survival. In addition a comparable series of experiments was performed with phages carrying the u.v.-sensitive y mutation which is known to mediate a quite different type of repair in T4-infected cells.The results indicate that genes 1, 30, 42, 43 and 56 are involved in excision repair, but not genes 32, 41, 43 or 44. All these genes are however involved in y-mediated repair. It appears therefore that this latter repair system (which bears some resemblance to that controlled by the rec genes in bacteria) depends on normal phage DNA synthesis for its completion. However the repair synthesis following the excision of pyrimidine dimers in u.v.-irradiated T4 DNA seems distinct from normal DNA synthesis in that it does not involve certain of the early phage genes, and in particular does not utilize the DNA polymerase coded by gene 43. It is suggested that the polymerase activity associated with this repair synthesis is provided by the bacterial Kornberg polymerase pol I.  相似文献   

7.
8.
9.
The effect of bacteriophage T4 gene 59 mutations (DNA-arrested synthesis) on kinetics of DNA synthesis, gene expression, and stability of mRNA has been studied. When Escherichia coli B was infected by a T4 gene 59 mutant, DNA synthesis proceeded to increase linearly after initiation, but started to decrease at 8 min and was completely arrested at 12 min at 37°C. At various incubation temperatures (20 to 42°C), the initial rates and times of arrest of DNA synthesis were different, but the total amount of DNA synthesized was constant. This result supports the hypothesis that function of gene 59 is required for the conversion of 63S DNA molecules to other replicative intermediates (39). The abnormality in protein synthesis caused by gene 59 mutation is manifested by (i) a delayed shutoff in the expression of early proteins (gene 43, 46, 39, 52, 63, 42-45, and some unidentified proteins), (ii) a reduced rate of late gene expression (gene 34, 37, 18, 20, 23, wac, 24, 22, 38, and 19), and (iii) an absence of cleavage of certain late proteins (23, 24, IPIII and 22 to 23*, 24*, IPIII*, and small fragments). It appears that there was no effect on the expression of gene 33, 55, and 32 by a mutation in gene 59. Results obtained from an addition of rifampin at the prereplicative cycle after infection indicated that mRNA from genes 43, rIIA, 46, 39, 52, and 63 are more stable in T4amC5 (gene 59) than in wild-type-infected cells. mRNA remained functional longer in mutant-infected cells, and this may explain the prolonged synthesis of certain early proteins. The gene expression of other DNA arrested mutants—those in genes 46 and 47—showed a pattern of abnormal protein synthesis similar to that found in gene 59 mutant-infected cells, except more late proteins are synthesized. The gene expression in terms of phage DNA structure is discussed.  相似文献   

10.
After infection of Escherichia coli B with phage T4D carrying an amber mutation in gene 59, recombination between two rII markers is reduced two- to three-fold. This level of recombination deficiency persists even when burst size similar to wild type is induced by the suppression of the mutant DNA-arrest phenotype. In the background of two other DNA-arrest mutants in genes 46 and 47, a 10- to 11-fold reduction in recombination is observed. The cumulative effect of gene 59 mutation on gene 46-47 mutant suggests that complicated interactions must occur in the production of genetic recombinants. The DNA-arrest phenotype of gene 59 mutant can be suppressed by inhibiting the synthesis of late phage proteins. Under these conditions, DNA replicative intermediates similar to those associated with wild-type infection are induced. Synthesis of late phage proteins, however, results in the degradation of mutant 200S replicative intermediate into 63S DNA molecules even in the absence of capsid assembly. Although these 63S molecules are associated with membrane, they do not replicate. These results suggest a role for gene 59 product, in addition to a possible requirement of concatemeric DNA in late replication of phage T4 DNA.  相似文献   

11.

BACKGROUND:

Mutations of mitochondrial DNA were described into two genes: The mitochondrially encoded 12S RNA (MT-RNR1) and the mitochondrially encoded tRNA serineucn (MT-TS1). The A1555G mutation in MT-RNR1 gene is a frequent cause of deafness in different countries.

AIM:

The aim of this work was to investigate the frequency of the A1555G mutation in the MT-RNR1 gene in the mitochondrial DNA in Brazilians individuals with nonsyndromic deafness, and listeners.

MATERIALS AND METHODS:

DNA samples were submitted to polymerase chain reaction and to posterior digestion with the Hae III enzyme.

