首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Poliovirus (PV), when injected intramuscularly into the calf, is incorporated into the sciatic nerve and causes an initial paralysis of the inoculated limb in transgenic mice carrying the human PV receptor (hPVR/CD155) gene. Here, we demonstrated by using an immunoelectron microscope that PV particles exist on vesicle structures in nerve terminals of neuromuscular junctions. We also demonstrated in glutathione S-transferase pull-down experiments that the dynein light chain, Tctex-1, interacts directly with the cytoplasmic domain of hPVR. In the axons of differentiated rat PC12 cells transfected with expression vectors for hPVRs, vesicles composed of PV and hPVR alpha, as well as a mutant hPVR alpha (hPVRM alpha) that had a reduced ability to bind Tctex-1, colocalized with Tctex-1. However, vesicles containing PV, dextran, and hPVR alpha had only retrograde motion, while those containing PV, dextran, and hPVRM alpha had anterograde or retrograde motion. Topical application of the antimicrotubule agent vinblastine to the sciatic nerve reduced the amount of virus transported from the calf to the spinal cord. These results suggest that direct efficient interaction between the cytoplasmic domain and Tctex-1 is essential for the efficient retrograde transport of PV-containing vesicles along microtubules in vivo.  相似文献   

2.
Ohka S 《Uirusu》2006,56(1):51-58
It is considered there are two main pathways for poliovirus dissemination towards the central nervous system in humans. One is the pathway through the blood brain barrier. The orally ingested virus invades into the blood circulation, and then the virus permeates into the central nervous system through the blood brain barrier. The other is the neural pathway. In this pathway, the intramuscularly-inoculated virus is transported through the axons from the synapse to the cell body in the central nervous system. We have developed the oral infection system using the mouse models. Moreover, we proposed the possibility that PV is transcytosed through the brain capillary epithelia in a specific manner. As for the neural pathway, we have proved that PV is endocytosed into CD155 containing vesicles and the vesicles are retrogradely transported in the axon of rat primary motor neuron. We have also shown that the cytoplasmic dynein takes part in the transport.  相似文献   

3.
Tctex-1, a light-chain component of the cytoplasmic dynein motor complex, can function independently of dynein to regulate multiple steps in neuronal development. However, how dynein-associated and dynein-free pools of Tctex-1 are maintained in the cell is not known. Tctex-1 was recently identified as a Gbetagamma-binding protein and shown to be identical to the receptor-independent activator of G protein signaling AGS2. We propose a novel role for the interaction of Gbetagamma with Tctex-1 in neurite outgrowth. Ectopic expression of either Tctex-1 or Gbetagamma promotes neurite outgrowth whereas interfering with their function inhibits neuritogenesis. Using embryonic mouse brain extracts, we demonstrate an endogenous Gbetagamma-Tctex-1 complex and show that Gbetagamma co-segregates with dynein-free fractions of Tctex-1. Furthermore, Gbeta competes with the dynein intermediate chain for binding to Tctex-1, regulating assembly of Tctex-1 into the dynein motor complex. We propose that Tctex-1 is a novel effector of Gbetagamma, and that Gbetagamma-Tctex-1 complex plays a key role in the dynein-independent function of Tctex-1 in regulating neurite outgrowth in primary hippocampal neurons, most likely by modulating actin and microtubule dynamics.  相似文献   

