首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 909 毫秒
1.
Uterine innervation undergoes substantial reorganization associated with changes in reproductive status. Nerves innervating the uterus are decreased in pregnancy and puberty, and even the normal rodent estrous cycle is characterized by fluctuations in numbers of myometrial nerve fibers. During the follicular (proestrus/estrous) phase of the estrous cycle, intact nerves are rapidly depleted and then return over the next 2-3 days in the luteal (metestrus/diestrus) phase. We hypothesize that uterine nerve depletion is initiated by increased circulating estrogen in the follicular phase. However, studies have not shown whether estrogen can reduce uterine innervation and, if so, whether the time course is compatible with the rapid changes observed in the estrous cycle. These questions were addressed in the present study. Mature ovariectomized virgin rats received 17-beta-estradiol as a single injection (10 microg/kg s.c.) or chronically from timed-release pellets (0.1 microg/pellet for 3 weeks sustained release). Total (protein gene-product 9.5-immunoreactive) and sympathetic (dopamine beta-hydroxylase-immunoreactive) uterine innervation was assessed quantitatively. Both total and sympathetic innervation was abundant in uterine longitudinal smooth muscle of ovariectomized rats. However, following acute or chronic estrogen administration, total and sympathetic fiber numbers were markedly decreased. This was not due to altered uterine size, as reductions persisted after correcting for size differences. Our results indicate that sympathetic nerves are lost from uterine smooth muscle after estradiol treatment in a manner similar to that seen in the intact animal during estrus and pregnancy. This suggests that the rise in estradiol prior to estrus is sufficient to deplete uterine sympathetic innervation.  相似文献   

2.
3.
Recent evidence suggests that a regulated insulin-like growth factor (IGF) system mediates the effects of estrogen, promoting the proliferation and differentiation of specific uterine cell types throughout the estrous cycle and during gestation in the rodent. Previous studies have shown that IGFs are differentially expressed in the mouse uterus during the periimplantation period. In the current study, we examined the expression of IGF binding protein-4 (IGFBP-4), IGF-I receptor (IGF-IR), and IGF-I in the mouse uterus throughout the estrous cycle. Ligand blot analysis was conducted on uterine homogenates using [125I]IGF-I. IGFBP-4 was detected in all uterine homogenates, varying in intensity throughout the estrous cycle. In situ hybridization studies at metestrus and diestrus demonstrated an intense IGFBP-4 mRNA signal in antimesometrial stromal cells between the luminal epithelium and the myometrium, but at proestrus and estrus, no IGFBP-4 signal was detected. No IGF-I mRNA was detected at any stage of the estrous cycle by in situ hybridization. However, by RT-PCR analysis, IGF-I mRNA was detected at all stages of the estrous cycle. RT-PCR analysis also showed IGF-IR mRNA throughout the estrous cycle. Using immunohistochemistry, IGF-IR immunostaining was detected throughout the estrous cycle and on days 2-7 of gestation, but was restricted to the glandular epithelium. These results suggest that uterine IGFBP-4 expression may not be dependent on uterine IGF-I expression. They also suggest that IGFBP-4 may play a role in uterine physiology independent of the inhibition of IGF-I action, and that IGF-IR is constitutively expressed in the mouse uterus.  相似文献   

4.
5.
The relationships among pulsatile LH secretion pattern, estrogen secretion, and expression of the uterine estrogen receptor gene were examined throughout the estrous cycle in beagle bitches. In Experiment 1, blood samples were collected from 30 bitches every 10 min for 8 h from a cephalic vein during different phases of the estrous cycle. An increase in the mean plasma levels of LH occurred from mid to late anestrus (P < 0.01). The LH pulse frequency increased (P < 0.01) from late anestrus to proestrus, and was strongly correlated (r = 0.96, P < 0.001) with the mean plasma level of estradiol-17 beta (E2). In Experiment 2, middle uterine samples, including the myometrium and endometrium, from 18 bitches were taken at 6 stages of the estrous cycle. The total number of estrogen receptors and nuclear estrogen receptor and its mRNA levels in the uterus also increased (P < 0.01) from late anestrus to proestrus. Mean plasma E2 level and the number of uterine estrogen receptor were positively correlated (r = 0.81, P < 0.05). In Experiment 3, nine bitches were ovariectomized in mid anestrus. Two weeks later they received a single injection of 10 or 50 micrograms/kg, i.m., estradiol benzoate. The number of uterine estrogen receptor and their mRNA levels for ovariectomized bitches were low, but increased (P < 0.05) after treatment with a low dose of estradiol benzoate. These results suggest that increases in LH pulse frequency and estrogen secretion are associated with termination of anestrus and that subsequent enhancement of uterine estrogen receptor expression may be up-regulated by estradiol.  相似文献   

