首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Paphiopedilum and Cypripedium are closely related in phylogeny, but have contrasting leaf traits and habitats. To understand the divergence in leaf traits of Paphiopedilum and Cypripedium and their adaptive significance, we analyzed the leaf anatomical structures, leaf dry mass per area (LMA), leaf lifespan (LL), leaf nitrogen concentration (N mass), leaf phosphorus concentration (P mass), mass-based light-saturated photosynthetic rate (A mass), water use efficiency (WUE), photosynthetic nitrogen use efficiency (PNUE) and leaf construction cost (CC) for six species. Compared with Cypripedium, Paphiopedilum was characterized by drought tolerance derived from its leaf anatomical structures, including fleshy leaves, thick surface cuticles, huge adaxial epidermis cells, lower total stoma area, and sunken stomata. The special leaf structures of Paphiopedilum were accompanied by longer LL; higher LMA, WUE, and CC; and lower N mass, P mass, A mass, and PNUE compared with Cypripedium. Leaf traits in Paphiopedilum helped it adapt to arid and nutrient-poor karst habitats. However, the leaf traits of Cypripedium reflect adaptations to an environment characterized by rich soil, abundant soil water, and significant seasonal fluctuations in temperature and precipitation. The present results contribute to our understanding of the divergent adaptation of leaf traits in slipper orchids, which is beneficial for the conservation of endangered orchids.  相似文献   

2.
The effects of shade on the growth, leaf photosynthetic characteristics, and chlorophyll (Chl) fluorescence parameters of Lycoris radiata var. radiata were determined under differing irradiances (15, 65, and 100% of full irradiance) within pots. The HI plants exhibited a typical decline in net photosynthetic rate (P N) during midday, which was not observed in MI- and LI plants. This indicated a possible photoinhibition in HI plants as the ratio of variable to maximum fluorescence (Fv/Fm) value was higher and the minimal fluorescence (F0) was lower in the, and LI plants. Diurnal patterns of stomatal conductance (g s) and transpiration rate (E) were remarkably similar to those of P N at each shade treatments, and the intercellular CO2 concentration (C i) had the opposite change trend. Under both shading conditions, the light saturation point, light compensation point and photon-saturated photosynthetic rate (P max) became lower than those under full sunlight, and it was the opposite for the apparent quantum yield (AQY). The higher the level of shade, the lower the integrated daytime carbon gain, stomatal and epidermis cell densities, specific leaf mass (SLM), bulb mass ratio (BMR), leaf thickness, and Chl a/b ratio. In contrast, contents of Chls per dry mass (DM), leaf area ratio (LAR), leaf mass ratio (LMR), leaf length, leaf area and total leaf area per plant increased under the same shade levels to promote photon absorption and to compensate for the lower radiant energy. Therefore, when the integrated daytime carbon gain, leaf area and total leaf area per plant, which are the main factors determining the productivity of L. radiata var. radiata plant, were taken into account together, this species may be cultivated at about 60∼70% of ambient irradiance to promote its growth.  相似文献   

3.
Eupatorium adenophorum is one of the more noxious invasive plants worldwide. However, the mechanisms underlying its invasiveness are still not well elucidated. In this study, we compared the invader with its two native congeners (E. heterophyllum and E. japonicum) at four irradiances in terms of growth, biomass allocation, morphology, and photosynthesis. The higher light-saturated photosynthetic rate (P max) and total leaf area of the invader may contribute to its higher relative growth rate (RGR) and total biomass compared with its native congeners. Total biomass and RGR increased significantly with the increase of P max and total leaf area. The higher support organ mass fraction and the lower root mass fraction of the invader may also contribute to its higher RGR and biomass through increasing carbon assimilation and reducing respiratory carbon loss, respectively. The higher growth rate of the invader increased its total leaf area, ramet number, and crown area. These traits may help the invader to form dense monoculture, outshading native plant species. However, consistently higher leaf area ratio, specific leaf area, and leaf mass fraction were not found across irradiances for the invader compared with its native congeners. Higher plasticity in response to irradiance was also not found for the invader. The invader retained advantages over the natives across irradiances, while its performance decreased with lower irradiance. The results indicate that the invader may be one of the few super invaders. Reducing irradiance may inhibit its invasions.  相似文献   