4.
TcTex-1, one of three dynein light chains of the dynein motor complex, has been implicated in targeting and binding cargoes to cytoplasmic dynein for retrograde or apical transport. Interactions between TcTex-1 and a diverse set of proteins such as the dynein intermediate chain, Fyn, DOC2, FIP1, the poliovirus receptor, CD155, and the rhodopsin cytoplasmic tail have been reported; yet, despite the broad range of targets, a consensus binding sequence remains uncertain. Consequently, we have solved the crystal structure of the full-length Drosophila homolog of TcTex-1 to 1.7 A resolution using MAD phasing to gain insight into its function and target specificity. The structure is homodimeric with a domain swapping of beta-strand 2 and has a fold similar to the dynein light chain, LC8. Based on structural alignment, the TcTex-1 and LC8 sequences show no identity, although the root mean square deviation between secondary structural elements is less than 1.6 A. Moreover, the N terminus, which is equivalent to beta-strand 1 in LC8, is splayed out and binds to a crystallographic dimer as an anti-parallel beta-strand at the same position as the neuronal nitric-oxide synthase peptide in the LC8 complex. Similarity to LC8 and comparison to the LC8-neuronal nitricoxide synthase complex suggest that TcTex-1 binds its targets in a similar manner as LC8 and provides insight to the lack of strict sequence identity among the targets for TcTex-1.  相似文献   

5.
6.
The homodimeric light chains LC8 and Tctex-1 are integral parts of the microtubule motor cytoplasmic dynein, as they directly associate with dynein intermediate chain IC and various cellular cargoes. These light chains appear to regulate assembly of the dynein complex by binding to and promoting dimerization of IC. In addition, both LC8 and Tctex-1 play roles in signaling, apoptosis, and neuronal development that are independent of their function in dynein, but it is unclear how these various activities are modulated. Both light chains undergo specific phosphorylation, and here we present biochemical and NMR analyses of phosphomimetic mutants that indicate how phosphorylation may regulate light chain function. For both LC8 and Tctex-1, phosphorylation promotes dissociation from IC while retaining their binding activity with other non-dynein proteins. Although LC8 and Tctex-1 are homologs having a common fold, their reduced affinity for IC upon phosphorylation arises by different mechanisms. In the case of Tctex-1, phosphorylation directly masks the IC binding site at the dimer interface, whereas for LC8, phosphorylation dissociates the dimer and indirectly eliminates the binding site. This modulation of the monomer-dimer equilibrium by phosphorylation provides a novel mechanism for discrimination among LC8 binding partners.  相似文献   

7.
A W Tai  J Z Chuang  C Bode  U Wolfrum  C H Sung 《Cell》1999,97(7):877-887
The interaction of cytoplasmic dynein with its cargoes is thought to be indirectly mediated by dynactin, a complex that binds to the dynein intermediate chain. However, the roles of other dynein subunits in cargo binding have been unknown. Here we demonstrate that dynein translocates rhodopsin-bearing vesicles along microtubules. This interaction occurs directly between the C-terminal cytoplasmic tail of rhodopsin and Tctex-1, a dynein light chain. C-terminal rhodopsin mutations responsible for retinitis pigmentosa inhibit this interaction. Our results point to an alternative docking mechanism for cytoplasmic dynein, provide novel insights into the role of motor proteins in the polarized transport of post-Golgi vesicles, and shed light on the molecular basis of retinitis pigmentosa.  相似文献   

8.
Dynein is a minus-end-directed microtubule-associated motor protein involved in cargo transport in the cytoplasm. African swine fever virus (ASFV), a large DNA virus, hijacks the microtubule motor complex cellular transport machinery during virus infection of the cell through direct binding of virus protein p54 to the light chain of cytoplasmic dynein (LC8). Interaction of p54 and LC8 occurs both in vitro and in cells, and the two proteins colocalize at the microtubular organizing center during viral infection. p50/dynamitin, a dominant-negative inhibitor of dynein-dynactin function, impeded ASFV infection, suggesting an essential role for dynein during virus infection. A 13-amino-acid domain of p54 was sufficient for binding to LC8, an SQT motif within this domain being critical for this binding. Direct binding of a viral structural protein to LC8, a small molecule of the dynein motor complex, could constitute a molecular mechanism for microtubule-mediated virus transport.  相似文献   