6.
Previous work has shown that the immature rat uterus contains epidermal growth factor (EGF) receptors and that tissue levels of this receptor are increased by the administration of exogenous estrogens. This study was undertaken to determine if estrogen administration also elevated EGF receptor levels in the mature animal and if the growth factor receptor levels varied in concert with endogenous estrogens throughout the estrous cycle. In the mature, castrate rat administration of estradiol, but not non-estrogenic steroids, causes a 2-3-fold elevation of uterine EGF receptors as judged by ligand binding. This increase is maximum in 18 h and is due to an increase in the number of binding sites. In cycling animals EGF receptor levels are low at metestrus, rise at diestrus, reach a maximum (approximately twice metestrus values) at proestrus, and then return at estrus to metestrus levels. These changes in EGF receptor levels parallel changes in plasma estrogens and occupied nuclear estrogen receptor reported by other workers. These results indicate that uterine EGF receptors are increased by exogenous estrogens in both mature and immature animals, and support a physiological role for estrogens in the regulation of this growth factor receptor.  相似文献   

7.
The innervation of the uterus is remarkable in that it exhibits physiological changes in response to altered levels in the circulating levels of sex hormones. Previous studies by our group showed that chronic administration of estrogen to rats during the infantile/prepubertal period provoked, at 28 days of age, an almost complete loss of norepinephrine-labeled sympathetic nerves, similar to that observed in late pregnancy. It is not known, however, whether early exposure to estrogen affects uterine cholinergic nerves. Similarly, it is not known to what extent development and estrogen-induced responses in the uterine cholinergic innervation are affected by the absence of sympathetic nerves. To address this question, in this study we analyzed the effects of infantile/prepubertal chronic estrogen treatment, chronic chemical sympathectomy with guanethidine, and combined sympathectomy and chronic estrogen treatment on developing cholinergic nerves of the rat uterus. Cholinergic nerves were visualized using a combination of acetylcholinesterase histochemistry and the immunohistochemical demonstration of the vesicular acetylcholine transporter (VAChT). After chronic estrogen treatment, a well-developed plexus of cholinergic nerves was observed in the uterus. Quantitative studies showed that chronic exposure to estrogen induced contrasting responses in uterine cholinergic nerves, increasing the density of large and medium-sized nerve bundles and reducing the intercept density of fine fibers providing myometrial and perivascular innervation. Estrogen-induced changes in the uterine cholinergic innervation did not appear to result from the absence/impairment of sympathetic nerves, because sympathectomy did not mimic the effects produced by estrogen. Estrogen-induced responses in parasympathetic nerves are discussed, considering the direct effects of estrogen on neurons and on changes in neuron-target interactions.  相似文献   

8.
There are changes in the nuclear content of the estrogen receptor in the rat uterus during the estrous cycle that are associated with changes in its physiology. The changes correlate with the concentrations of circulating estradiol. It appears that uterotrophic response to estradiol is a function of the nuclear receptor. The insertion of an IUD leads to changes in the treated uterine horn which appear to be the result of an increased responsitivity to circulating estradiol. The presence of an IUD did not alter the estrous cycle, gonadotropin, or corpus luteum function. The intracellular distribution of the estrogen receptor was investigated in normal uterine horns and in the horns with devices throughout the estrous cycle. Groups of 30 Wistar rats had a silk suture fitted in the lumen of 1 uterine horn. After 14 days the progress of these estrous cycles was determined. Rats were grouped according to the stage of the cycle on the 4th day. Rats were then killed and the uteri removed. Cytosol receptors were measured. The capacity of the cytosol estrogen receptor to bind to oligo(dT)-cellulose was determined. Cytosol protein, nuclear protein, and DNA were measured. At all stages of the estrous cycle, the wet weight and cytosol receptor of the treated horns were greater than the control horns. A slight increase in the capacity of cytosol receptor to bind to oligo(dT)-cellulose was noted at proestrus. The response elicited by the IUD was not considered to be due to an estrogenic response since the changes observed were not accompanied by a corresponding increase in the content of nuclear receptor.  相似文献   

