首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A double mutant of CuA azurin was prepared in which both bridging cysteine thiolate ligands of the binuclear CuA center were replaced by serine. The copper binding properties of this protein were investigated, and shown to be pH dependent. At lower pH (5.2 ± 0.1), the protein binds one copper per protein molecule as demonstrated by electrospray ionization mass spectrometry. Copper titrations resulted in electronic absorptions at 730 nm (peak) and ca. 330 nm (shoulder) in the UV-Vis spectrum. EPR data show a four line pattern with hyperfine A = 150 G and g and g values 2.32 and 2.03, characteristic of a type II (T2) copper. Superhyperfines to two nitrogen atoms were also observed. At higher pH (8.5 ± 0.1), the protein binds upto two copper atoms per protein molecule, and copper titrations exhibit a blue transition at 595 nm in the UV-Vis spectrum. The EPR data are consistent with two monomeric sites very similar to one another having hyperfines A = 182 and 150 G, g = 2.24 and 2.22 and a similar g value of 2.01. These results indicate that both bridging cysteines play a critical role in the CuA center, and replacing them with serines is not enough to maintain the symmetrical diamond core structure or the characteristic electronic and functional properties of the CuA center.  相似文献   

2.
Cupric insulin was modified by the addition of cross-linking disulphide bridges between hexamers. The electron paramagnetic resonance (EPR) spectrum of this freeze-dried material was compared with that of freeze-dried unmodified cupric insulin containing various amounts of copper and added water. The modified insulin was found to have cupric ion sites magnetically very similar to that of native insulin containing two cupric ions per hexamer. Native hexamer produced in the presence of 2 Cu(II) ions per hexamer gave, after freeze-drying, an EPR spectrum with ACu=16.5 mT, g=2.285 and g=2.059 (site 1). The use of 4 or 6 Cu(II) ions per hexamer resulted in spectra with two components-a major component with the same ACu and g values as the sample containing 2 Cu(II) ions (site 1) and an additional minor component (site 2). These sites have been identified with the analogous zinc binding site within the hexamer formed by three B-10 histidine residues (site 1) [1, 2] and the site formed by the B-1 α-amino and A-17 glutamyl-γ-barboxylic acid functions where excess zinc is bound (site 2) [3, 4]. The addition of water to native hexamer containing 2, 4, or 6 Cu(II) ions resulted in the appearance of three distinct EPR absorptions, one of which had the same parameters as the freeze-dried native insulin containing 2 Cu(II) ions per hexamer (site 1). Two further sites appeared (3 and 4) with the following parameters: ACu=15.0 mT, g=2.353, and g=2.07; ACu=16.5 mT, g=2.315, and g=2.07, respectively.  相似文献   

3.
The electronic, CD and EPR spectra of ascorbate oxidase isolated from the green zucchini squash (Cucurbita pepo medullosa) in 0.1 M phosphate buffer (pH 6.8) have been investigated. The visible absorption bands are clearly resolved in the CD spectrum, where the extrema occur at 735, 610, 550, 475 and 330 nm, while weak additional CD activity possibly occurs near 420 nm. The near-UV spectrum is dominated by the absorption of the aromatic amino acid residues centered at 280 nm, while resolved CD bands occur at 296, 291, 283, 265 and 240 nm. In the far-UV region the protein CD spectrum reflects its secondary structure: a single negative maximum at 218 nm suggests a predominant anti-parallel β conformation for ascorbate oxidase. The frozen solution EPR spectrum of the protein has been fitted according to a new computer simulation procedure. The following parameters were obtained: for the type 1 copper gz = 2.222, gx = 2.032, gy = 2.056, Az = 59 G, Ax = 11 G, and Ay = 5 G; for the type 2 copper g ? = 2.240, g = 2.057, A? = 179 G and A = 1 G. Of the eight copper atoms present in the protein four are EPR-detectable: three of type 1 and one of type 2, as shown by computer simulation of the EPR spectrum. Ascorbate oxidase is a rather unstable protein when purified and it is sensitive to a number of environmental factors. Aging of the protein leads to a decrease in the ratio between the type 1 and type 2 coppers. A new species formed at the early stages of the aging process, that has been spectrally characterized, suggests that the loss of the type 1 copper is preceded by a change in the symmetry of the original type 1 site from pseudotetrahedral to pseudotetragonal.  相似文献   

