首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
植物RACK1蛋白研究进展   总被引:2,自引:0,他引:2  
RACK1(蛋白激酶C受体)是一种色氨酸-天门冬氨酸域(WD40结构)重复蛋白。它是一种多功能支架蛋白, 结合来自不同转导通路的信号分子并在多种哺乳动物发育过程中起关键作用。在植物中也存在RACK1同源基因, 如拟南芥基因组有3个编码RACK1蛋白质的基因, 这3个蛋白质与哺乳动物RACK1在氨基酸水平的相似性都超过75%。此外, 植物RACK1蛋白质包含的WD40数量、位置和蛋白激酶C结合位点的结构域在很大程度上是保守的。该文对植物RACK1蛋白的发现、结构及其在信号转导方面的功能进行综述。  相似文献   

2.
To isolate and characterize proteins that interact with the unique domain and SH3 and SH2 domains of Src and potentially regulate Src activity, we used the yeast two-hybrid assay to screen a human lung fibroblast cDNA library. We identified RACK1, a receptor for activated C kinase and a homolog of the β subunit of G proteins, as a Src-binding protein. Using GST-Src fusion proteins, we determined that RACK1 binds to the SH2 domain of Src. Coimmunoprecipitation of Src and RACK1 was demonstrated with NIH 3T3 cells. Purified GST-RACK1 inhibited the in vitro kinase activity of Src in a concentration-dependent manner. GST-RACK1 (2 μM) inhibited the activities of purified Src and Lck tyrosine kinases by 40 to 50% but did not inhibit the activities of three serine/threonine kinases that we tested. Tyrosine phosphorylation on many cellular proteins decreased in 293T cells that transiently overexpressed RACK1. Src activity and cell growth rates decreased by 40 to 50% in NIH 3T3 cells that stably overexpressed RACK1. Flow cytometric analyses revealed that RACK1-overexpressing cells do not show an increased rate of necrosis or apoptosis but do spend significantly more time in G0/G1 than do wild-type cells. Prolongation of G0/G1 could account for the increased doubling time of RACK1-overexpressing cells. We suggest that RACK1 exerts its effect on the NIH 3T3 cell cycle in part by inhibiting Src activity.  相似文献   

3.
The Schizosaccharomyces pombe ran1/pat1 gene regulates the transition between mitosis and meiosis. Inactivation of Ran1 (Pat1) kinase is necessary and sufficient for cells to exit the cell cycle and undergo meiosis. The yeast two-hybrid interaction trap was used to identify protein partners for Ran1/Pat1. Here we report the identification of one of these, Cpc2. Cpc2 encodes a homologue of RACK1, a WD protein with homology to the beta subunit of heterotrimeric G proteins. RACK1 is a highly conserved protein, although its function remains undefined. In mammalian cells, RACK1 physically associates with some signal transduction proteins, including Src and protein kinase C. Fission yeast cells containing a cpc2 null allele are viable but cell cycle delayed. cpc2Delta cells fail to accumulate in G(1) when starved of nitrogen. This leads to defects in conjugation and meiosis. Copurification studies show that although Cpc2 and Ran1 (Pat1) physically associate, Cpc2 does not alter Ran1 (Pat1) kinase activity in vitro. Using a Ran1 (Pat1) fusion to green fluorescent protein, we show that localization of the kinase is impaired in cpc2Delta cells. Thus, in parallel with the proposed role of RACK1 in mammalian cells, fission yeast cpc2 may function as an anchoring protein for Ran1 (Pat1) kinase. All defects associated with loss of cpc2 are reversed in cells expressing mammalian RACK1, demonstrating that the fission yeast and mammalian gene products are indeed functional homologues.  相似文献   