9.
The ovarian steroids, estrogen and progesterone, regulate cellular and molecular changes which occur in the uterus during the estrous cycle. Cycles of protein synthesis, cell proliferation and differentiation, and cell death are the direct results of changes in hormone concentration. To explore the possibility that cytokines, which stimulate proliferation and differentiation of numerous types of cells, might be associated with those cyclic changes, the production of IL-1, IL-6, and TNF alpha was examined in the mouse uterus. Cytokine mRNA expression, bioactivity, and immunoreactivity were quantitated during the estrous cycle, following ovariectomy and exposure of ovariectomized mice to estrogen and progesterone. IL-1, IL-6, and TNF alpha mRNA was detected, and mRNA levels for each of the cytokines varied with the stage of the cycle. Cytokine bioactivity was expressed throughout the cycle, but levels of each cytokine were highest during proestrus and/or estrus. Immunoreactivity paralleled bioactivity. Uterus from ovariectomized mice contained little or no cytokine activity, and systemic administration of estrogen or progesterone resulted in the induction of IL-1 alpha and IL-1 beta mRNA expression. Significant amounts of IL-6 and TNF alpha mRNA appeared only following the exposure of ovariectomized mice to estrogen plus progesterone. Cytokine bioactivity and immunoreactivity also appeared following the administration of estrogen and/or progesterone. The highest activity levels for each cytokine were observed following the injection of estrogen plus progesterone. Cyclic expression of IL-1, IL-6, and TNF alpha in the uterus and their apparent regulation by estrogen and progesterone raise the possibility that cytokines and factors which are induced by cytokines are part of the regulatory process which is induced by ovarian hormones in the uterus of reproductive age females.  相似文献   

10.
11.
12.
Small proline-rich (SPRR) proteins are structural components of the cornified cell envelope (CE), a specialized structure beneath the plasma membrane of stratified squamous epithelia. They are divided into four families, of which SPRR2 is the most complex consisting of 11 members (2a-2k) in the mouse. To assess the possible influence of estrogen on expression of the SPRR2 family in the uterus, we examined the effect of 17b-estradiol (E2) on SPRR2 mRNA levels on ovariectomized (OVX) adult mice. We employed a combination of laser capture microdissection (LCM) and semiquantitative RT-PCR to examine expression in particular uterine cell types - luminal epithelia, and stromal and muscle cells. We also used quantitative real-time PCR to measure levels of the mRNA of several SPRR2 proteins in the mouse uterus over the estrous cycle and during early pregnancy. Expression of SPRR2a, 2b, 2c, 2d, 2e, 2f and 2g mRNA was increased by estrogen treatment. SPRR2a, 2b, 2d and 2e were highly expressed on day 1 and 2 of pregnancy, but decreased markedly by days 3-6. Interestingly, several members of the SPRR2 family were preferentially up-regulated at implantation sites compared to inter-implantation sites around day 4 of pregnancy. They were abundant during proestrus and estrus but declined rapidly during metestrus. These results indicate that estrogen is a key regulator of the expression of the SPRR2 family in the mouse uterus during the estrous cycle and early pregnancy. In addition, they suggest that some members of the family play an important role in uterine processes such as the estrous cycle, early pregnancy and implantation.  相似文献   

13.
Summary In the uterus of the adult female rats, the luminal epithelial cells and the eosinophil leukocytes are rich in cytoplasmic estrogen receptors. During the estrous cycle, the epithelial estrogen receptor concentration reaches its peak level, in proestrus, drops precipitously in estrus, and hits the trough, at metestrus. Repopulation of the cytoplasm with estrogen binding sites occurs during diestrus. This pattern of cyclic change is indicative of a rapid turnover of estrogen receptors in the epithelial cells and its regulation by endogenous estrogens. The concentration of estrogen receptors in the cytoplasm of the eosinophils does not appear to fluctuate during the cycle. But the intrauterine, distribution of these leukocytes is clearly cyclic in pattern, ostensibly influenced by estrogens. While progesterone binding activity is consistently demonstrated in tandem with estrogen receptors in the cytoplasm of the epithelial cells, it has not been observed in the eosinophil leukocytes. These findings support the claim that there are two estrogen receptor systems in the rat uterus, one mediating the intracellular events of the genomic response to estrogens, and the other being concerned with non-genomic responses.Abbreviations BSA Bovine serum albumin - FITC fluorescein isothiocyanate - TMRITC tetramethylrhodamine isothiocyanate - CMO O-carboxymethyl oxime  相似文献   

