首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental stresses that perturb plant water relations influence abscisic acid (ABA) concentrations, but it is unclear whether long‐distance ABA transport contributes to changes in local ABA levels. To determine the physiological relevance of ABA transport, we made reciprocal‐ and self‐grafts of ABA‐deficient flacca mutant and wild‐type (WT) tomato plants, in which low phosphorus (P) conditions decreased ABA concentrations while salinity increased ABA concentrations. Whereas foliar ABA concentrations in the WT scions were rootstock independent under conditions, salinity resulted in long‐distance transport of ABA: flacca scions had approximately twice as much ABA when grafted on WT rootstocks compared to flacca rootstocks. Root ABA concentrations were scion dependent: both WT and flacca rootstocks had less ABA with the flacca mutant scion than with the WT scion under conditions. In WT scions, whereas rootstock genotype had limited effects on stomatal conductance under conditions, a flacca rootstock decreased leaf area of stressed plants, presumably due to attenuated root‐to‐shoot ABA transport. In flacca scions, a WT rootstock decreased stomatal conductance but increased leaf area of stressed plants, likely due to enhanced root‐to‐shoot ABA transport. Thus, long‐distance ABA transport can affect responses in distal tissues by changing local ABA concentrations.  相似文献   

2.
The flacca tomato (Lycopersicon esculentum) mutant displays a wilty phenotype as a result of abscisic acid (ABA) deficiency. The Mo cofactor (MoCo)-containing aldehyde oxidases (AO; EC 1.2.3.1) are thought to play a role in the final oxidation step required for ABA biosynthesis. AO and related MoCo-containing enzymes xanthine dehydrogenase (XDH; EC 1.2.1.37) and nitrate reductase (EC 1.6.6.1) were examined in extracts of the flacca tomato genotype and of wild-type (WT) roots and shoots. The levels of MoCo were found to be similar in both genotypes. No significant XDH or AO (MoCo-containing hydroxylases) activities were detected in flacca leaves; however, the mutant exhibited considerable MoCo-containing hydroxylase activity in the roots, which contained notable amounts of ABA. Native western blots probed with an antibody to MoCo-containing hydroxylases revealed substantial, albeit reduced, levels of cross-reactive protein in the flacca mutant shoots and roots. The ABA xylem-loading rate was significantly lower than that in the WT, indicating that the flacca is also defective in ABA transport to the shoot. Significantly, in vitro sulfurylation with Na2S reactivated preexisting XDH and AO proteins in extracts from flacca, particularly from the shoots, and superinduced the basal-level activity in the WT extracts. The results indicate that in flacca, MoCo-sulfurylase activity is impaired in a tissue-dependent manner.  相似文献   

3.
Lycopersicon esculentum Mill. cv Rheinlands Ruhm (RR) and cv Moneymaker and the three wilty mutants flacca (flc), sitiens (sit), and sitiensw (sitw), together with most reciprocal grafts, were grown in pots and in solution culture. Detached leaflets, and control and steam-girdled intact plants, were left turgid or were wilted in air. Detached leaflets and the leaflets and roots of the intact plants were analyzed for their abscisic acid (ABA) content. Turgid RR leaflets contained about 2.9 ng ABA per milligram dry weight. On average, the flc and sit leaflets contained 33 and 11% of this amount, respectively. The lack of ABA approximately correlated with the severity of the mutant phenotype. Mutant roots also contained less ABA than wild-type roots. Wild-type scions on mutant stocks (wild type/mutant) maintained the normal phenotype of ungrafted plants. Mutant scions grafted onto wild-type stocks reverted to a near wild-type phenotype. After the wild-type leaves were excised from solution culture-grown mutant/wild-type plants, the revertive morphology of the mutant scions was maintained, although endogenous ABA levels in the leaflets fell to typical mutant levels and the leaflets became wilty again. When stressed in air, both leaflets and roots of RR plants produced stress-induced ABA, but the mutant leaflets and roots did not. The roots and leaflets of the grafted plants behaved according to their own genotype, with the notable exception of mutant roots grown with wild-type scions. Roots of flc and sitw recovered the ability to accumulate stress-induced ABA when grafted with RR scions before the stress was imposed.  相似文献   