RESULTS:

Seventy eight (78) DNA samples of deaf individuals were analyzed; 75 showed normality in the region investigated, two samples (2.5%) showed the T1291C substitution, which is not related to the cause of deafness, and one sample (1.3%) showed the A1555G mutation. Among the 70 non-impaired individuals no A1555G mutation or T1291C substitution was found.

CONCLUSION:

We can affirm that A1555G mutation is not prevalent, or it must be very rare in normal-hearing subjects in the State of Paraná, the south region of Brazil. The A1555G mutation frequency (1.3%) found in individual with nonsyndromic deafness is similar to those found in other populations, with nonsyndromic deafness. Consequently, it should be examined in deafness diagnosis. The investigation of the A1555G mutation can contribute towards the determination of the nonsyndromic deafness etiology, hence, contributing to the correct genetic counseling process.  相似文献   

12.
Summary Cessation of DNA synthesis in the temperature sensitive mutant 167 tsA 13 of Bacillus subtilis is correlated with the disappearance of dCTP and dATP pools at the nonpermissive temperature; dGTP and dTTP residual pools are stable. In the presence of AdR and CdR at 45°C, the dCTP and dATP pools remain normal and the cells continue to synthesise DNA and grow. It is inferred that in 167 tsA 13 AdR and CdR kinases exist, that the deoxynucleotide kinases function normally and the ribonucleotide reduction is deficient. B. subtilis strains have a hydroxyurea sensitive reductase and the drug inhibition can be reversed by exogenous deoxynucleosides. Evidence that the tsA 13 mutation is in the structural gene of the ribonucleotide reductase is discussed.  相似文献   

13.
The nature of nucleolytic activity regulated by genes 46 and 47 of bacteriophage T4 was studied by examining the metabolism of parental DNA of phages carrying a mutation in polynucleotide ligase gene (lig) and an additional mutation in one of the following D0 genes (D0 genes are necessary for T4 DNA synthesis): 32, 43 (DNA polymerase  pol), 44 and 45. Polynucleotide ligase and DNA polymerase were used to distinguish nicks (phosphodiester bond interruptions on duplex DNA) from gaps (interruptions with missing nucleotides). In non-permissive hosts, parental DNA of double mutants (lig, D0) accumulated both single- and double-strand breaks. Up to 30% of this DNA eventually became acid-soluble. An additional mutation in gene 46 (or 47) did not prevent accumulation of double- and single-strand breaks but did prevent degradation to the acid-soluble state. The majority of the single-strand breaks on (lig, D0)-DNA were presumed to be gaps since, after extraction from infected host cells, they were repaired by ligase plus DNA polymerase but not by ligase alone. In contrast, the majority of the single-strand breaks on parental DNA of (lig, D0, 46) or (lig, pol, 47) were repaired by ligase alone, suggesting nicks, rather than gaps. These observations suggest that (i) genes 46 and 47 regulate, either directly or indirectly, an exonuelease activity which can attack T4 DNA at nicks to create gaps, and (ii) T4 DNA polymerase, and the products of genes 32, 44 and 45 are necessary to prevent nicks from becoming gaps in vivo. Possible roles for genes 46 and 47 in T4 DNA replication and in recombination are discussed.  相似文献   

14.
Defective genomes present in serially passaged virus stocks derived from the tsLB2 mutant of herpes simplex virus type 1 were found to consist of repeat units in which sequences from the UL region, within map coordinates 0.356 and 0.429 of standard herpes simplex virus DNA, were covalently linked to sequences from the end of the S component. The major defective genome species consisted of repeat units which were 4.9 × 106 in molecular weight and contained a specific deletion within the UL segment. These tsLB2 defective genomes were stable through more than 35 sequential virus passages. The ratios of defective virus genomes to helper virus genomes present in different passages fluctuated in synchrony with the capacity of the passages to interfere with standard virus replication. Cells infected with passages enriched for defective genomes overproduced the infected cell polypeptide number 8, which had previously been mapped within the UL sequences present in the tsLB2 defective genomes. In contrast, the synthesis of most other infected cell polypeptides was delayed and reduced. The abundant synthesis of infected cell polypeptide number 8 followed the β regulatory pattern, as evident from kinetic studies and from experiments in which cycloheximide, canavanine, and phosphonoacetate were used. However, in contrast to many β (early) and γ (late) viral polypeptides, the synthesis of infected cell polypeptide number 8 was only minimally reduced when cells infected with serially passaged tsLB2 were incubated at 39°C. The tsLB2 mutation had previously been mapped within the domains of the gene encoding infected cell polypeptide number 4, the function of which was shown to be required for β and γ viral gene expression. It is thus possible that the tsLB2 mutation affects the synthesis of only a subset of the β and γ viral polypeptides. An additional polypeptide, 74.5 × 103 in molecular weight, was abundantly produced in cells infected with a number of tsLB2 passages. This polypeptide was most likely expressed from truncated gene templates within the most abundant, deleted repeats of tsLB2 defective virus DNA.  相似文献   

