首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Rapid light-dependent turnover of the chloroplast-encoded D1 protein maintains photosystem II (PS II) functional over a wide range of light intensities. Following initiation of psbA mRNA translation, the elongating D1 is targeted, possibly by chloroplast signal recognition particle 54 (cpSRP54), to the thylakoid cpSecY translocation channel. Transmembrane domains of nascent D1 start interacting with other PS II core proteins already during the translocation process to ensure an efficient assembly of the multiprotein membrane complex. Here we review the progress recently made concerning the synthesis, targeting, membrane insertion and assembly to PS II of the chloroplast-encoded D1 protein and discuss the possible convergence of targeting and translocation of chloroplast- and nuclear-encoded thylakoid proteins.  相似文献   

2.
Use of nuclear mutants in the analysis of chloroplast development   总被引:8,自引:0,他引:8  
Although a wide range of mutations in the nuclear genome also affect chloroplast biogenesis, their pleiotropic nature often limits their use in studying nuclear genes that regulate or facilitate chloroplast development. However, many mutations that cause a high-chlorophyll-fluorescent (hcf) phenotype exhibit limited pleiotrophy, causing the loss of functionally related sets of chloroplast polypeptides. Several hcf mutations are described that result in the loss of one specific protein complex from the thylakoid membrane. Chloroplast and cytosolic mRNAs coding for component polypeptides of the missing complex are unaffected in the mutants, suggesting that each mutation disrupts some process in the synthesis and assembly of the missing complex. Another hcf mutation causes both the loss of three protein complexes and grossly abnormal thylakoid membrane structures. The primary effect of this mutation might be in the assembly of thylakoid membranes or in the stable accumulation of the three protein complexes. Two other hcf mutations are more pleiotropic. Hcf*-38 causes a quantitative reduction of many chloroplast proteins and a reduction of some chloroplast RNAs, including several splicing intermediates. Hcf*-7 causes a major reduction of all chloroplast-encoded proteins examined. The range of pleiotropic effects of hcf mutations indicates that the mutations identify nuclear genes whose products are involved in a number of different steps in chloroplast development. Because some of the mutations described have been generated by transposon insertions, they can be cloned using the transposon to identify the mutant allele.  相似文献   

3.
Proteins are translocated across the chloroplast thylakoid membrane by a variety of mechanisms. Some proteins engage a translocation machinery that is derived from the bacterial Sec export system and require an interaction with a chloroplast-localized SecA homologue. Other proteins engage a machinery that is SecA-independent, but requires a transmembrane pH gradient. Recently, a counterpart to this Delta pH mechanism was discovered in bacteria. Genetic studies revealed that one maize protein involved in this mechanism, HCF106, is related in both structure and function to the bacterial tatA and tatB gene products. We describe here the mutant phenotype and molecular cloning of a second maize gene that functions in the Delta pH mechanism. This gene, thylakoid assembly 4 (tha4), is required specifically for the translocation of proteins that engage the Delta pH pathway. The sequence of the tha4 gene product resembles those of the maize hcf106 gene and the bacterial tatA and tatB genes. Sequence comparisons suggest that tha4 more closely resembles tatA, and hcf106 more closely resembles tatB. These findings support the notion that this sec-independent translocation mechanism has been highly conserved during the evolution of eucaryotic organelles from bacterial endosymbionts.  相似文献   

4.
G. C. Webb  M. Hoedt  L. J. Poole    E. W. Jones 《Genetics》1997,147(2):467-478
A nuclear mutant of maize, tha1, which exhibited defects in the translocation of proteins across the thylakoid membrane, was described previously. A transposon insertion at the tha1 locus facilitated the cloning of portions of the tha1 gene. Strong sequence similarity with secA genes from bacteria, pea and spinach indicates that tha1 encodes a SecA homologue (cp-SecA). The tha1-ref allele is either null or nearly so, in that tha1 mRNA is undetectable in mutant leaves and cp-SecA accumulation is reduced >=40-fold. These results, in conjunction with the mutant phenotype described previously, demonstrate that cp-SecA functions in vivo to facilitate the translocation of OEC33, PSI-F and plastocyanin but does not function in the translocation of OEC23 and OEC16. Our results confirm predictions for cp-SecA function made from the results of in vitro experiments and establish several new functions for cp-SecA, including roles in the targeting of a chloroplast-encoded protein, cytochrome f, and in protein targeting in the etioplast, a nonphotosynthetic plastid type. Our finding that the accumulation of properly targeted plastocyanin and cytochrome f in tha1-ref thylakoid membranes is reduced only a few-fold despite the near or complete absence of cp-SecA suggests that cp-SecA facilitates but is not essential in vivo for their translocation across the membrane.  相似文献   