9.
The minus-ended microtubule motor cytoplasmic dynein contains a number of low molecular weight light chains including the 14-kDa Tctex-1. The assembly of Tctex-1 in the dynein complex and its function are largely unknown. Using partially deuterated, (15)N,(13)C-labeled protein samples and transverse relaxation-optimized NMR spectroscopic techniques, the secondary structure and overall topology of Tctex-1 were determined based on the backbone nuclear Overhauser effect pattern and the chemical shift values of the protein. The data showed that Tctex-1 adopts a structure remarkably similar to that of the 8-kDa light chain of the motor complex (DLC8), although the two light chains share no amino acid sequence homology. We further demonstrated that Tctex-1 binds directly to the intermediate chain (DIC) of dynein. The Tctex-1 binding site on DIC was mapped to a 19-residue fragment immediately following the second alternative splicing site of DIC. Titration of Tctex-1 with a peptide derived from DIC, which contains a consensus sequence R/KR/KXXR/K found in various Tctex-1 target proteins, indicated that Tctex-1 binds to its targets in a manner similar to that of DLC8. The experimental results presented in this study suggest that Tctex-1 is likely to be a specific cargo adaptor for the dynein motor complex.  相似文献   

10.
Cytoplasmic dynein is the major molecular motor involved in minus-end-directed cellular transport along microtubules. There is increasing evidence that the retrograde transport of herpes simplex virus type 1 along sensory axons is mediated by cytoplasmic dynein, but the viral and cellular proteins involved are not known. Here we report that the herpes simplex virus outer capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and is sufficient to mediate retrograde transport of viral capsids in a cellular model. A library of herpes simplex virus capsid and tegument structural genes was constructed and tested for interactions with dynein subunits in a yeast two-hybrid system. A strong interaction was detected between VP26 and the homologous 14-kDa dynein light chains RP3 and Tctex1. In vitro pull-down assays confirmed binding of VP26 to RP3, Tctex1, and intact cytoplasmic dynein complexes. Recombinant herpes simplex virus capsids were constructed either with or without VP26. In pull-down assays VP26+ capsids bound to RP3; VP26-capsids did not. To investigate intracellular transport, the recombinant viral capsids were microinjected into living cells and incubated at 37 degrees C. After 1 h VP26+ capsids were observed to co-localize with RP3, Tctex1, and microtubules. After 2 or 4 h VP26+ capsids had moved closer to the cell nucleus, whereas VP26-capsids remained in a random distribution. We propose that VP26 mediates binding of incoming herpes simplex virus capsids to cytoplasmic dynein during cellular infection, through interactions with dynein light chains.  相似文献   

11.
Regulated activity of the retrograde molecular motor, cytoplasmic dynein, is crucial for multiple biological activities, and failure to regulate this activity can result in neuronal migration retardation or neuronal degeneration. The activity of dynein is controlled by the LIS1–Ndel1–Nde1 protein complex that participates in intracellular transport, mitosis, and neuronal migration. These biological processes are subject to tight multilevel modes of regulation. Palmitoylation is a reversible posttranslational lipid modification, which can dynamically regulate protein trafficking. We found that both Ndel1 and Nde1 undergo palmitoylation in vivo and in transfected cells by specific palmitoylation enzymes. Unpalmitoylated Ndel1 interacts better with dynein, whereas the interaction between Nde1 and cytoplasmic dynein is unaffected by palmitoylation. Furthermore, palmitoylated Ndel1 reduced cytoplasmic dynein activity as judged by Golgi distribution, VSVG and short microtubule trafficking, transport of endogenous Ndel1 and LIS1 from neurite tips to the cell body, retrograde trafficking of dynein puncta, and neuronal migration. Our findings indicate, to the best of our knowledge, for the first time that Ndel1 palmitoylation is a new mean for fine‐tuning the activity of the retrograde motor cytoplasmic dynein.  相似文献   

12.
Molecular motors such as kinesin superfamily proteins (KIFs), dynein superfamily proteins and myosin superfamily proteins have diverse and fundamental roles in many cellular processes, including neuronal development and the pathogenesis of neuronal diseases. During neuronal development, KIFs take significant roles in the regulation of axon-collateral branch extension, which is essential for brain wiring. Cytoplasmic dynein together with LIS1 takes pivotal roles in neocortical layer formation. In axons, anterograde transport is mediated by KIFs, whereas retrograde transport is mediated mainly by cytoplasmic dynein, and dysfunction of motors results in neurodegenerative diseases. In dendrites, the transport of NMDA and AMPA receptors is mediated by KIFs, and the motor has been shown to play a significant part in establishing learning and memory.  相似文献   