4.
From our previous studies, we learned that syndecan-2/p120-GAP complex provided docking site for Src to prosecute tyrosine kinase activity upon transformation with oncogenic ras. And, RACK1 protein was reactive with syndecan-2 to keep Src inactivated, but not when Ras was overexpressed. In the present study, we characterized the reaction between RACK1 protein and Ras. RACK1 was isolated from BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q61K)] of shrimp Penaeus japonicus and RACK1 was revealed to react with GTP-K(B)-Ras(Q61K), not GDP-K(B)-Ras(Q61K). This selective interaction between RACK1 and GTP-K(B)-Ras(Q61K) was further confirmed with RACK1 of human placenta and mouse RACK1-encoded fusion protein. We found that RACK1 was dimerized upon reaction with GTP-K(B)-Ras(Q61K), as well as with 14-3-3beta and geranylgeranyl pyrophosphate, as revealed by phosphorylation with Src tyrosine kinase. We reported the complex of RACK1/GTP-K(B)-Ras(Q61K) reacted selectively with p120-GAP. This interaction was sufficient to dissemble RACK1 into monomers, a preferred form to compete for the binding of syndecan-2. These data indicate that the reaction of GTP-K(B)-Ras(Q61K) with RACK1 in dimers may operate a mechanism to deplete RACK1 from reaction with syndecan-2 upon transformation by oncogenic ras and the RACK1/GTP-Ras complex may provide a route to react with p120-GAP and recycle monomeric RACK1 to syndecan-2.  相似文献   

5.
A yeast two-hybrid approach was used to discern possible new effectors for the betagamma subunit of heterotrimeric G proteins. Three of the clones isolated are structurally similar to Gbeta, each exhibiting the WD40 repeat motif. Two of these proteins, the receptor for activated C kinase 1 (RACK1) and the dynein intermediate chain, co-immunoprecipitate with Gbetagamma using an anti-Gbeta antibody. The third protein, AAH20044, has no known function; however, sequence analysis indicates that it is a WD40 repeat protein. Further investigation with RACK1 shows that it not only interacts with Gbeta(1)gamma(1) but also unexpectedly with the transducin heterotrimer Galpha(t)beta(1)gamma(1). Galpha(t) alone does not interact, but it must contribute to the interaction because the apparent EC(50) value of RACK1 for Galpha(t)beta(1)gamma(1) is 3-fold greater than that for Gbeta(1)gamma(1) (0.1 versus 0.3 microm). RACK1 is a scaffold that interacts with several proteins, among which are activated betaIIPKC and dynamin-1 (1). betaIIPKC and dynamin-1 compete with Gbeta(1)gamma(1) and Galpha(t)beta(1)gamma(1) for interaction with RACK1. These findings have several implications: 1) that WD40 repeat proteins may interact with each other; 2) that Gbetagamma interacts differently with RACK1 than with its other known effectors; and/or 3) that the G protein-RACK1 complex may constitute a signaling scaffold important for intracellular responses.  相似文献   

6.
Liedtke CM  Wang X 《Biochemistry》2006,45(34):10270-10277
Regulation of the CFTR Cl channel function involves a protein complex of activated protein kinase Cepsilon (PKCepsilon) bound to RACK1, a receptor for activated C kinase, and RACK1 bound to the human Na(+)/H(+) exchanger regulatory factor (NHERF1) in human airway epithelial cells. Binding of NHERF1 to RACK1 is mediated via a NHERF1-PDZ1 domain. The goal of this study was to identify the binding motif for human NHERF1 on RACK1. We examined the site of binding of NHERF1 on RACK1 using peptides encoding the seven WD40 repeat units of human RACK1. One WD repeat peptide, WD5, directly binds NHERF1 and the PDZ1 domain with similar EC(50) values, blocks binding of recombinant RACK1 and NHERF1, and pulls down endogenous RACK1 from Calu-3 cell lysate in a dose-dependent manner. The remaining WD repeat peptides did not block RACK1-NHERF1 binding. An 11-amino acid peptide encoding a site on the PDZ1 domain blocks binding of the WD5 repeat peptide with the PDZ1 domain. An N-terminal 12-amino acid segment of the WD5 repeat peptide, which comprises the first of four antiparallel beta-strands, dose-dependently binds to the PDZ1 domain of NHERF1 and blocks binding of the PDZ1 domain to RACK1. These results suggest that the binding site might form a beta-turn with topology sufficient for binding of NHERF1. Our results also demonstrate binding of NHERF to RACK1 at the WD5 repeat, which is distinct from the PKCepsilon binding site on the WD6 repeat of RACK1.  相似文献   