5.
We have isolated the nuclear photosynthetic mutant hcf153 which shows reduced accumulation of the cytochrome b(6)f complex. The levels and processing patterns of the RNAs encoding the cytochrome b(6)f subunits are unaltered in the mutant. In vivo protein labeling experiments and analysis of polysome association revealed normal synthesis of the large chloroplast-encoded cytochrome b(6)f subunits. The mutation resulted from a T-DNA insertion and the affected nuclear gene was cloned. HCF153 encodes a 15 kDa protein containing a chloroplast transit peptide. Sequence similarity searches revealed that the protein is restricted to higher plants. A HCF153-Protein A fusion construct introduced into hcf153 mutant plants was able to substitute the function of the wild-type protein. Fractionation of intact chloroplasts from these transgenic plants suggests that most or all of the fusion protein is tightly associated with the thylakoid membrane. Our data show that the identified factor is a novel protein that could be involved in a post-translational step during biogenesis of the cytochrome b(6)f complex. It is also possible that HCF153 is necessary for translation of one of the very small subunits of the cytochrome b(6)f complex.  相似文献   

6.
K K Bernd  B D Kohorn 《Genetics》1998,149(3):1293-1301
Mutations within the signal sequence of cytochrome f (cytf) in Chlamydomonas inhibit thylakoid membrane protein translocation and render cells nonphotosynthetic. Twenty-seven suppressors of the mutant signal sequences were selected for their ability to restore photoautotrophic growth and these describe six nuclear loci named tip1 through 6 for thylakoid insertion protein. The tip mutations restore the translocation of cytf and are not allele specific, as they suppress a number of different cytf signal sequence mutations. Tip5 and 2 may act early in cytf translocation, while Tip1, 3, 4, and 6 are engaged later. The tip mutations have no phenotype in the absence of a signal sequence mutation and there is genetic interaction between tip4, and tip5 suggesting an interaction of their encoded proteins. As there is overlap in the energetic, biochemical and genetic requirements for the translocation of nuclear and chloroplast-encoded thylakoid proteins, the tip mutations likely identify components of a general thylakoid protein translocation apparatus.  相似文献   

7.
The oxygen-evolving machinery of photosystem II in cyanobacteria is associated with three extrinsic proteins: the manganese-stabilizing protein, cytochrome c(550), and PsbU. To elucidate the effect of the presence of these extrinsic proteins on the stabilization of the oxygen-evolving machinery against high-temperature stress, we inactivated the genes for these proteins individually in Synechocystis sp. PCC 6803 by targeted mutagenesis. The thermal stability of the oxygen-evolving machinery decreased in all mutated cells but the extent of the susceptibility to heat inactivation varied between the photosystems lacking the different extrinsic proteins. Cells that lacked either the manganese-stabilizing protein or cytochrome c(550) were unable to enhance the thermal stability of the oxygen-evolving machinery and, moreover, failed to increase cellular thermotolerance when grown at moderately high temperatures. Our findings indicate that the three extrinsic proteins stabilize the oxygen-evolving machinery independently against high-temperature stress and that the thermal stability of the machinery influences cellular thermotolerance.  相似文献   

8.
The apparatus that permits protein translocation across the internal thylakoid membranes of chloroplasts is completely unknown, even though these membranes have been the subject of extensive biochemical analysis. We have used a genetic approach to characterize the translocation of Chlamydomonas cytochrome f, a chloroplast-encoded protein that spans the thylakoid once. Mutations in the hydrophobic core of the cytochrome f signal sequence inhibit the accumulation of cytochrome f, lead to an accumulation of precursor, and impair the ability of Chlamydomonas cells to grow photosynthetically. One hydrophobic core mutant also reduces the accumulation of other thylakoid membrane proteins, but not those that translocate completely across the membrane. These results suggest that the signal sequence of cytochrome f is required and is involved in one of multiple insertion pathways. Suppressors of two signal peptide mutations describe at least two nuclear genes whose products likely describe the translocation apparatus, and selected second-site chloroplast suppressors further define regions of the cytochrome f signal peptide.  相似文献   

9.
10.
Biochemical and genetic studies have established that the light-harvesting chlorophyll proteins (LHCPs) of the photosystems use the cpSRP (chloroplast signal recognition particle) pathway for their targeting to thylakoids. Previous analyses of single cpSRP mutants, chaos and ffc, deficient in cpSRP43 and cpSRP54, respectively, have revealed that half of the LHCPs are still integrated into the thylakoid membranes. Surprisingly, the effects of both mutations are additive in the double mutant ffc/chaos described here. This mutant has pale yellow leaves at all stages of growth and drastically reduced levels of all the LHCPs except Lhcb 4. Although the chloroplasts have a normal shape, the thylakoid structure is affected by the mutation, probably as a consequence of reduction of all the LHCPs. ELIPs (early light-inducible proteins), nuclear-encoded proteins related to the LHCP family and inducible by light stress, were also drastically reduced in the double mutant. However, proteins targeted by other chloroplastic targeting pathways (DeltapH, Sec and spontaneous pathways) accumulated to similar levels in the wild-type and the double mutant. Therefore, the near total loss of LHCPs and ELIPs in the double mutant suggests that cpSRP is the predominant, if not exclusive, targeting pathway for these proteins. Phenotypic analysis of the double mutant, compared to the single mutants, suggests that the cpSRP subunits cpSRP43 and cpSRP54 contribute to antenna targeting in an independent but additive way.  相似文献   