13.
A mechanism for transmission of the infectious prions from the peripheral nerve ends to the central nervous system is thought to involve neuronal anterograde and retrograde transport systems. Cytoplasmic dynein is the major retrograde transport molecular motor whose function is impaired in the Legs at odd angles (Loa) mouse due to a point mutation in the cytoplasmic dynein heavy chain subunit. Loa is a dominant trait which causes neurodegeneration and progressive motor function deficit in the heterozygotes. To investigate the role of cytoplasmic dynein in the transmission of prions within neurons, we inoculated heterozygous Loa and wild type littermates with mouse-adapted scrapie prions intracerebrally and intraperitonially, and determined the incubation period to onset of clinical prion disease. Our data indicate that the dynein mutation in the heterozygous state does not affect prion disease incubation time or its neuropathology in Loa mice.  相似文献   

14.
Despite the existence of multiple subunit isoforms for the microtubule motor cytoplasmic dynein, it has not yet been directly shown that dynein complexes with different compositions exhibit different properties. The 14-kD dynein light chain Tctex-1, but not its homologue RP3, binds directly to rhodopsin's cytoplasmic COOH-terminal tail, which encodes an apical targeting determinant in polarized epithelial Madin-Darby canine kidney (MDCK) cells. We demonstrate that Tctex-1 and RP3 compete for binding to dynein intermediate chain and that overexpressed RP3 displaces endogenous Tctex-1 from dynein complexes in MDCK cells. Furthermore, replacement of Tctex-1 by RP3 selectively disrupts the translocation of rhodopsin to the MDCK apical surface. These results directly show that cytoplasmic dynein function can be regulated by its subunit composition and that cytoplasmic dynein is essential for at least one mode of apical transport in polarized epithelia.  相似文献   

15.
COOH-terminal cytoplasmic domains of G protein-coupled receptors (GPCRs) have been shown to carry determinants that control their cell surface localization, internalization, and recycling. In attempts to seek cellular proteins that mediate these processes of PTH/PTH-related protein receptor (PTHR), one of the class B GPCRs, we have found that Tctex-1, a 14kDa light chain of cytoplasmic dynein motor complex, interacts with the COOH-terminal tail of the receptor. A 34-amino-acid stretch of the receptor responsible for binding to Tctex-1 has a bipartite structure consisting of a motif previously implicated in binding of some proteins to Tctex-1 and a putative new consensus sequence. Site-directed mutations or a 20-amino-acid deletion in the bipartite consensus binding sequence abolished the association of the PTHR COOH terminus with Tctex-1 in vitro. A GFP-fused mutant PTHR impaired in binding to Tctex-1 expressed in MDCK cells showed a decreased rate of internalization in response to PTH compared to that of the wild type.  相似文献   

16.
Dynein light chains are accessory subunits of the cytoplasmic dynein complex, a minus-end directed microtubule motor. Here, we demonstrate that the dynein light chain Tctex-1 associates with unattached kinetochores and is essential for accurate chromosome segregation. Tctex-1 knockdown in cells does not affect the localization and function of dynein at the kinetochore, but produces a prolonged mitotic arrest with a few misaligned chromosomes, which are subsequently missegregated during anaphase. This function is independent of Tctex-1''s association with dynein. The kinetochore localization of Tctex-1 is independent of the ZW10-dynein pathway, but requires the Ndc80 complex. Thus, our findings reveal a dynein independent role of Tctex-1 at the kinetochore to enhance the stability of kinetochore-microtubule attachment.  相似文献   