4.
A thorough spectral investigation of the copper(II) complex of the antitumor compound, bleomycin, has been carried out in solution employing optical, difference optical, electron spin resonance, and circular dichroism techniques. The optical spectrum of a pH = 7 solution of the 1:1 complex between copper(II) and bleomycin is characterized by a broad weak band in the visible region (λmax = 610 nm) that cannot be resolved and intense ultraviolet bands at 317 (? = 2800), 327 (shoulder), 250 (? = 4700), and 257 nm (shoulder). The circular dichroism spectrum in the visible region shows the broad and weak visible absorption band contains at least three components (558, 675, and 880 nm) that are likely to be “d-d” in origin. The electron spin resonance spectrum is characteristic of a tetragonal d9 copper(II) system showing no rhombic distoritions at X-band frequencies (gx = gy ± 0.002). The spin Hamiltonian parameters for the pH = 7.0 solution corrected for second order effects are A = 177 × 10?4 cm?1, A ? 15 × 10?4 cm?1, g = 2.214, g = 2.039. Most interesting was the observation of extra hyperfine splitting due to endogenous nitrogen coordination in a 30% glycerol glass (AN = 12.0 × 10?4 cm?1). That pattern is best interpreted as a seven-line sequence associated with three liganded nitrogens. A dramatic change in all spectral properties occurs when the pH of the copper(II)-bleomycin complex is lowered to 2.5. All these data taken together suggest a CuN3O coordination complex in solution. Details and justifications as well as a discussion of the limitations of the interpretations are presented.  相似文献   

5.
The preparation of a new tridentate N2O-donor ligand N-(2-pyridylmethyl)-3-methoxysalicylaldiminato (HL) is described, together with the corresponding copper(II) complexes [Cu(L)X] (X = Cl, Br). The compounds were characterized by elemental analysis, spectral, magnetic and crystallographic studies. In both compounds, the local molecular structure of the Cu(II) ion involves a square-planar CuN2OX chromophore, consisting of a deprotonated phenolate oxygen, an imine nitrogen, the pyridine nitrogen and X. In the solid state, π-π stacking interactions are dominantly present, involving the pyridine and phenolate rings of neighboring molecules, which lead to a one-dimensional arrangement with alternating short and long Cu ? Cu distances of [3.720, 4.599 Å] for the bromo complex and of [3.698, 4.696 Å] for the chloro complex. The temperature-dependent magnetic measurements and EPR data of polycrystalline samples, as well as of frozen solutions in CHCl3 show that there is no observable exchange interaction between the Cu ions. The EPR parameters (g, A) agree with a perfect planar geometry, just as found in the X-ray analysis.  相似文献   

6.
7.
《Inorganica chimica acta》2005,358(4):1141-1150
The synthesis of new oxaaza macrocyclic ligands (2-4) derived from O1,O7-bis(2-formylphenyl)-1,4,7-trioxaheptane and functionalized tris(2-aminoethyl)amine are described. Mononuclear copper(II) complexes were isolated in the reaction of the corresponding macrocyclic ligand and copper(II) perchlorate. The structure of the [Cu(2)](ClO4)2 complex was determined by X-ray diffraction analysis. The copper(II) ion is five-coordinated by all N5 donor atoms, efficiently encapsulated by the amine terminal pendant-arm, with a trigonal-bipyramidal geometry. The complexes are further characterized by UV-Vis, IR and EPR studies. The electronic reflectance spectra evidence that the coordination geometry for the Cu(II) complexes is trigonal-bipyramidal with the ligands 1 and 2 or distorted square-pyramidal with the ligands 3 and 4. The electronic spectra in MeCN solutions are different from those in the solid state, which suggest that some structural modification may occur in solution. The EPR spectrum of powder samples of the copper complex with 2 presents axial symmetry with hyperfine split at g// with the copper nuclei (I = 3/2), which is characteristic of weakly exchange coupled extended systems. The EPR parameters (g// = 2.230, A// = 156 × 10−4 cm−1 and g = 2.085) indicate a dx2-y2 ground state. The EPR spectra of the complexes with ligands 3 and 4 show EPR spectra with a poorly resolved hyperfine structure at g//. In contrast, the complex with ligand 2 shows no hyperfine split and a line shape which was simulated assuming rhombic g-tensor (g1 = 2.030, g2 = 2.115 and g3 = 2.190).  相似文献   