7.
Mammalian cDNA expression cloning was used to identify novel regulators of integrin-mediated cell-substratum adhesions. Using a focal adhesion morphology screen, we identified a cDNA with homology to a receptor for activated protein kinase C (RACK1) that induced a loss of central focal adhesions and stress fibers in CHO-K1 cells. The identified cDNA was a C-terminal truncated form of RACK1 that had one of the putative protein kinase C binding sites but lacked the region proposed to bind the beta integrin cytoplasmic domain and the tyrosine kinase Src. To investigate the role of RACK1 during cell spreading and migration, we tagged RACK1, a C-terminal truncated RACK1 and a point mutant that does not bind Src (RACK Y246F) with green fluorescent protein and expressed them in CHO-K1 cells. We found that RACK1 regulates the organization of focal adhesions and that it localizes to a subset of nascent focal complexes in areas of protrusion that contain paxillin but not vinculin. We also found that RACK1 regulates cell protrusion and chemotactic migration through its Src binding site. Together, these findings suggest that RACK1 regulates adhesion, protrusion, and chemotactic migration through its interaction with Src.  相似文献   

8.
Receptor for Activated C Kinase, RACK1, is an adaptor protein that regulates signaling via Src and PKC-dependent pathways, and has been implicated in cell migration. In this study we demonstrate novel functions for RACK1 in regulating adhesion dynamics during cell migration. We report that cells lacking RACK1 are less motile and show reduced dynamics of paxillin and talin at focal complexes. To investigate the role of the RACK1/Src interactions in adhesion dynamics, we used RACK1 in which the putative Src binding site has been mutated (RACK Y246F). RACK1-deficient cells showed enhanced c-Src activity that was rescued by expression of wild type RACK1, but not by RACK Y246F. Expression of wild type RACK1, but not RACK Y246F, was also able to rescue the adhesion and migration defects observed in the RACK1-deficient cells. Furthermore, our findings indicate that RACK1 functions to regulate paxillin phosphorylation and that its effects on paxillin dynamics require the Src-mediated phosphorylation of tyrosine 31/118 on paxillin. Taken together, these findings support a novel role for RACK1 as a key regulator of cell migration and adhesion dynamics through the regulation of Src activity, and the modulation of paxillin phosphorylation at early adhesions.  相似文献   

9.
Efficient signaling requires accurate spatial and temporal compartmentalization of proteins. RACK1 is a scaffolding protein that fulfils this role through interaction of binding partners with one of its seven WD40 domains. We recently identified the kinase Fyn and the NR2B subunit of the N-methyl-D-Aspartate receptor (NMDAR) as binding partners of RACK1. Scaffolding of Fyn near its substrate NR2B by RACK1 inhibits Fyn phosphorylation of NR2B and thereby negatively regulates channel function. We found that Fyn and NR2B share the same binding site on RACK1; however, their binding to RACK1 is not mutually exclusive (Yaka, R., Thornton, C., Vagts, A. J., Phamluong, K., Bonci, A., and Ron, D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5710-5715). We therefore tested the hypothesis that RACK1 forms a homodimer that allows the simultaneous binding of Fyn and NR2B. We found that RACK1 binds to itself both in vitro and in the brain. Deletion analyses identified a RACK1-RACK1 dimer-binding site within the 4th WD40 repeat, and application of the 4th WD40 repeat or a peptide derivative to hippocampal slices inhibited NMDAR activity. We further found that in hippocampal slices, both RACK1 and NR2B associated with another WD40 protein, the beta-subunit of G protein (Gbeta), previously shown to heterodimerize with RACK1 in vitro (Dell, E. J., Connor, J., Chen, S., Stebbins, E. G., Skiba, N. P., Mochly-Rosen, D., and Hamm, H. E. (2002) J. Biol. Chem. 277, 49888-49895). However, activation of the pituitary adenylate cyclase polypeptide (1-38) G protein-coupled receptor, previously found to induce the dissociation of RACK1 from the NMDAR complex (Yaka, R., He, D. Y., Phamluong, K., and Ron, D. (2003) J. Biol. Chem. 278, 9630-9638), attenuated the association of Gbeta with RACK1 and NR2B. Based on these results, we propose that WD40-mediated homo- and heterodimerization of RACK1 mediate the formation of a transient signaling complex that includes the NMDAR, a G protein and Fyn.  相似文献   