17.
A role for Tctex-1 (DYNLT1) in controlling primary cilium length   总被引:1,自引:0,他引:1  
The microtubule motor complex cytoplasmic dynein is known to be involved in multiple processes including endomembrane organization and trafficking, mitosis, and microtubule organization. The majority of studies of cytoplasmic dynein have focused on the form of the motor that is built around the dynein-1 heavy chain. A second isoform, dynein heavy chain-2, and its specifically associated light intermediate chain, LIC3 (D2LIC), are known to be involved in the formation and function of primary cilia. We have used RNAi in human epithelial cells to define the cytoplasmic dynein subunits that function with dynein heavy chain 2 in primary cilia. We identify the dynein light chain Tctex-1 as a key modulator of cilia length control; depletion of Tctex-1 results in longer cilia as defined by both acetylated tubulin labeling of the axoneme and Rab8a labeling of the cilia membrane. Suppression of dynein heavy chain-2 causes concomitant loss of Tctex-1 and this correlates with an increase in cilia length. Compared to individual depletions, double siRNA depletion of DHC2 and Tctex-1 causes an even greater increase in cilia length. Our data show that Tctex-1 is a key regulator of cilia length and most likely functions as part of dynein-2.  相似文献   

18.
A mechanism for transmission of the infectious prions from the peripheral nerve ends to the central nervous system is thought to involve neuronal anterograde and retrograde transport systems. Cytoplasmic dynein is the major retrograde transport molecular motor whose function is impaired in the Legs at odd angles (Loa) mouse due to a point mutation in the cytoplasmic dynein heavy chain subunit. Loa is a dominant trait which causes neurodegeneration and progressive motor function deficit in the heterozygotes. To investigate the role of cytoplasmic dynein in the transmission of prions within neurons, we inoculated heterozygous Loa and wild type littermates with mouse-adapted scrapie prions intracerebrally and intraperitonially, and determined the incubation period to onset of clinical prion disease. Our data indicate that the dynein mutation in the heterozygous state does not affect prion disease incubation time or its neuropathology in Loa mice.  相似文献   

19.
Coordinated microtubule and microfilament changes are essential for the morphological development of neurons; however, little is know about the underlying molecular machinery linking these two cytoskeletal systems. Similarly, the indispensable role of RhoGTPase family proteins has been demonstrated, but it is unknown how their activities are specifically regulated in different neurites. In this paper, we show that the cytoplasmic dynein light chain Tctex-1 plays a key role in multiple steps of hippocampal neuron development, including initial neurite sprouting, axon specification, and later dendritic elaboration. The neuritogenic effects elicited by Tctex-1 are independent from its cargo adaptor role for dynein motor transport. Finally, our data suggest that the selective high level of Tctex-1 at the growth cone of growing axons drives fast neurite extension by modulating actin dynamics and also Rac1 activity.  相似文献   

20.
REIC/Dkk-3 is a member of the Dickkopf family proteins known as Wnt-antagonists, and REIC/Dkk-3 expression is downregulated in a broad range of cancer types. REIC/Dkk-3 acts as a tumor suppressor in multiple cancer cell lines by inducing apoptosis through endoplasmic reticulum (ER) stress signaling. However, the intracellular interaction partners of REIC/Dkk-3 have not been fully elucidated. By employing yeast two-hybrid screening, we identified the human dynein light chain, Tctex-1, as a novel interaction partner of REIC/Dkk-3. We further disclosed that the interaction involves the 136–157 amino acid region of REIC/Dkk-3 by using the mammalian two-hybrid system. Interestingly, this binding region of REIC/Dkk-3 with Tctex-1 contains an amino acid sequence motif [-E-X-G-R-R-X-H-] which was previously reported as the Tctex-1 binding domain of dynein intermediate chain (DIC). Immunocytochemistry demonstrated that both REIC/Dkk-3 and Tctex-1 were localized around the ER of human fibroblasts, and the similar distribution pattern of the proteins suggests that their interaction occurs around the ER. This is the first study showing the interaction of a Dickkopf family protein with a dynein motor complex protein. The link between REIC/Dkk-3 and Tctex-1 may be of significance for understanding the molecular functions of the proteins in ER stress signaling and intracellular dynein motor dynamics, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号