11.
A SecY homologue is involved in chloroplast-encoded D1 protein biogenesis   总被引:12,自引:0,他引:12  
We have used the photosystem II reaction center D1 protein as a model to study the mechanisms of targeting and insertion of chloroplast-encoded thylakoid membrane proteins. The unusually high turnover rate and distinct pausing intermediates during translation make the D1 protein biogenesis particularly suitable for these purposes. Here we show that cpSecY, a chloroplast homologue of bacterial essential translocon component SecY, interacts tightly with thylakoid membrane-bound ribosomes, suggesting its involvement in protein translocation and insertion. Co-immunoprecipitation and cross-linking experiments indicated that cpSecY resides in the vicinity of D1 elongation intermediates and provided evidence for a transient interaction of cpSecY with D1 elongation intermediates during the biogenesis of D1. After termination of translation, such interactions no longer existed. Our results indicate that, in addition to a well characterized role of cpSecY in posttranslational translocation of nuclear-encoded proteins, it seems to be also involved in cotranslational membrane protein translocation and insertion in chloroplasts.  相似文献   

12.
Assembly of the components of the thylakoid deltapH-dependent/Tat protein transport machinery was analyzed in vitro. Upon incubation with intact chloroplasts, precursors to all three components, Hcf106, cpTatC and Tha4, were imported into the organelle and assembled into characteristic endogenous complexes. In particular, all of the imported cpTatC and approximately two-thirds of the imported Hcf106 functionally assembled into 700 kDa complexes capable of binding Tat pathway precursor proteins. The amounts assembled into thylakoids by this procedure were moderate. However, physiological quantities of mature forms of Tha4 and Hcf106 were integrated into isolated thylakoids and a significant percentage of the Hcf106 so integrated was assembled into the 700 kDa complex. Interestingly, a mutant form of Hcf106 in which an invariant transmembrane glutamate was changed to glutamine integrated into the membrane but did not assemble into the receptor complex. Analysis of energy and known pathway component requirements indicated that Hcf106 and Tha4 integrate by an unassisted or 'spontaneous' mechanism. The functionality of in vitro integrated Tha4 was verified by its ability to restore transport to thylakoid membranes from the maize tha4 mutant, which lacks the Tha4 protein. Development of this functional in vitro assembly assay will facilitate structure-function studies of the thylakoid Tat pathway translocation machinery.  相似文献   

13.
The mechanisms of targeting, insertion and assembly of the chloroplast-encoded thylakoid membrane proteins are unknown. In this study, we investigated these mechanisms for the chloroplast-encoded polytopic D1 thylakoid membrane protein, using a homologous translation system isolated from tobacco chloroplasts. Truncated forms of the psbA gene were translated and stable ribosome nascent chain complexes were purified. To probe the interactions with the soluble components of the targeting machinery, we used UV-activatable cross-linkers incorporated at specific positions in the nascent chains, as well as conventional sulfhydryl cross-linkers. With both cross-linking approaches, the D1 ribosome nascent chain was photocross-linked to cpSRP54. cpSRP54 was shown to interact only when the D1 nascent chain was still attached to the ribosome. The interaction was strongly dependent on the length of the nascent chain that emerged from the ribosome, as well as the cross-link position. No interactions with soluble SecA or cpSRP43 were found. These results imply a role for cpSRP54 in D1 biogenesis.  相似文献   

14.
The HCF106 (high chlorophyll fluorescence) gene of maize encodes a chloroplast membrane protein required for translocation of a subset of proteins across the thylakoid membrane. Mutations in HCF106 caused by the insertion of Robertson's Mutator transposable elements have been mapped to chromosome 2S. Here we show that there is a closely related homolog of HCF106 encoded elsewhere in the maize genome (HCF106c) that can partially compensate for these mutations. This homolog maps on chromosome 10L and is part of the most recent set of segmental duplications in the maize genome. Triple mutants that are disrupted in both the HCF106 and Sec-dependent protein translocation pathways provide evidence that they act independently. The HCF106c gene accounts for a previously reported exception to the correlation between epigenetic suppression of hcf106 and methylation of Mutator transposons. We also demonstrate that insertions of Robertson's Mutator elements into either introns or promoters can lead to mutations whose phenotypes are suppressed in the absence of Mu activity, while alleles with insertions in both positions are not suppressed. The implications of these observations are discussed.  相似文献   

