首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Using liposomes we have demonstrated an electron transfer between tocopherol (vitamin E) and cytochrome c. Reduced cytochrome c protects vitamin E from oxidation induced either directly by ultraviolet light or indirectly by soybean lipoxygenase-catalyzed oxidation of arachidonic acid. Oxidized cytochrome c is reduced by tocopherol and tocopherol homologues (chromanols) resulting in accumulation of tocopheroxyl radicals which we detected by ESR. The peak height of the ESR spectrum of tocopheroxyl radicals (which is proportional to the amount of radical present) is proportional to the ratio of reduced to oxidized cytochrome c. In mitochondrial membranes succinate-cytochrome c reduction is inhibited by antimycin A. Addition of exogenous chromanols facilitates a by-pass of the antimycin A blocked electron pathway, and succinate-dependent cytochrome c reductase activity is restored. Cytochrome c may act as a water-soluble complement to the lipid-soluble ubiquinol in regenerating mitochondrial tocopherol from tocopheroxyl radical.  相似文献   

2.
Substantial loading of rat liver mitochondrial and microsomal membranes with D-alpha-tocopherol was achieved by dietary supplementation with no adverse effects of this loading being apparent, e.g. on treadmill exercise endurance. The tocopheroxyl radical was readily detected by ESR in the enriched microsomes and mitochondria. Continuous enzymatic oxidation with horseradish peroxidase and a hydrophilic phenol, to favor selective oxidation of tocopherol without the involvement of lipid peroxidation, allowed the tocopheroxyl radical to be observed for up to 1 h in liposomes of dioleoylphosphatidylcholine and for about 15 min in the subcellular membranes. Total alpha-tocopherol decreased throughout this period, but a significant residual fraction remained after all the ESR signal of tocopheroxyl had disappeared. Decay kinetics of the tocopheroxyl radical ESR signal produced by a burst of intense UV irradiation consisted of a rapid initial phase and a slower exponential decay. A more narrow and more persistent ESR signal, not yet chemically identified, was observed after the tocopheroxyl radical had disappeared under prolonged oxidation. Ascorbic acid prevented formation of the tocopheroxyl radical until the ascorbyl radical ESR signal had decayed, whereas uric acid, up to saturating concentration in phosphate buffer, had no effect.  相似文献   

3.
After fusion of small unilamellar phospholipid liposomes with mitochondrial inner membranes, the rate of electron transfer between membrane dehydrogenases and cytochrome c decreases as the average distance between integral membrane proteins increases, suggesting that electron transfer is mediated through a diffusional process in the membrane plane (Schneider, H., Lemasters, J. J., H?chli, M., and Hackenbrock, C. R. (1980)., J. Biol. Chem. 255, 3748-3756). The role of ubiquinone in this process was evaluated by fusing liposomes containing ubiquinone-10 or ubiquinone-6, with inner membranes. In control membranes enriched with phospholipid only, ubiquinol-cytochrome c reductase and NADH- and succinate-cytochrome c reductase activities decreased proportionally to the increase in bilayer lipid. These decreases were restored substantially in phospholipid plus ubiquinone-supplemented membranes. The degree to which restoration occurred was dependent upon the length of the isoprenoid side chain of the ubiquinone with the shorter chain length ubiquinone-6, always giving greater restoration than ubiquinone-10. It is concluded that electron transfer between flavin-linked dehydrogenases (Complexes I and II) and cytochrome bc1 (Complex III) occurs by independent, lateral diffusion of ubiquinone as well as independent, lateral diffusion of ubiquinone as well as the protein complexes within the plane of the membrane.  相似文献   