4.
5.
The hypothesis that ABA produced by roots in drying soil is responsible for stomatal closure was tested with grafted plants constructed from the ABA-deficient tomato mutants, sitiens and flacca and their near-isogenic wild-type parent. Three types of experiments were conducted. In the first type, reciprocal grafts were made between the wild type and sitiens or flacca. Stomatal conductance accorded with the genotype of the shoot, not the root. Stomates closed in all of the grafted plants in response to soil drying, regardless of the root genotype, i.e. regardless of the ability of the roots to produce ABA. In the second type of experiment, wild-type shoots were grafted onto a split-root system consisting of one wild-type root grafted to one mutant (flacca or sitiens) root. Water was withheld from one root system, while the other was watered well so that the shoots did not experience any decline in water potential or loss of turgor. Stomates closed to a similar extent when water was withheld from the mutant roots or the wild-type roots. In the third type of experiment, grafted plants with wild-type shoots and either wild-type or sitiens roots were established in pots that could be placed inside a pressure chamber, and the pressure increased as the soil dried so that the shoots remained fully turgid throughout. Stomates closed as the soil dried, regardless of whether the roots were wild type or sitiens. These experiments demonstrate that stomatal closure in response to soil drying can occur in the absence of leaf water deficit, and does not require ABA production by roots. A chemical signal from roots leading to a change in apoplastic ABA levels in leaves may be responsible for the stomatal closure.  相似文献   

6.
Tolerance of salt stress in potato (Solanum tuberosum L.) increased when the plants were pre-exposed to low concentrations of salt (salt acclimation). This acclimation was accompanied by increased levels of abscisic acid (ABA) in the shoot. To further study the role of roots and shoots in this acclimation process, reciprocal grafts were made between a salt-tolerant (9506) and salt-sensitive ABA(−) mutant and its ABA(+) normal sibling potato genotype. The grafted plants were acclimated with 75 or 100 mM NaCl for 3 weeks and then exposed to 150–180 mM NaCl, depending on the salt tolerance of the rootstock. After 2 weeks of exposure to the salt stress, the acclimated and unacclimated plants were compared for physiologic and morphologic parameters. The response to the salt stress was strongly influenced by the rootstock. The salt-tolerant 9506 rootstock increased the salt tolerance of scions of both the ABA-deficient mutant and its ABA(+) sibling. This salt tolerance induced by the rootstock was primarily modulated by salt acclimation and manifested in the scion via increased plant water content, stem diameter, dry matter accumulation, stomatal conductivity, and osmotic potential, and is associated with a reduction in leaf necrosis. There was also a pronounced scion effect on the rootstock. Using 9506 as a scion significantly increased root fresh and dry weights, stem diameter, and root water content of ABA(−) mutant rootstocks. Specific evidence was found of the role of exogenous ABA in the enhancement of water status in grafted plants under salt stress beyond that of grafting alone. This was verified by more positive stomatal conductivity and upward water flow in ABA-treated grafted and nongrafted plants and the absence of upward water flow in nontreated grafted plants through NMR imaging. Grafting using either salt-tolerant scions or rootstocks with inherently high ABA levels may positively modify subsequent responses of the plant under salt stress.  相似文献   

7.
Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na+ and Cl in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψw) decreased from an average value of approximately −1.0 MPa, measured on control plants and S10, to −1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g−1 fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.  相似文献   

8.
The impact of different defoliation intensities on the ability of Lotus tenuis plants to regrowth, mobilise nutrients and to associate with native AM fungi and Rhizobium in a saline‐sodic soil was investigated. After 70 days, plants were subjected to 0, 25, 50, 75 and 100% defoliation and shoot regrowth was assessed at the end of subsequent 35 days. Compared to non‐defoliated plants, low or moderate defoliation up to 75% did not affect shoot regrowth. However, 100% treatment affected shoot regrowth and the clipped plants were not able to compensate the growth attained by non‐defoliated plants. Root growth was more affected by defoliation than shoot growth. P and N concentrations in shoots and roots increased with increasing defoliation while Na+ concentration in shoots of non‐defoliated and moderately defoliated plants was similar. Non‐defoliated and moderately defoliated plants prevented increases of Na+ concentration in shoots through both reducing Na+ uptake and Na+ transport to shoots by accumulating Na+ in roots. At high defoliation, the salinity tolerance mechanism is altered and Na+ concentration in shoots was higher than in roots. Reduction in the photosynthetic capacity induced by defoliation neither changed the root length colonised by AM fungi nor arbuscular colonisation but decreased the vesicular colonisation. Spore density did not change, but hyphal density and Rhizobium nodules increased with defoliation. The strategy of the AM symbiont consists in investing most of the C resources to preferentially retain arbuscular colonisation as well as inoculum density in the soil.  相似文献   