15.
16.
Post-translational integration of cytochrome f into thylakoid membranes was observed after import by isolated pea chloroplasts of a chimeric protein consisting of the presequence of the small subunit of ribulose 1,5-bisphosphate carboxylase fused to the cytochrome f precursor. Import of a similar chimeric protein lacking the C-terminal 33 amino acid residues resulted in a soluble cytochrome f protein in the thylakoid lumen, indicating that the C-terminal region contains a stop-transfer sequence for membrane integration. Azide inhibited the insertion of cytochrome f into the thylakoid membrane, whereas the ionophores nigericin and valinomycin had little effect on membrane insertion. The precursor of the 33 kDa protein, but not the 23 kDa protein, of the photosystem II oxygen-evolving complex inhibited the thylakoid insertion of cytochrome f , suggesting competition for a component of the transport pathway. These experiments suggest that the post-translational insertion of cytochrome f into the thylakoid membrane uses a SecA-dependent pathway.  相似文献   

17.
K Ko  A R Cashmore 《The EMBO journal》1989,8(11):3187-3194
Various chimeric precursors and deletions of the 33 kd oxygen-evolving protein (OEE1) were constructed to study the mechanism by which chloroplast proteins are imported and targeted to the thylakoid lumen. The native OEE1 precursor was imported into isolated chloroplasts, processed and localized in the thylakoid lumen. Replacement of the OEE1 transit peptide with the transit peptide of the small subunit of ribulose-1,5-bisphosphate carboxylase, a stromal protein, resulted in redirection of mature OEE1 into the stromal compartment of the chloroplast. Utilizing chimeric transit peptides and block deletions we demonstrated that the 85 residue OEE1 transit peptide contains separate signal domains for importing and targeting the thylakoid lumen. The importing domain, which mediates translocation across the two membranes of the chloroplast envelope, is present in the N-terminal 58 amino acids. The thylakoid lumen targeting domain, which mediates translocation across the thylakoid membrane, is located within the C-terminal 27 residues of the OEE1 transit peptide. Chimeric precursors were constructed and used in in vitro import experiments to demonstrate that the OEE1 transit peptide is capable of importing and targeting foreign proteins to the thylakoid lumen.  相似文献   

18.
Tissue-specific effects of low growth temperature on maize chloroplast thylakoid protein accumulation were analysed using immunocytology. Sections of leaves from plants grown at 25 and 14°C were probed with antibodies to specific chloroplast thylakoid proteins from the four major protein multisubunit complexes of the thylakoid membrane followed by fluorescein-conjugated goat anti-rabbit antibodies. At a normal growth temperature of 25°C, the 32 kDa D1 protein of the photosystem II reaction centre and the 33 kDa protein of the extrinsic oxygen-evolving complex of photosystem II are both accumulated to a greater degree in the mesophyll than in the bundle sheath chloroplasts. In contrast, subunit II of photosystem I, cytochrome f and the α- and β-subunits of ATP synthetase are predominant in the bundle sheath thylakoids at 25°C. A striking difference between the 25°C-grown and the 14°C-grown leaf tissue was the presence in the latter of (20–30%) cells whose chloroplasts apparently completely lack several of the thylakoid proteins. In plants grown at 14°C, the accumulation of the 33 kDa protein of the extrinsic oxygen-evolving complex of photosystem II was apparently unchanged, but other thylakoid proteins showed a significant reduction. The uneven distribution of proteins between the bundle sheath and mesophyll chloroplasts observed at 25°C was also maintained at 14°C. Reduction in the fluorescence at 14°C was manifested either as an overall reduction in the diffuse fluorescence across the chloroplast profiles or less frequently as a reduction to small discrete bodies of intense fluorescence. The significance of these results to low-temperature-induced reduction in the photosynthetic productivity of maize is discussed.  相似文献   

19.
Conditions for preparing oxygen-evolving thylakoid membranes and PSII complexes, and those for observing the PSII activity were investigated in a glaucocystophyte, Cyanophora paradoxa. The active thylakoid membranes were isolated either with a medium containing glycerol or with that containing high concentrations of sucrose, phosphate, and citrate. Active PSII particles were solubilized by octyl-beta-D-glucoside from thylakoid membranes and were separated by sucrose density gradient centrifugation. The thylakoid membranes and PSII particles showed an oxygen-evolving activity only in high-ionic-strength media. The extrinsic 33 kDa protein (PsbO) and the cytochrome c(550) (PsbV) were found to be present in the PSII particles as in cyanobacteria or red algae, but no 12 kDa protein (PsbU) was detected. The PsbO protein was classified as a land-plant type by its N-terminal amino acid sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号