8.
The reaction between a new amino dicarboxylic ligand N-(2-carboxybenzomethyl)-β-alanine (H2cbal) obtained by reducing the Schiff base N-(2-carboxybenzoimine)-β-alanine and copper(II) perchlorate afforded a novel tetracopper(II) complex. This tetracopper(II) complex shows unusual structure and novel core topology. The electrochemical study of the complex using cyclic voltammetrry in acetonitrile indicated the presence of a reversible one-electron reduction and two irreversible reductions at higher potentials. The EPR studies of the complex and one electron reduce form of the complex in acetonitrile at 115 K showed an axial signal with g > g > 2.0 and an isotropic signal, respectively.  相似文献   

9.
The Cu(II) complexes of tridentate amino acids and related amines in alkaline solution were studied by EPR spectroscopy. Line shapes, g∥ and A∥ of each amino acid complex were compared with those of the corresponding amine complex. The results indicate that aromatic amino acids, monoaminodicarboxylic amino acids, arginine, methionine, and lysine bind to Cu(II) via the amino and carboxyl α groups. On the other hand cysteine, 2-3-diaminopropionic acid and hydroxy amino acids appear to be coordinated through the α-amino group and the third potentially binding group. Evidence is presented for the formation of mixed complexes in the cases of histidine and 2-4-diaminobutyric acid, whereas a glycine-like complex with apical coordination of the δ-amino groups is proposed for the ornithine-Cu(II) complex.  相似文献   

10.
Reaction of Cu(ClO4)2 · 6H2O and pyrazine 2,3-dicarboxylate (pzdc) in aqueous ammonia medium results [Cu(pyrazine 2,3-dicarboxylate)(H2O)2] · H2O (1). The X-ray single crystal structure reveals that the compound is a 1D polymeric sinusoidal infinite chain which through intra- and inter-molecular hydrogen bonding interactions, involving lattice and coordinated water molecules with dicarboxylate oxygens and pyrazine nitrogens, gives rise to a 3D architecture. The variable temperature magnetic measurements show weak antiferromagnetic interactions between the Cu(II) centers. The best fit parameters through the typical equation for a uniform copper (II) chain are: J=−0.25 cm−1, g=2.17, R=1.3×10−6. The EPR spectrum does not alter with temperature (from r.t. to 4 K). The spectra are typical for square-pyramidal geometry of copper(II) ions, g=2.24 and g=2.10 (average g=2.15, in good agreement to the value obtained by susceptibility fit).  相似文献   

11.
The green thionitrosyl complex [Cr(OH2)5(NS)]2+ was isolated in solution by the hydrolysis of [Cr(NCCH3)5(NS)]2+. The optical absorption spectra of both compounds are dominated by a band with vibrational progression around 600 nm assigned as a {dyz,zx, π(NS)} → {π(NS), dyz,zx} transition. The optical data indicate that the NS ligand is a weaker π-acceptor than the NO ligand. The EPR parameters of [Cr(OH2)5(NS)]2+ were determined: giso, g and g: 1.96515, 1.92686(5) and 1.986860(8); Aiso(53Cr), A(53Cr) and A(53Cr): 25.3 × 10−4, 38 × 10−4 and 18.5 × 10−4 cm−1; Aiso(14N), A(14N) and A(14N): 6.5 × 10−4, 2.81 × 10−4 and 8.346(12) × 10−4 cm−1.  相似文献   

12.
Illumination at 230 K of dithionite-reduced particles results in the appearance of an EPR detectable radical 13 G wide with g = 2.0033. This radical is formed in a ratio of 2.28 (±0.5)/P700. Investigation of the time course of formation shows two components are present. One (A1) has g = 2.0051 and the other (Aog= 2.0024. Reduction of A1 results in an increase in reaction centre triplet formation, subsequent reduction of Ao results in a decrease of triplet formation to the base level. We propose that these components function sequentially in the transfer of electrons from P700 to the iron—sulphur acceptors.  相似文献   

13.
Han Bao  Yanan Ren  Jingquan Zhao 《BBA》2010,1797(3):339-346
The correlation between the reduction of QA and the oxidation of TyrZ or Car/ChlZ/Cytb559 in spinach PSII enriched membranes induced by visible light at 10 K is studied by using electron paramagnetic resonance spectroscopy. Similar g = 1.95-1.86 QA-•EPR signals are observed in both Mn-depleted and intact samples, and both signals are long lived at low temperatures. The presence of PPBQ significantly diminished the light induced EPR signals from QA-•, Car+•/Chl+• and oxidized Cytb559, while enhancing the amplitude of the S1TyrZ• EPR signal in the intact PSII sample. The quantification and stability of the g = 1.95-1.86 EPR signal and signals arising from the oxidized TyrZ and the side-path electron donors, respectively, indicate that the EPR-detectable g = 1.95-1.86 QA-• signal is only correlated to reaction centers undergoing oxidation of the side-path electron donors (Car/ChlZ/Cytb559), but not of TyrZ. These results imply that two types of QA-• probably exist in the intact PSII sample. The structural difference and possible function of the two types of QA are discussed.  相似文献   