9.
The suppression of new nodule development in soybean (Glycine max (L.) Merr.) has been previously demonstrated to involve the shoot through reciprocal grafts between the wild-type cultivar Bragg and its supernodulating mutant nts382. Using the same grafting technique, but modified through the excision of the shoot apex region and emerging lateral shoots, we show here that autoregulation of nodule number still existed despite apex removal. This radical treatment lowered total nodule number per plant as well as root, shoot and nodule dry weight. Bragg shoots grafted onto nts382 roots gave wild-type nodulation (26 nodules, 15mg total nodule mass) as compared to nts382 shoots grafted onto Bragg roots (340 nodules, 277 mg total nodule mass). Specific nodule mass differed between supernodulating (about 0·5-1·0mg per nodule) and wild-type nodulating (2·3 mg per nodule) plants. In contrast to other growth characteristics, apex removal did not affect specific nodule size, except in plants with wild-type shoots and nts382 (supernodulation) roots. Apex removal only slightly affected the percentage of nodule weight per total root weight in nts382, but had a severe effect in wild type. Growth reductions varied between the normal and supernodulating plants. The fact that autoregulation of nodulation still functions in plants devoid of functional shoot apices suggests that the autoregulation signal may not be derived from the apex regions and that the leaf may be a likely source.  相似文献   

10.

Background and Aims

The source of nitrogen plays an important role in salt tolerance of plants. In this study, the effects of NaCl on net uptake, accumulation and transport of ions were investigated in Nerium oleander with ammonium or nitrate as the nitrogen source in order to analyse differences in uptake and cycling of ions within plants.

Methods

Plants were grown in a greenhouse in hydroponics under different salt treatments (control vs. 100 mm NaCl) with ammonium or nitrate as the nitrogen source, and changes in ion concentration in plants, xylem sap exuded from roots and stems, and phloem sap were determined.

Key Results

Plant weight, leaf area and photosynthetic rate showed a higher salt tolerance of nitrate-fed plants compared with that of ammonium-fed plants. The total amount of Na+ transported in the xylem in roots, accumulated in the shoot and retranslocated in the phloem of ammonium-fed plants under salt treatment was 1·8, 1·9 and 2·7 times more, respectively, than that of nitrate-treated plants. However, the amount of Na+ accumulated in roots in nitrate-fed plants was about 1·5 times higher than that in ammonium-fed plants. Similarly, Cl transport via the xylem to the shoot and its retranslocation via the phloem (Cl cycling) were far greater with ammonium treatment than with nitrate treatment under conditions of salinity. The uptake and accumulation of K+ in shoots decreased more due to salinity in ammonium-fed plants compared with nitrate-fed plants. In contrast, K+ cycling in shoots increased due to salinity, with higher rates in the ammonium-treated plants.

Conclusions

The faster growth of nitrate-fed plants under conditions of salinity was associated with a lower transport and accumulation of Na+ and Cl in the shoot, whereas in ammonium-fed plants accumulation and cycling of Na+ and Cl in shoots probably caused harmful effects and reduced growth of plants.Key words: Mineral cycling, Nerium oleander, nitrogen source, salinity, xylem and phloem transport  相似文献   

11.
Isogenic wild-type (Ailsa Craig) and abscisic acid (ABA)-deficient mutant (flacca) genotypes of tomato were used to examine the role of root-sourced ABA in mediating growth and stomatal responses to compaction. Plants were grown in uniform soil columns providing low to moderate bulk densities (1.1–1.5 g cm?3), or in a split-pot system, which allowed the roots to divide between soils of the same or differing bulk density (1.1/1.5 g cm?3). Root and shoot growth and leaf expansion were reduced when plants were grown in compacted soil (1.5 g cm?3) but leaf water status was not altered. However, stomatal conductance was affected, suggesting that non-hydraulic signal(s) transported in the transpiration stream were responsible for the observed effects. Xylem sap and foliar ABA concentrations increased with bulk density for 10 and 15 days after emergence (DAE), respectively, but were thereafter poorly correlated with the observed growth responses. Growth was reduced to a similar extent in both genotypes in compacted soil (1.5 g cm?3), suggesting that ABA is not centrally involved in mediating growth in this severely limiting ‘critical’ compaction stress treatment. Growth performance in the 1.1/1.5 g cm?3 split-pot treatment of Ailsa Craig was intermediate between the uniform 1.1 and 1.5 g cm?3 treatments, whereas stomatal conductance was comparable to the compacted 1.5 g cm?3 treatment. In contrast, shoot dry weight and leaf area in the split-pot treatment of flacca were similar to the 1.5 g cm?3 treatment, but stomatal conductance was comparable to uncompacted control plants. These results suggest a role for root-sourced ABA in regulating growth and stomatal conductance during ‘sub-critical’ compaction stress, when genotypic differences in response are apparent. The observed genotypic differences are comparable to those previously reported for barley, but occurred at a much lower bulk density, reflecting the greater sensitivity of tomato to compaction. By alleviating the severe growth reductions induced when the entire root system encounters compacted soil, the split-pot approach has important applications for studies of the role of root-sourced signals in compaction-sensitive species such as tomato.  相似文献   