4.
Mitochondrial electron transport-linked tocopheroxyl radical reduction   总被引:3,自引:0,他引:3  
alpha-Tocopherol (vitamin E) is a lipophilic chain-breaking antioxidant which inhibits lipid peroxidation in isolated mitochondrial membranes and protects membranes from oxidative damage. The primary oxidation product of vitamin E is the tocopheroxyl radical. Reduction of the tocopheroxyl radical can occur by reactions with water-soluble anti-oxidants such as ascorbate or glutathione, resulting in the recycling of vitamin E. Physiological concentrations of vitamin E are too low to allow detection of tocopheroxyl radical by ESR. After dietary supplementation with vitamin E, a 10-20-fold increase in the rat liver mitochondrial membrane content of vitamin E was achieved and this allowed for direct detection of the tocopheroxyl radical by ESR, after treatment with an oxidizing system composed of lipoxygenase and arachidonic acid. By using submitochondrial particle membranes, it was shown that NADH, succinate, and reduced cytochrome c-linked oxidation reduce the tocopheroxyl radical, preventing both accumulation of the radical and vitamin E consumption. As the electron transport chain can reduce tocopheroxyl radical it may have an important physiological role in recycling vitamin E.  相似文献   

5.
The aim of this study was to obtain a quantification of the antioxidant activity of ubiquinone. To this purpose the oxidation of egg yolk phosphatidylcholine both in solvent and in liposomes initiated by an azocompound has been studied either in the absence or in the presence of ubiquinone-3, using alpha-tocopherol as a reference antioxidant. The two experimental systems gave similar results. In the presence of ubiquinone-3 the oxidation rate was reduced with respect to control experiments but was faster than that in the presence of alpha-tocopherol. The amount of ubiquinone required to decrease the autoxidation rate was so high as to prevent detection of the induction period. The stoichiometric factor was greater than 2 and the rate constant of inhibition was two orders of magnitude lower than that of alpha-tocopherol. It is concluded that high concentrations of ubiquinone are required to exhibit significant antioxidant activity. A possible mechanism compatible with the stoichiometric factor larger than 2 for the inhibiting effect of ubiquinone is also suggested.  相似文献   

6.
A kinetic model was constructed to describe the reactions involved in the oxidation of methyl linoleate (ML) inhibited by alpha-tocopherol (TH). The initial model of the reaction mechanism included 53 individual steps, which were numerically analyzed by the value method based on Hamiltonian systematization of kinetic equations. Good accord was obtained with experimental data at 40 and 50 degrees C. The dominant steps responsible for the antioxidant and pro-oxidant properties of TH in the process of ML peroxidation were revealed. Tocopherol-mediated peroxidation (TMP) and generation of alkoxyl radicals as a result of the reduction of hydroperoxides by TH or the decomposition tocopherol alkyl peroxides are the dominant reactions responsible for the pro-oxidant activities of alpha-tocopherol. The extreme behavior of reaction induction period in relation to TH initial concentration is related to the increase in the ratios of [tocopheroxyl radical]/[peroxyl radical] and the TMP rate/rate of termination by combination of tocopheroxyl and peroxyl radicals.  相似文献   

7.
Bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I) catalyzed NADH- and ubiquinone-1-dependent oxygen (O2) turnover to hydrogen peroxide that was stimulated by piericidin A and superoxide dismutase (SOD), but was insensitive to antimycin A, myxothiazol, and potassium cyanide. The extent of O2 consumption as a function of ubiquinone-1 did not correlate with piericidin A-sensitive rates of ubiquinone reduction. Decylubiquinone did not stimulate O2 consumption, but did initiate an SOD-sensitive cytochrome c reduction when complex I was isolated away from ubiquinol-cytochrome c oxidoreductase. Rates and extent of O2 turnover (ROS production) and ubiquinone reduction were higher than previously reported for submitochondrial particles (SMP) and isolated complex I. This ROS production was shown to co-isolate with complex I flavin.  相似文献   