14.
EPR absorption-derivative lineshapes have been computed and least-squares fitted to the spectrum of the intermediate derived from 5'-deoxy-5'-adenosyl-cobalamin in the ribonucleotide reductase reaction. A Gausian-type intrinsic lineshape was assumed and the effects of inhomogenous broadening, rotation of coordinate axes of the A-tensor relative to the g-tensor, angular dependence of transition probability and ligand hyperfine splitting have also been investigated.When the overall spectrum was computed as the sum of the linshapes corresponding to two distinct Co(II) species, A and B, each having rhombic asymmetry, the least squares procedure converged to a much better fit than with a single species, and matched almost all of the features of the experimental spectrum.The magnetic properties of A and B were compared with those of a series of other Co(II) complexes by a plot of g|?g6 versus ∥A6∥?∥A|∥. The results eliminate cobalt with 5-coordination to nitrogen for A and B, suggest low-spin cobalt complexes having strongly distorted 6-fold coordination. The possibility that the sixth, symmetry-decreasing ligand is the oxygen molecule is excluded by the chemistry of the system and by the EPR properties of previously reported cob(II)alamins. It is suggested that the sixth ligand is carbonyl, amide or sulfhydryl group of an enzyme sidechain which is inserted off-axis into the coordination position so as to exert the observed symmetry-lowering effect.  相似文献   

15.
It is shown that the nearest-neighbour interaction two-conformation allosteric models of Koshland, Nemethy & Filmer (1966) predict binding curves with a centre of symmetry when the protein is also symmetrical and induced-fit is assumed. When nonexclusive binding to both conformations is assumed, the models predict that the family of homotropic binding curves obtained by varying the heterotropic ligand has a centre of symmetry. It is argued that the symmetry or asymmetry of binding curves is the main experimentally verifiable prediction of allosteric models insofar as they are models of interaction between protein subunits.Symmetry in a binding curve greatly simplifies the analysis of cooperative behaviour. The co-operative features possible with a symmetric binding curve for a four-site protein are analysed. The sign of co-operativity may either be uniform or change twice as saturation increases; the conditions for the various possibilities are given. For example, in terms of the intrinsic binding constants per site A1, A2, etc. the necessary and sufficient condition for positive macroscopic co-operativity over the whole symmetric binding curve is A1≤ A2, A 1 ≤ A3 which should be contrasted with the obvious A1 ≤ Al, AZ ≤A3 (positive microscopic co-operativity) which is only a sufficient but not a necessary condition. A symmetric curve may have one or three, but no more, extrema of the “Hill coefficient” h. For three extrema a change of sign of microscopic (but not necessarily macroscopic) co-operativity is necessary but not sufficient. In the case where there are off-centre maxima of h, then h < 2 everywhere on the curve.The Koshland models predict qualitative and quantitative restrictions on the forms of binding curves additional to that of symmetry. In tetrameric induced fit models, negative co-operativity in the mid-region of the curve and positive co-operativity in the outside regions is possible, but not the opposite, and three extrema of h are possible with uniform positive but not with uniform negative co-operativity.Thus by recognising the importance of symmetry it has been possible to describe and categorise all the co-operativity behaviour possible with the most plausible Koshland tetrameric models. Several experimental examples of probable non-exclusive binding to proteins and enzymes are discussed, and it is shown how the symmetry point of view illuminates their interpretation.  相似文献   