14.
15.
Monoclonal antibodies to human estrogen receptor were used with an indirect immunohistochemical technique to localize in formalin-fixed, paraffin-embedded sections of the genital tract of the bitch. The presence of estrogen receptors in the uterus of dogs with cystic hyperplasia endometritis complex (CHE) was compared with normal uteri from dogs at the same stage of estrous cycle. Lower estrogen receptor expression was found in the squamous metaplastic epithelium covering the luminal surface of the endometrium from dogs with CHE than in the columnar epithelium from normal dogs. In contrast, the basal glands from uteri of CHE group dogs contained more estrogen receptor than glands from normal dogs at the same stage of estrous cycle. This was most pronounced and statistically significant in the late secretary stage of the estrous cycle. When the glands presented cystic degeneration, the estrogen receptor labeling was less pronounced. The highest estrogen receptor score was present in normal glands from dogs treated with progestins. In this group even cystic degenerated glands contained high estrogen receptor concentrations compared with those of the other groups. From this study it was concluded that the down regulation of estrogen receptor expression in the endometrial glands under the influence of rising progesterone concentrations is defective in dogs with CHE. Therefore it is suggested that the regulation of estrogen receptor expression in endometrial glands may play an important role in the pathogenesis of CHE in the bitch.  相似文献   

16.
17.
18.
In mature female rats, sex hormones regulate the reproductive (estrous) cycle to optimize mating and fertility. During the part of the estrous cycle when mating occurs, and when estrogen is the dominant sex hormone, the uterus is susceptible to infection with bacteria that can be deleterious for survival and fertility. The present study investigated whether sex hormones regulate innate immunity in the female reproductive tract by affecting the secretion of an anti-bacterial factor(s) in the rat uterus. Uterine fluids from intact rats at the proestrous stage of the estrous cycle significantly inhibited Staphylococcus aureus growth. When ovariectomized rats were treated with estradiol, anti-bacterial activity against both S. aureus and Escherichia coli increased in uterine secretions with hormone treatment. In contrast, rats injected with either progesterone and estradiol or progesterone alone displayed no bactericidal activity indicating that progesterone reversed the stimulatory effect of estradiol on anti-bacterial activity. In other studies, isolated uterine epithelial cells from intact animals were grown to confluence and high transepithelial resistance on cell inserts. Analysis of apical secretions indicated that a soluble factor(s) is released by polarized epithelial cells which inhibits bacterial growth. These results demonstrate that sex hormones influence the presence of a broad-spectrum bactericidal factor(s) in luminal secretions of the rat uterus. Further these studies suggest that epithelial cells which line the uterine lumen are a primary source of anti-bacterial activity.  相似文献   

19.
Vaginal function is strongly influenced by reproductive hormone status. Vaginal dysfunction during menopause is generally assumed to occur because of diminished estrogen-mediated trophic support of vaginal target cells. However, peripheral neurons possess estrogen receptors and are potentially responsive to gonadal steroid hormones. In the present study, we investigated whether sensory and autonomic innervation of the vagina varies among rats during the estrus phase of the estrous cycle, following chronic ovariectomy, and after sustained estrogen replacement. Relative to rats in estrus, ovariectomized rats showed a 59% elevation in nerve density, as determined using the panneuronal marker PGP 9.5. This increase persisted even after correcting for differences in vaginal tissue size, indicating true axonal proliferation after ovariectomy rather than changes secondary to altered volume. Increased total innervation after ovariectomy was attributable to increased densities of sympathetic nerves immunostained for tyrosine hydroxylase (70%), cholinergic parasympathetic nerves immunoreactive for vesicular acetylcholine transporter (93%), and calcitonin gene-related peptide-immunoreactive sensory nociceptor nerves (84%). Myelinated primary sensory innervation revealed by RT-97 immunoreactivity did not appear to be affected. Sustained 17beta-estradiol administration reduced innervation density to an extent comparable to that of estrus, implying that estrogen is the hormone mediating vaginal neuroplasticity. These findings indicate that some aspects of vaginal dysfunction during menopause may be attributable to changes in innervation. Increased sympathetic innervation may augment vasoconstriction and promote vaginal dryness, while sensory nociceptor axon proliferation may contribute to symptoms of pain, burning, and itching associated with menopause and some forms of vulvodynia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号