15.
In this paper we describe properties of old (Takahashi, 1978) and new tabCts and tabCcs bacterial mutants. We find that under non-permissive conditions they differently inhibit the synthesis of specific T4 prereplicative gene products. Among such products, that we have been able to identify, are P43 and PrIIA. In contrast, P32 and PrIIB are not affected.Inhibition of P43 (T4 DNA polymerase) synthesis is sufficient to account for depressed DNA synthesis in tabC (Takahashi, 1978).In heterodiploids: (1) all tabC mutants are recessive; (2) all tabC mutants do not complement with each other; (3) at least one, tabCts-5521, becomes dominant at 42.6 °C if rho mutant ts15 (Tab+) (Das et al., 1976) is situated in trans; (4) tabCts-5521 also becomes dominant at 42.6 °C if tabCcs-110 and tabCcs-18 are situated in trans (42.6 °C is non-permissive for T4 development on tabCcs-5521 and permissive for T4 development on tabCcs mutants).We discuss the possibility that in tabC mutants rho protein is altered and insensitive to T4-specific anti-termination functions. We also discuss a model that accounts for the differential effect of tabC mutants on the synthesis of T4 prereplicative proteins.  相似文献   

16.
Earlier studies showed that the 2-aminopurine-induced mutation rate at a particular base pair can be influenced by the base adjacent to, or one additional base-pair removed from, the measured site (Koch, 1971). The present study extends to 0.3 map unit (about 30 base pairs) the distance at which a single base-pair substitution can exert such an effect. A particular base-pair substitution (defined as a ts mutation in the rIIA gene of bacteriophage T4) reduces the spontaneous, 2-aminopurine-induced and nitrous acid-induced reversions of an rIIA amber mutation approximately threefold. The ts mutation also reduces the 2-aminopurine-induced conversion of the corresponding ochre codon to amber (UAA → UAG) about twofold and to opal (UAA → UGA) about eightfold. The 2-aminopurine-induced reversion of the ochre codon to a glutamine codon (UAA → CAA), however, is not affected. Control experiments demonstrate that these observed reductions in mutation frequency do not result from unacceptable pathways of reversion in the presence of the ts allele.  相似文献   

17.
Temperature-sensitive (ts) mutant tsD1 of vesicular stomatitis virus, New Jersey serotype, is the sole representative of complementation group D. Clones derived from this mutant exhibited three different phenotypes with respect to electrophoretic mobility of the G and N polypeptides of the virion in sodium dodecyl sulfate-polyacrylamide gel. Analysis of non-ts pseudorevertants showed that none of the three phenotypes was associated with the temperature sensitivity of mutant tsD1. Additional phenotypes, some also involving the NS polypeptide, appeared during sequential cloning, indicating that mutations were generated at high frequency during replication of tsD1. Furthermore, mutations altering the electrophoretic mobility of the G, N, NS, and M polypeptides were induced in heterologous viruses multiplying in the same cells as tsD1. These heterologous viruses included another complementing ts mutant of vesicular stomatitis virus New Jersey and ts mutants of vesicular stomatitis virus Indiana and Chandipura virus. Complete or incomplete virions of tsD1 appeared to be equally efficient inducers of mutations in heterologous viruses. Analysis of the progeny of a mixed infection of two complementing ts mutants of vesicular stomatitis virus New Jersey with electrophoretically distinguishable G, N, NS, and M proteins yielded no recombinants and excluded recombination as a factor in the generation of the electrophoretic mobility variants. In vitro translation of total cytoplasmic RNA from BHK cells indicated that post-translational processing was not responsible for the aberrant electrophoretic mobility of the N, NS, and M protein mutants. Aberrant glycosylation could account for three of four G protein mutants, however. Some clones of tsD1 had an N polypeptide which migrated faster in sodium dodecyl sulfate-polyacrylamide gel than did the wild type, suggesting that the polypeptide might be shorter by about 10 amino acids. Determination of the nucleotide sequence to about 200 residues from each terminus of the N gene of one of these clones, a revertant, and the wild-type parent revealed no changes compatible with synthesis of a shorter polypeptide by premature termination or late initiation of translation. The sequence data indicated, however, that the N-protein mutant and its revertant differed from the parental wild type in two of the 399 nucleotides determined. These sequencing results and the phenomenon of enhanced mutability associated with mutant tsD1 reveal that rapid and extensive evolution of the viral genome can occur during the course of normal cytolytic infection of cultured cells.  相似文献   