10.
The insulin receptor and insulin-like growth factor 1 receptor (IGF-1R), activated by their ligands, control metabolism, cell survival, and proliferation. Although the signaling pathways activated by these receptors are well characterized, regulation of their activity is poorly understood. To identify regulatory proteins we undertook a two-hybrid screen using the IGF-1R beta-chain as bait. This screen identified Receptor for Activated C Kinases (RACK1) as an IGF-1R-interacting protein. RACK1 also interacted with the IGF-1R in fibroblasts and MCF-7 cells and with endogenous insulin receptor in COS cells. Interaction with the IGF-1R did not require tyrosine kinase activity or receptor autophosphorylation but did require serine 1248 in the C terminus. Overexpression of RACK1 in either R+ fibroblasts or MCF-7 cells inhibited IGF-1-induced phosphorylation of Akt, whereas it enhanced phosphorylation of Erks and Jnks. Src, the p85 subunit of phosphatidylinositol 3-kinase, and SHP-2 were all associated with RACK1 in these cells. Interestingly, the proliferation of MCF-7 cells was enhanced by overexpression of RACK1, whereas IGF-1-mediated protection from etoposide killing was greatly reduced. Altogether the data indicate that RACK1 is an IGF-1R-interacting protein that can modulate receptor signaling and suggest that RACK1 has a particular role in regulating Akt activation and cell survival.  相似文献   

11.
Cascades of kinases and phosphatases are regulated by selective protein-protein interactions that are essential for signal transduction. Peptide modulators of these interactions have been used to dissect the function of individual components of the signaling cascade, without relying on either the over- or underexpression of proteins. Previously, we identified RACK1 as an endogenous substrate, binding partner and inhibitor of Src tyrosine kinases. Here, we utilized cell-permeable peptides that selectively disrupt or enhance the interaction of RACK1 and Src to further examine the function of RACK1. Our results provide direct physiologic evidence that RACK1 regulates growth of NIH3T3 cells by suppressing the activity of Src and other cell cycle regulators in G1, and delaying entry into S phase. They also demonstrate the potential for using peptide modulators of Src activity as a tool for regulating cell growth, and for designing new strategies for cancer therapy that target specific protein-protein interactions.  相似文献   

12.
The large conductance calcium-activated potassium channel, or BKCa channel, plays an important feedback role in a variety of physiological processes, including neurotransmitter release and smooth muscle contraction. Some reports have suggested that this channel forms a stable complex with regulators of its function, including several kinases and phosphatases. To further define such signaling complexes, we used the yeast two-hybrid system to screen a human aorta cDNA library for proteins that bind to the BKCa channel's intracellular, COOH-terminal "tail". One of the interactors we identified is the protein receptor for activated C kinase 1 (RACK1). RACK1 is a member of the WD40 protein family, which also includes the G protein -subunits. Consistent with an important role in BKCa-channel regulation, RACK1 has been shown to be a scaffolding protein that interacts with a wide variety of signaling molecules, including cSRC and PKC. We have confirmed the interaction between RACK1 and the BKCa channel biochemically with GST pull-down and coimmunoprecipitation experiments. We have observed some co-localization of RACK1 with the BKCa channel in vascular smooth muscle cells with immunocytochemical experiments, and we have found that RACK1 has effects on the BKCa channel's biophysical properties. Thus RACK1 binds to the BKCa channel and it may form part of a BKCa-channel regulatory complex in vascular smooth muscle. calcium-activated potassium channel; protein kinase C; smooth muscle  相似文献   

13.
Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that gamma-tubulin (gamma-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, gamma-tubulin, and with anti-phosphotyrosine antibody revealed that gamma-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in gamma-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated gamma-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing gamma-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of gamma-tubulin interaction with tubulin dimers or other proteins during neurogenesis.  相似文献   

14.
15.
The δ-isozyme (type II) of diacylglycerol kinase (DGK) is known to positively regulate growth factor receptor signaling. DGKδ, which is distributed to clathrin-coated vesicles, interacts with DGKδ itself, protein kinase C and AP2α. To search for additional DGKδ-interacting proteins, we screened a yeast two-hybrid cDNA library from HepG2 cells using aa 896–1097 of DGKδ as a bait. We identified aa 184–317 (WD40 repeats 5–7) of receptor for activated C kinase 1 (RACK1), which interacts with various important signaling molecules, as a novel binding partner of DGKδ. Co-immunoprecipitation analysis, using COS-7 cells co-expressing RACK1 and DGKδ, revealed that RACK1 selectively interacted with DGKδ, but not with type I DGKs, in mammalian cells. The interaction was dynamically regulated by phorbol ester. Intriguingly, DGKδ appeared to recruit RACK1 to clathrin-coated vesicles and co-localized with RACK1. These results suggest that DGKδ serves as an adaptor protein to regulate the localization of the versatile scaffold protein, RACK1.  相似文献   