12.
Summary Arthrocnemum fruticosum (L.)Moq., a halophyte from the shore of the Dead Sea in Jordan was grown in a greenhouse with nutrient solution supplemented with various concentrations of NaCl. It was shown that with increasing salinity the plants became more succulent, mainly due to an accumulation of sodium and water. Sodium was taken up into the roots in equal amounts to chloride, but in the shoots far more sodium than chloride was found, suggesting a control of these ions either in the excretion into the xylem, or in the uptake by the shoot out of the xylem. Ammonium and nitrate in the plants decreased with time on nutrient solution more or less independently of the salt concentration. However, more nitrate appeared again in the plants when they started flowering. After an initial period of adaptation the nitrate reductase activityin vivo was not inhibited by a salinity of up to 2%, but at higher NaCl concentrations a shift of nitrate reductase activity occurred from the roots to the shoots. This was consistent with earlier observations in the field. In the vegetative phase of the plants the nitrate reductase in the roots was influenced by the soil water potential, but in the shoot it was mainly dependent on the supply of nitrate from the roots. High NaCl concentrations delayed flower initiation. During flowering the nitrate reductase was involved in the re-allocation of nitrogenous compounds from the roots to the developing flowers, and it became effectively independent from salinity.  相似文献   

13.
The effects of either organic (urea and glutamine) or inorganic nitrogen forms (nitrate and ammonium) on dry matter accumulation in shoots and roots and on nitrogen assimilatory enzyme activities were studied in two Catasetum fimbriatum genotypes. Both genotypes, which had inverse patterns of dry matter partitioning between shoots and roots, were aseptically incubated in gelled culture media containing 6 mol m−3 of nitrogen and incubated in growth chamber for 30 and 60 days. In vivo nitrate reductase, glutamine synthetase, glutamate dehydrogenase activities as well as free ammonium contents were determined in shoots and roots of plants grown in four different nitrogen sources. Nitrogen assimilatory enzyme activities showed the highest values in the genotype that accumulated dry matter predominantly in the shoots. The nitrogen sources supplied affected dry matter accumulation in shoots and roots of both C. fimbriatum genotypes; however, they were not enough to change the characteristic pattern of dry matter partitioning of each genotype. On the other hand, the differences in the root/shoot ratio found among nitrogen treatments were relatively higher in the genotype that directed dry matter mainly to roots than in the genotype that allocates biomass to shoots. Our results suggest that NADH-dependent glutamate dehydrogenase plays an important role in ammonium assimilation in C. fimbriatum plants, particularly in the root system. Nitrogen metabolism and the dry matter partitioning of the two genotypes are discussed.  相似文献   

14.
The effects of different concentrations of lead nitrate (10–5 to 10–3 M) on root, hypocotyl, and shoot growth of Indian mustard (Brassica juncea L. var. megarrhiza), and the uptake and accumulation of Pb2+ by its roots, hypocotyls, and shoots were investigated. Lead had no significant inhibitory effect on the root growth at concentrations of 10–5 to 10–4 M during the entire treatment, while at 10–3 M, Pb slightly inhibited the root and shoot growth. B. juncea has ability to take up Pb from solutions and accumulate it in its roots, and transport and concentrate it. The Pb contents in the parts of plants treated with 10–3 M Pb were greater than those of untreated plants, by factors of 230 in the roots, 170 in the hypocotyls, and 3 in the shoots.  相似文献   