18.
Mutation to Overproduction of Bacteriophage T4 Gene Products   总被引:23,自引:9,他引:14       下载免费PDF全文
R9 was isolated as one of several mutations that enhanced the growth of a leaky amber (am) mutant of bacteriophage T4 gene 62 (product required for phage DNA synthesis) under conditions of partial suppression by ribosomal ambiguity. R9 also enhanced the growth of leaky am mutants of some, but not all, other T4 “early” gene functions. R9 mapped between mutations in genes 43 and 62. By using assays involving polyacrylamide slab gel electrophoresis in the presence of sodium dodecyl sulfate, we observed the following. (i) R9 resulted in an overproduction of many T4 “early” proteins in infected cells. The most pronounced effects of R9 were observed when phage DNA synthesis and/or the functions of maturation genes 55 and 33 were not expressed. (ii) In rifampintreated infected cells, the capacity to synthesize T4 “early” proteins decayed more slowly in the presence of the R9 mutation than in the presence of the wild-type counterpart of R9. R9 appeared to have no effect on the rates of RNA synthesis either during early or late times after infection. The results suggest that the R9 mutation leads to increased functional stability of T4 “early” messengers.  相似文献   

19.
Additional evidence is presented that both the phage T4D-induced thymidylate synthetase (gp td) and the T4D-induced dihydrofolate reductase (gp frd) are baseplate structural components. With regard to phage td it has been found that: (i) low levels of thymidylate synthetase activity were present in highly purified preparations of T4D ghost particles produced after infection with td+, whereas particles produced after infection with td had no measurable enzymatic activity; (ii) a mutation of the T4D td gene from tdts to td+ simultaneously produced a heat-stable thymidylate synthetase enzyme and heat-stable phage particles (it should be noted that the phage baseplate structure determines heat lability); (iii) a recombinant of two T4D mutants constructed containing both tdts and frdts genes produced particles whose physical properties indicate that these two molecules physically interact in the baseplate. With regard to phage frd it has been found that two spontaneous revertants each of two different T4D frdts mutants to frd+ not only produced altered dihydrofolate reductases but also formed phage particles with heat sensitivities different from their parents. Properties of T4D particles produced after infection with parental T4D mutants presumed to have a deletion of the td gene and/or the frd gene indicate that these particles still retain some characteristics associated with the presence of both the td and the frd molecules. Furthermore, the particles produced by the deletion mutants have been found to be physically different from the parent particles.  相似文献   

20.
Alkaloid-containing natural compounds have shown promise in the treatment of microbial infections. However, practical application of many of these compounds is pending a mechanistic understanding of their mode of action. We investigated the effect of two alkaloids, piperine (found in black pepper) and reserpine (found in Indian snakeroot), on the ability of the uropathogenic bacterium Escherichia coli CFT073 to colonize abiotic surfaces. Sub-inhibitory concentrations of both compounds (0.5 to 10 µg/mL) decreased bacterial swarming and swimming motilities and increased biofilm formation. qRT-PCR revealed a decrease in the expression of the flagellar gene (fliC) and motility genes (motA and motB) along with an increased expression of adhesin genes (fimA, papA, uvrY). Interestingly, piperine increased penetration of the antibiotics ciprofloxacin and azithromycin into E. coli CFT073 biofilms and consequently enhanced the ability of these antibiotics to disperse pre-established biofilms. The findings suggest that these alkaloids can potentially affect bacterial colonization by hampering bacterial motility and may aid in the treatment of infection by increasing antibiotic penetration in biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号