16.
17.
RACK1 regulates G1/S progression by suppressing Src kinase activity   总被引:14,自引:0,他引:14       下载免费PDF全文
Cancer genes exert their greatest influence on the cell cycle by targeting regulators of a critical checkpoint in late G(1). Once cells pass this checkpoint, they are fated to replicate DNA and divide. Cancer cells subvert controls at work at this restriction point and remain in cycle. Previously, we showed that RACK1 inhibits the oncogenic Src tyrosine kinase and NIH 3T3 cell growth. RACK1 inhibits cell growth, in part, by prolonging G(0)/G(1). Here we show that RACK1 overexpression induces a partial G(1) arrest by suppressing Src activity at the G(1) checkpoint. RACK1 works through Src to inhibit Vav2, Rho GTPases, Stat3, and Myc. Consequently, cyclin D1 and cyclin-dependent kinases 4 and 2 (CDK4 and CDK2, respectively) are suppressed, CDK inhibitor p27 and retinoblastoma protein are activated, E2F1 is sequestered, and G(1)/S progression is delayed. Conversely, downregulation of RACK1 by short interference RNA activates Src-mediated signaling, induces Myc and cyclin D1, and accelerates G(1)/S progression. RACK1 suppresses Src- but not mitogen-activated protein kinase-dependent platelet-derived growth factor signaling. We also show that Stat3 is required for Rac1 induction of Myc. Our results reveal a novel mechanism of cell cycle control in late G(1) that works via an endogenous inhibitor of the Src kinase.  相似文献   

18.
RACK1 regulates specific functions of Gbetagamma   总被引:6,自引:0,他引:6  
We showed previously that Gbetagamma interacts with Receptor for Activated C Kinase 1 (RACK1), a protein that not only binds activated protein kinase C (PKC) but also serves as an adaptor/scaffold for many signaling pathways. Here we report that RACK1 does not interact with Galpha subunits or heterotrimeric G proteins but binds free Gbetagamma subunits released from activated heterotrimeric G proteins following the activation of their cognate receptors in vivo. The association with Gbetagamma promotes the translocation of RACK1 from the cytosol to the membrane. Moreover, binding of RACK1 to Gbetagamma results in inhibition of Gbetagamma-mediated activation of phospholipase C beta2 and adenylyl cyclase II. However, RACK1 has no effect on other functions of Gbetagamma, such as activation of the mitogen-activated protein kinase signaling pathway or chemotaxis of HEK293 cells via the chemokine receptor CXCR2. Similarly, RACK1 does not affect signal transduction through the Galpha subunits of G(i), G(s), or G(q). Collectively, these findings suggest a role of RACK1 in regulating specific functions of Gbetagamma.  相似文献   

19.
20.
A central feature of signal transduction downstream of both receptor and oncogenic tyrosine kinases is the Ras-dependent activation of a protein kinase cascade consisting of Raf-1, Mek (MAP kinase kinase) and ERKs (MAP kinases). To study the role of tyrosine kinase activity in the activation of Raf-1, we have examined the properties of p74Raf-1 and oncogenic Src that are necessary for activation of p74Raf-1. We show that in mammalian cells activation of p74Raf-1 by oncogenic Src requires pp60Src to be myristoylated and the ability of p74Raf-1 to interact with p21Ras-GTP. The Ras/Raf interaction is required for p21Ras-GTP to bring p74Raf-1 to the plasma membrane for phosphorylation at tyrosine 340 or 341, probably by membrane-bound pp60Src. When oncogenic Src is expressed with Raf-1, p74Raf-1 is activated 5-fold; however, when co-expressed with oncogenic Ras and Src, Raf-1 is activated 25-fold and this is associated with a further 3-fold increase in tyrosine phosphorylation. Thus, p21Ras-GTP is the limiting component in bringing p74Raf-1 to the plasma membrane for tyrosine phosphorylation. Using mutants of Raf-1 at Tyr340/341, we show that in addition to tyrosine phosphorylation at these sites, there is an additional activation step resulting from p21Ras-GTP recruiting p74Raf-1 to the plasma membrane. Thus, the role of Ras in Raf-1 activation is to bring p74Raf-1 to the plasma membrane for at least two different activation steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号