8.
Kinetic study of the reaction between tocopheroxyl (vitamin E radical) and reduced ubiquinone, n = 10) has been performed. The rates of reaction of ubiquinol with α-tocopheroxyl 1 and seven kinds of alkyl substituted tocopheroxyl radicals 2–8 in solution have been determined spectrophotometrically, using a stopped-flow technique. The result shows that the rate constants decrease as the total electron-donating capacity of the alkyl substituents on the aromatic ring of tocopheroxyls increases. For the tocopheroxyls with two alkyl substituents at ortho positions (C-5 and C-7), the second-order rate constants, k1, obtained vary i n the order of 102, and decrease predominantly, as the size of two ortho-alkyl groups (methyl, ethyl, isopropyl and tert-buty) in tocopheroxyl increases. On the other hand, the reaction between tocopheroxyl and ubiquinone-10 (oxidized ubiquinone) has not been observed. The result indicates that ubiquinol-10 regenerates tocopherol by donating a hydrogen atom of the 1-OH and/or 4-OH group to the tocopheroxyl radical. For instance, the k1 values obtained for α-tocopheroxyl are 3.74 · 105 M?1 · s?1 and 2.15 · 5 M?1 · s?1 in benzene and ethanol solution at 25°C, respectively. The above reaction rates, k1, obtained were compared with those of vitamin C with α-tocopheroxyl reported by Packer et al. (k2 = 1.55 · 106 M?1 · s?1) and Scarpa et al. (K2 = 2 · 105 105 M?1 · s?1), which is well known as a usual regeneration reaction of tocopheroxyl in biomembrane systems. The result suggests that ubiquinol-10 also regenerates the tocopheroxyl to tocopherol and prevents lipid peroxidation in various tissues and mitochondria.  相似文献   

9.
Peroxidation of membrane phospholipids is an important determinant of membrane function. Previously we studied the kinetics of peroxidation of the polyunsaturated fatty acid (PUFA) residues in model membranes (liposomes) made by sonication of palmitoyllinoleoylphosphatidylcholine (PLPC). Since most biomembranes are negatively-charged, we have now studied the effect of negative surface charge on the kinetics of peroxidation of liposomes made of PLPC and 9% of one of the negatively-charged phospholipids phosphatidylserine (PS) or phosphatidic acid (PA). Peroxidation was initiated by either CuCl2 or AAPH and continuously monitored spectrophotometrically. The following results were obtained: (i) The negative charge had only a slight effect on AAPH-induced peroxidation, but accelerated markedly copper-induced peroxidation of the liposomes, probably by increasing the binding of copper to the membrane surface. (ii) Ascorbic acid (AA) inhibited AAPH-induced but promoted copper-induced peroxidation in all the studied liposomes, probably by enhancing the production of free radicals upon reduction of Cu(II) to Cu(I). (iii) alpha-tocopherol (Toc) inhibited AAPH-induced peroxidation in all the studied liposomes, whereas the effect of tocopherol on copper-induced peroxidation varied from being pro-oxidative in PA-containing liposomes, to being extremely anti-oxidative in PS-containing liposomes, even at very low tocopherol concentrations. The significance of the latter unusual protective effect, which we attribute to recycling of tocopherol by a PS-Cu complex, requires further investigation.  相似文献   

10.
Scheide D  Huber R  Friedrich T 《FEBS letters》2002,512(1-3):80-84
The proton-pumping NADH:ubiquinone oxidoreductase, also called complex I, is the first energy-transducing complex of many respiratory chains. Homologues of complex I are present in the three domains of life. Here, we report the properties of complex I in membranes of the hyperthermophilic bacterium Aquifex aeolicus. The complex reacted with NADH but not with NADPH and F(420)H(2) as electron donors. Short-chain analogues of ubiquinone like decyl-ubiquinone and ubiquinone-2 were suitable electron acceptors. The affinities towards NADH and ubiquinone-2 were comparable to the ones obtained with the Escherichia coli complex I. The reaction was inhibited by piericidin A at the same concentration as in E. coli. The complex showed an unusual pH optimum at pH 9 and a maximal rate at 80 degrees C. We found no evidence for the presence of an alternative, single subunit NADH dehydrogenase in A. aeolicus membranes. The NADH:ferricyanide reductase activity of detergent extracts of A. aeolicus membranes sedimented as a protein with a molecular mass of approximately 550 kDa. From the data we concluded that A. aeolicus contains a NADH:ubiquinone oxidoreductase resembling complex I of mesophilic bacteria.  相似文献   