15.
The pho2 mutant of Arabidopsis thaliana (L.) Heynh. accumulates excessive Pi (inorganic phosphate) concentrations in shoots compared to wild-type plants (E. Delhaize and P. Randall, 1995, Plant Physiol. 107: 207–213). In this study, a series of experiments was conducted to compare the uptake and translocation of Pi by pho2 with that of wild-type plants. The pho2 mutants had about a twofold greater Pi uptake rate than wild-type plants under P-sufficient conditions and a greater proportion of the Pi taken up accumulated in shoots of pho2. When shoots were removed, the uptake rate by roots was found to be similar for both genotypes, suggesting that the greater Pi uptake by the intact pho2 mutant is due to a greater shoot sink for Pi. Although pho2 mutants could recycle 32Pi from shoots to roots through phloem the proportion of 32Pi translocated to roots was less than half of that found in wild-type plants. When transferred from P-sufficient to P-deficient solutions, Pi concentrations in pho2 roots had a similar depletion rate to wild-type roots despite pho2 shoots having a fourfold greater Pi concentration than wild-type shoots throughout the experiment. We suggest that the pho2 phenotype could result from a partial defect in Pi transport in the phloem between shoots and roots or from an inability of shoot cells to regulate internal Pi concentrations. Received: 20 August 1997 / Accepted: 4 October 1997  相似文献   

16.
The molybdenum cofactor (MoCo) is a component of aldehyde oxidase (AO EC 1.2.3.1), xanthine dehydrogenase (XDH EC 1.2.1.37) and nitrate reductase (NR, EC 1.6.6.1). The activity of AO, which catalyses the last step of the synthesis of abscisic acid (ABA), was studied in leaves and roots of barley (Hordeum vulgare L.) plants grown on nitrate or ammonia with or without salinity. The activity of AO in roots was enhanced in plants grown with ammonium while nitrate-grown plants exhibited only traces. Root AO in barley was enhanced by salinity in the presence of nitrate or ammonia in the nutrient medium while leaf AO was not significantly affected by the nitrogen source or salinity of the medium.Salinity and ammonium decreased NR activity in roots while increasing the overall MoCo content of the tissue. The highest level of AO in barley roots was observed in plants grown with ammonium and NaCl, treatments that had only a marginal effect on leaf AO. ABA concentration in leaves of plants increased with salinity and ammonium.Keywords: ABA, aldehyde oxidase, ammonium, nitrate, salinity.   相似文献   

17.
We describe the involvement of abscisic acid (ABA) in the control of differential growth of roots and shoots of nutrient limited durum wheat plants. A ten-fold dilution of the optimal concentration of nutrient solution inhibited shoot growth, while root growth remained unchanged, resulting in a decreased shoot/root ratio. Addition of fluridone (inhibitor of ABA synthesis) prevented growth allocation in favour of the roots. This suggests the involvement of ABA in the redirecting of growth in favour of roots under limited nutrient supply. The ABA content was greater in shoots and growing apical root parts of starved plants than in nutrient sufficient plants. Accumulation of ABA in shoots of nutrient deficient plants was linked to a decrease in leaf turgor. Increased flow of ABA in the phloem apparently contributed to the accumulation of ABA in the apical part of the roots. Thus, partitioning of growth between roots and shoots of wheat plants limited in mineral nutrients appears to be modulated by accumulation of ABA in roots. This ABA may originate in the shoots, where its synthesis is stimulated by the loss of leaf turgor.  相似文献   