16.
A double octarepeat prion protein construct, which has two histidines, mixed with copper sulfate in a 3:2 molar ratio provides at most three imidazole ligands to each copper ion to form a square-planar Cu2+ complex. This work is concerned with identification of the fourth ligand. A new (to our knowledge) electron paramagnetic resonance method based on analysis of the intense features of the electron paramagnetic resonance spectrum in the g region at 2 GHz is introduced to distinguish between three and four nitrogen ligands. The methodology was established by studies of a model system consisting of histidine imidazole ligation to Cu2+. In this spectral region at 2 GHz (S-band), g-strain and broadening from the possible rhombic character of the Zeeman interaction are small. The most intense line is identified with the MI = +1/2 extra absorption peak. Spectral simulation demonstrated that this peak is insensitive to cupric Ax and Ay hyperfine interaction. The spectral region to the high-field side of this peak is uncluttered and suitable for analysis of nitrogen superhyperfine couplings to determine the number of nitrogens. The spectral region to the low-field side of the intense extra absorption peak in the g part of the spectrum is sensitive to the rhombic distortion parameters Ax and Ay. Application of the method to the prion protein system indicates that two species are present and that the dominant species contains four nitrogen ligands. A new loop-gap microwave resonator is described that contains ∼1 mL of frozen sample.  相似文献   

17.
《Inorganica chimica acta》2004,357(11):3230-3236
The derivatives of Cu(OAc)2 · H2O with 2-methylaminopyridine and 3-aminomethylpyridine, [Cu2(μ-OAc)4(MeNHpy)2] (1) and [Cu(OAc)2(μ-NH2CH2py)(H2O)]n (2), respectively, have been synthesized and characterized. Compound 1 shows the dimer structure of [Cu2(μ-OAc)4(H2O)2], with four syn-syn bridging acetate groups and the MeNHpy ligand coordinated in the axial positions. It is antiferromagnetic (2J=−285 cm−1). Signals of the triplet state are observed in its EPR spectrum and the zero-field splitting parameter has been calculated (D=0.36 cm−1; g=2.35; g=2.07). Otherwise, the ligand 3-aminomethylpyridine acts as bridging bidentate ligand in compound 2, forming infinite zig-zag chains. Each copper atom lies in a square-planar pyramidal coordination, determined by two nitrogen atoms of two bridge ligands, two oxygen atoms of two monodentate terminal acetate groups and a water molecule. The parallel chains form a sheet because of the hydrogen bonds between them. The shortest Cu-Cu distances are: 5.1270, 6.0952 and 6.2163 Å (inter-chains) and 7.875 Å (intra-chain). Compound 2 shows a slight antiferromagnetic effect below 30 K. The EPR spectra show an orthorhombic signal (g1=2.26; g2=2.08; g3=2.06).  相似文献   

18.
Ligand field and Jahn-Teller effects are simultaneously taken into account in a generic chromophore CuIIS4 on the basis of the angular overlap model. The role played by the e-type vibrational mode in distorting the chromophore is stressed and the magnitude of the distortion evaluated. The d-d transition energies and the g and A values of the epr spectrum are computed as a function of the different parameters involved and the results are then discussed and compared with the experimental ones obtained for blue copper proteins.  相似文献   

19.
A new complex of composition [Cu(2-NO2bz)2(nia)2(H2O)2] (1) (nia = nicotinamide, 2-NO2bz = 2-nitrobenzoate) has been prepared and its composition and stereochemistry as well as coordination mode have been determined by elemental analysis, electronic, infrared and EPR spectroscopy, magnetization measurements over the temperature range 1.8-300 K, and its structure has been solved, as well. The complex structure consists of the centrosymmetric molecules with Cu(II) atom monodentately coordinated by the pair of 2-nitrobenzoato anions and by the pair of nicotinamide molecules, forming nearly tetragonal basal plane, and by a pair of water molecules that complete tetragonal-bipyramidal coordination polyhedron about the copper atom. The complex 1 exhibits magnetic moment μeff = 1.86 B.M. at 300 K which decreases to μeff = 1.83 B.M. at 1.8 K. The magnetic susceptibility temperature dependence obeys Curie-Weiss law with Curie constant of 0.442 cm3 K mol−1 and with Weiss constant of −1.0 K. EPR spectra at room temperature as well as at 77 K are of axial type with g = 2.065 and g = 2.280 and exhibit clearly, but partially resolved parallel hyperfine splitting with AII = 160 G, that is consistent with the determined molecular structure of 1. In order to analyze the factors influencing the degree of tetragonal distortion of coordination polyhedron, the dataset of 72 structures similar to that of 1 was extracted from CCD and analyzed. A significant correlation between the average Cu-Oax bond length and tetragonality parameter τ which was found as a consequence of the Jahn-Teller effect.  相似文献   

20.
Bruce C. Hill  Diann Andrews 《BBA》2012,1817(6):948-954
SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the CuA center contained within subunit II of the oxidase complex. The CuA center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a3 and CuB. CuA consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of CuA present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in CuA assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-CuA site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号