11.
Intermembrane transfer and exchange of tocopherol are not well understood. To study this we tested the ability of alpha-tocopherol containing unilamellar donor liposomes to inhibit the accumulation of lipid peroxidation products in acceptor liposomes. With molar ratios of alpha-tocopherol:phospholipids from 1:100 to 1:1000 in donor liposomes prepared by sonication of lipid dispersions, alpha-tocopherol was incorporated into both monolayers and was homogenously distributed in monomeric form without forming clusters in the liposomes. Concentrations of alpha-tocopherol which completely prevented the peroxidation of lipids were chosen for donor liposomes. Hence inhibition of lipid peroxidation in mixtures of donor and acceptor liposomes was determined by the antioxidant effect of alpha-tocopherol in acceptor liposomes which resulted from intermembrane transfer and exchange of alpha-tocopherol. Evidence was obtained that this was not due to fusion of donor with acceptor liposomes. The efficiency of the "intermembrane" antioxidant action of tocopherol was more pronounced when donor liposomes contained unsaturated phospholipids, indicating that the presence of unsaturated fatty acids in the outer monolayer phospholipids facilitates intermembrane tocopherol exchange.  相似文献   

12.
The natural compound ferulenol, a sesquiterpene prenylated coumarin derivative, was purified from Ferula vesceritensis and its mitochondrial effects were studied. Ferulenol caused inhibition of oxidative phoshorylation. At low concentrations, ferulenol inhibited ATP synthesis by inhibition of the adenine nucleotide translocase without limitation of mitochondrial respiration. At higher concentrations, ferulenol inhibited oxygen consumption. Ferulenol caused specific inhibition of succinate ubiquinone reductase without altering succinate dehydrogenase activity of the complex II. This inhibition results from a limitation of electron transfers initiated by the reduction of ubiquinone to ubiquinol in the ubiquinone cycle. This original mechanism of action makes ferulenol a useful tool to study the physiological role and the mechanism of electron transfer in the complex II. In addition, these data provide an additional mechanism by which ferulenol may alter cell function and demonstrate that mitochondrial dysfunction is an important determinant in Ferula plant toxicity.  相似文献   

13.
H Heinrich  S Werner 《Biochemistry》1992,31(46):11413-11419
In order to localize the ubiquinone-binding site of complex I (NADH:ubiquinone oxidoreductase), a novel photoreactive ubiquinone analogue (Q0C7ArN3) has been synthesized. It is shown that the direct chemical precursor of this analogue (Q0C7ArNO2) and the analogue itself are accepted as substrates in an enzyme assay utilizing ubiquinone-depleted mitochondrial membranes of Neurospora crassa. The activity of the enzyme applying these derivatives is inhibited by 50% at a concentration of 9 and 20 microM rotenone. Photoaffinity labeling experiments were performed with both isolated complex I and whole mitochondrial membranes of N. crassa under various conditions. In each of these experiments a protein subunit with an apparent molecular mass of about 9.5 kDa was labeled with high specificity. Radioactive labeling was totally prevented by the addition of ubiquinone-2 at concentrations higher than 500 microM but was not affected by comparable concentrations of rotenone or other hydrophobic substances. In the labeling experiments using whole membranes, the labeling signal was dramatically increased in the presence of 1.5 mM NADH. These results strongly suggest that the ubiquinone analogue interacts specifically with the enzyme.  相似文献   