18.
The potential of barley (Hordeum vulgare L.) and tomato (Lycopersicon esculentum Mill.) roots for net NO 3 - absorption increased two-to five fold within 2 d of being deprived of NO 3 - supply. Nitrogen-starved barley roots continued to maintain a high potential for NO 3 - absorption, whereas NO 3 - absorption by tomato roots declined below control levels after 10 d of N starvation. When placed in a 0.2 mM NO 3 - solution, roots of both species transported more NO 3 - and total solutes to the xylem after 2 d of N starvation than did N-sufficient controls. However, replenishment of root NO 3 - stores took precedence over NO 3 - transport to the xylem. Consequently, as N stress became more severe, transport of NO 3 - and total solutes to the xylem declined, relative to controls. Nitrogen stress caused an increase in hydraulic conductance (L p) and exudate volume (J v) in barley but decrased these parameters in tomato. Nitrogen stress had no significant effect upon abscisic acid (ABA) levels in roots of barley or flacca (a low-ABA mutant) tomato, but prevented an agerelated decline in ABA in wild-type tomato roots. Applied ABA had the same effect upon barley and upon the wild type and flacca tomatoes: L p and J v were increased, but NO 3 - absorption and NO 3 - flux to the xylem were either unaffected or sometimes inhibited. We conclude that ABA is not directly involved in the normal changes in NO 3 - absorption and transport that occur with N stress in barley and tomato, because (1) the root ABA level was either unaffected by N stress (barley and flacca tomato) or changed, after the greatest changes in NO 3 - absorption and transport and L p had been observed (wild-type tomato); (2) changes in NO 3 - absorption/transport characteristics either did not respond to applied ABA, or, if they did, they changed in the direction opposite to that predicted from changes in root ABA with N stress; and (3) the flacca tomato (which produces very little ABA in response to N stress) responded to N stress with very similar changes in NO 3 - transport to those observed in the wild type.Abbreviation and symbols ABA abscisic acid - Jv exudate volume - Lp root hydraulic conductance  相似文献   

19.
We studied the possible involvement of ABA in the control of water relations under conditions of increased evaporative demand. Warming the air by 3°C increased stomatal conductance and raised transpiration rates of hydroponically grown Triticum durum plants while bringing about a temporary loss of relative water content (RWC) and immediate cessation of leaf extension. However, both RWC and extension growth recovered within 30 min although transpiration remained high. The restoration of leaf hydration and growth were enabled by increased root hydraulic conductivity after increasing the air temperature. The use of mercuric chloride (an inhibitor of water channels) to interfere with the rise on root hydraulic conductivity hindered the restoration of extension growth. Air warming increased ABA content in roots and decreased it in shoots. We propose this redistribution of ABA in favour of the roots which increased the root hydraulic conductivity sufficiently to permit rapid recovery of shoot hydration and leaf elongation rates without the involvement of stomatal closure. This proposal is based on known ability of ABA to increase hydraulic conductivity confirmed in these experiments by measuring the effect of exogenous ABA on osmotically driven flow of xylem sap from the roots. Accumulation of root ABA was mainly the outcome of increased export from the shoots. When phloem transport in air-warmed plants was inhibited by cooling the shoot base this prevented ABA enrichment of the roots and favoured an accumulation of ABA in the shoot. As a consequence, stomata closed.  相似文献   

20.
Boron and salinity effects on grafted and non-grafted melon plants   总被引:7,自引:0,他引:7  
Production of melon (Cucumis melo) may be limited by excesses of boron and salinity, and it was hypothesized that melon grafted onto Cucurbita rootstock would be more tolerant to excessive boron concentrations than non-grafted plants. The objectives of this study were (i) to determine the effects of salinity and excessive boron concentrations in irrigation water on growth and yields of grafted and non-grafted melon plants; and (ii) to study the interaction between the effects of salinity and boron on the uptake of macroelements and boron by grafted and non-grafted melon plants. The plants were grown in pots of Perlite in a greenhouse. The combined effects of boron and salinity on growth and yield were investigated for five boron concentrations, ranging from 0.2 to 10 mg L− 1, and two salinity levels, electrical conductivity (EC) 1.8 and 4.6 dS m− 1, in the irrigation water. With low salinity the boron concentrations in old leaves of non-grafted and grafted plants ranged from 249 to 2827 and from 171 to 1651 mg kg− 1 dry weight, respectively; with high salinity the corresponding concentrations ranged from 192 to 2221 and from 200 to 1263 mg kg− 1 dry weight, respectively. These results indicate that the grafted plants accumulated less boron than the non-grafted plants when they were exposed to similar boron concentrations, and that both plant types absorbed less boron when irrigated with the more saline irrigation water. It is suggested that: (i) the Cucurbita rootstock excluded some boron and that this, in turn, decreased the boron concentration in the grafted plants; and (ii) the low boron uptake under high-salinity irrigation was mainly a result of reduced transpiration of the plants. Significant negative linear regressions were found between fruit yield and leaf boron concentration for grafted plants, under both low and high salinity levels, and for non-grafted plants under low salinity. The fruit yield of the grafted plants was less affected by boron accumulation in the leaves than that of non-grafted plants. Increasing the water salinity decreased the sensitivity of both plant types to increases in leaf boron concentration, which indicates that the effects of boron and salinity on melon plants were not additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号