14.
The effects of ubiquinol and vitamin E on ascorbate- and ADP-Fe3+-induced lipid peroxidation were investigated by measuring oxygen consumption and malondialdehyde formation in beef heart submitochondrial particles. In the native particles, lipid peroxidation showed an initial lag phase, which was prolonged by increasing concentrations of ascorbate. Lipid peroxidation in these particles was almost completely inhibited by conditions leading to a reduction of endogenous ubiquinone, such as the addition of succinate or NADH in the presence of antimycin. Lyophilization of the particles followed by three or four consecutive extractions with pentane resulted in a complete removal of vitamin E and a virtually complete removal of ubiquinone, as revealed by reversed-phase high pressure liquid chromatography. In these particles, lipid peroxidation showed no significant lag phase and was not inhibited by either increasing concentrations of ascorbate or conditions leading to ubiquinone reduction. Treatment of the particles with a pentane solution of vitamin E (alpha-tocopherol) restored the lag phase and its prolongation by increasing ascorbate concentrations. Treatment of the extracted particles with pentane containing ubiquinone-10 resulted in a restoration of the inhibition of lipid peroxidation by succinate or NADH in the presence of antimycin, but not the initial lag phase or its prolongation by increasing concentrations of ascorbate. Malonate and rotenone, which prevent the reduction of ubiquinone by succinate and NADH, respectively, abolished, as expected, the inhibition of the initiation of lipid peroxidation in both native and ubiquinone-10-supplemented particles. Reincorporation of both vitamin E and ubiquinone-10 restored both effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (alpha-tocopherol). We have tested the hypothesis that alpha-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 microM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received alpha-tocopherol supplements (400 IU RRR-alpha-tocopherol/day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM-1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-kappaB in isolated resting monocytes, nor any effect of alpha-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and alpha-tocopherol concentration. In conclusion, alpha-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration.  相似文献   

16.
Effect of phytyl side chain of vitamin E on its antioxidant activity   总被引:6,自引:0,他引:6  
Inhibition of the oxidation of methyl linoleate and soybean phosphatidylcholine in homogeneous solution and in aqueous dispersion by four chain-breaking antioxidants, vitamin E (alpha-tocopherol), 2,2,5,7,8-pentamethyl-6-chromanol, 2,6-di-tert-butyl-4-methylphenol, and stearyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, was studied to examine the effect of the phytyl side chain of vitamin E on its antioxidant activity. These four antioxidants exerted similar antioxidative activities. They were also effective as antioxidants in protecting the oxidation of soybean phosphatidylcholine liposomes in water dispersion. However, when they were incorporated into dimyristoyl phosphatidylcholine liposomes, only 2,2,5,7,8-pentamethyl-6-chromanol and 2,6-di-tert-butyl-4-methylphenol could suppress the oxidation of soybean phosphatidylcholine liposomes dispersed in the same aqueous system. It was concluded that the antioxidative properties of vitamin E and its model without the phytyl side chain are quite similar within micelles and liposomes as well as in homogeneous solution but that the phytyl side chain enhances the retainment of vitamin E in liposomes and suppresses the transfer of vitamin E between liposomal membranes.  相似文献   

17.
The purpose of this study was to evaluate the direct effect of oxygen free radicals produced by ultrasonic irradiation on ubiquinone and to compare the efficiency with which the antioxidant can compete with these radicals when it is both in aqueous solution and within the lipid bilayer. The main product obtained after insonation of aqueous solutions of ubiquinone-0 was ubiquinol, moreover some degradation occurred. The direct electron donor responsible for most of the ubiquinol generated by ultrasonic irradiation appeared to be superoxide radical. Addition reactions of hydroxyl radicals with aromatic ring structure led probably to degradation products of ubiquinone, which were not identified. Experiments were also performed to evaluate the efficiency with which ubiquinone-3 could react with oxygen radicals when it was within the lipid bilayer. The effect of presence or absence of a net surface charge was studied selecting a suitable bilayer including dimyristylphosphatidic acid or stearylamine in uncharged dimyristylphosphatidylcholine vesicles. In these systems hydroxyl radicals did not represent a potential danger for the antioxidant, the reaction between superoxide and ubiquinone-3 instead was significant only in positively charged membranes and gave rise to ubiquinol. It is suggested that ubiquinone acts as an antioxidant by stopping the propagation reaction.  相似文献   

18.
Kobayashi K  Tagawa S  Mogi T 《Biochemistry》2000,39(50):15620-15625
To elucidate a unique mechanism for the quinol oxidation in the Escherichia coli cytochrome bo, we applied pulse radiolysis technique to the wild-type enzyme with or without a single bound ubiquinone-8 at the high-affinity quinone binding site (Q(H)), using N-methylnicotinamide (NMA) as an electron mediator. With the ubiquinone bound enzyme, the reduction of the oxidase occurred in two phases as judged from kinetic difference spectra. In the faster phase, the transient species with an absorption maximum at 440 nm, a characteristic of the formation of ubisemiquinone anion radical, appeared within 10 micros after pulse radiolysis. In the slower phase, a decrease of absorption at 440 nm was accompanied by an increase of absorption at 428 and 561 nm, characteristic of the reduced form. In contrast, with the bound ubiquinone-8-free wild-type enzyme, NMA radicals directly reduced hemes b and o, though the reduction yield was low. These results indicate that a pathway for an intramolecular electron transfer from ubisemiquinone anion radical at the Q(H) site to heme b exists in cytochrome bo. The first-order rate constant of this process was calculated to be 1.5 x 10(3) s(-1) and is comparable to a turnover rate for ubiquinol-1. The rate constant for the intramolecular electron transfer decreased considerably with increasing pH, though the yields of the formation of ubisemiquinone anion radical and the subsequent reduction of the hemes were not affected. The pH profile was tightly linked to the stability of the bound ubisemiquinone in cytochrome bo [Ingledew, W. J., Ohnishi, T., and Salerno, J. C. (1995) Eur. J. Biochem. 227, 903-908], indicating that electron transfer from the bound ubisemiquinone at the Q(H) site to the hemes slows down at the alkaline pH where the bound ubisemiquinone can be stabilized. These findings are consistent with our previous proposal that the bound ubiquinone at the Q(H) site mediates electron transfer from the low-affinity quinol oxidation site in subunit II to low-spin heme b in subunit I.  相似文献   

19.
Shi H  Noguchi N  Xu Y  Niki E 《FEBS letters》1999,461(3):196-200
We have studied the interaction of coenzyme Q with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP(+)) and 1-methyl-4-phenylpyridinium (MPP(+)), the real neurotoxin to cause Parkinson's disease. Incubation of MPTP or MPDP(+) with rat brain synaptosomes induced complete reduction of endogenous ubiquinone-9 and ubiquinone-10 to corresponding ubiquinols. The reduction occurred in a time- and MPTP/MPDP(+) concentration-dependent manner. The reduction of ubiquinone induced by MPDP(+) went much faster than that by MPTP. MPTP did not reduce liposome-trapped ubiquinone-10, but MPDP(+) did. The real toxin MPP(+) did not reduce ubiquinone in either of the systems. The reduction by MPTP but not MPDP(+) was completely prevented by pargyline, a type B monoamine oxidase (MAO-B) inhibitor, in the synaptosomes. The results indicate that involvement of MAO-B is critical for the reduction of ubiquinone by MPTP but that MPDP(+) is a reductant of ubiquinone per se. It is suggested that ubiquinone could be an electron acceptor from MPDP(+) and promote the conversion from MPDP(+) to MPP(+) in vivo, thus accelerating the neurotoxicity of MPTP.  相似文献   

20.
The events accompanying the inhibitory effect of alpha-tocopherol and/or ascorbate on the peroxidation of soybean L-alpha-phosphatidylcholine liposomes, which are an accepted model of biological membranes, were investigated by electron paramagnetic resonance, optical and polarographic methods. The presence of alpha-tocopherol radical in the concentration range 10(-8)-10(-7) M was detected from its EPR spectrum during the peroxidation of liposomes, catalysed by the Fe3+-triethylenetatramine complex. The alpha-tocopherol radical, generated in the phosphatidylcholine bilayer, is accessible to ascorbic acid, present in the aqueous phase at physiological concentrations. Ascorbic acid regenerates from it the alpha-tocopherol itself. A kinetic rate constant of about 2 X 10(5) M-1 X s-1 was estimated from the reaction as it occurs under the adopted experimental conditions. The scavenging effect of alpha-tocopherol on lipid peroxidation is maintained as long a ascorbic acid is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号