4.
With an increase in growth irradiance (from 15 to 100 % of full sunlight, I15 to I100), the maximum net photosynthetic rate (P max), compensation (CI) and saturation irradiances of A. annua increased. At full sunlight, A. annua had a high capacity of photosynthesis, while at low irradiance it maintained a relatively high P max with a low CI. The height and diameter growth, total and leaf biomass, and artemisinin content of A. annua decreased with the decrease in irradiance, which might be connected with lower photosynthesis at lower than at higher irradiance. Irradiances changed biomass allocations of A. annua. The leaf/total mass ratio of A. annua increased with decreasing irradiance, but the root/total mass ratio and root/above-ground mass generally increased with increasing irradiance. Thus A. annua can grow in both weak and full sunlight. However, high yield of biomass and artemisinin require cultivation in an open habitat with adequate sunshine.  相似文献   

5.
Saturation (SI) and compensation (CI) irradiances [μmol(photon) m−2 s−1] were 383.00±18.40 and 12.95±0.42 for wild C. nitidissima (in mid-July) and 691.00±47.39 and 21.91±1.28 for wild C. sinensis, respectively. C. nitidissima is a shade tolerant species, whereas C. sinensis has a wide ecological range of adaptability to irradiance. Both wild and cultivated C. nitidissima demonstrated low maximum net photosynthetic rate, maximum carboxylation rate, maximum electron transfer rate, and SI, which indicated low photosynthesis ability of leaves that were unable to adapt to strong irradiance environment. Both C. nitidissima and C. sinensis demonstrated strong photosynthetic adaptabilty in new environments. Hence proper shading may raise photosynthetic efficiency of cultivated C. nitidissima and promote its growth.  相似文献   

6.
To examine the role of acclimation versus adaptation on the temperature responses of CO2 assimilation, we measured dark respiration (R n) and the CO2 response of net photosynthesis (A) in Populus balsamifera collected from warm and cool habitats and grown at warm and cool temperatures. R n and the rate of photosynthetic electron transport (J) are significantly higher in plants grown at 19 versus 27°C; R n is not affected by the native thermal habitat. By contrast, both the maximum capacity of rubisco (V cmax) and A are relatively insensitive to growth temperature, but both parameters are slightly higher in plants from cool habitats. A is limited by rubisco capacity from 17–37°C regardless of growth temperature, and there is little evidence for an electron-transport limitation. Stomatal conductance (g s) is higher in warm-grown plants, but declines with increasing measurement temperature from 17 to 37°C, regardless of growth temperature. The mesophyll conductance (g m) is relatively temperature insensitive below 25°C, but g m declines at 37°C in cool-grown plants. Plants acclimated to cool temperatures have increased R n/A, but this response does not differ between warm- and cool-adapted populations. Primary carbon metabolism clearly acclimates to growth temperature in P. balsamifera, but the ecotypic differences in A suggest that global warming scenarios might affect populations at the northern and southern edges of the boreal forest in different ways.  相似文献   

7.
Photosynthetic and growth characteristics of Mosla chinensis and M. scabra were compared at three irradiances similar to shaded forest understory, forest edge, and open land. At 25 % full ambient irradiance, M. chinensis and M. scabra had similar photosynthetic characteristics, but saturation irradiance, compensation irradiance, and apparent quantum yield of M. chinensis were higher than those of M. scabra at full ambient irradiance and 70 % full ambient irradiance. At the same irradiance treatment, specific leaf area and leaf area ratio of M. chinensis were lower than those of M. scabra. Photon-saturated photosynthetic rate and water use efficiency of M. chinensis, however, were not significantly higher than those of M. scabra, and the leaf area and total biomass were lower than those of M. scabra. As a sun-acclimated plant, the not enough high photosynthetic capacity and lower biomass accumulation may cause that M. chinensis has weak capability to extend its population and hence be concomitant in the community.  相似文献   

8.
Shifts in canopy structure associated with nonnative plant invasions may interact with species-specific patterns of canopy resource allocation to reinforce the invasion process. We documented differences in canopy light availability and canopy resource allocation in adjacent monospecific and mixed stands of Phragmites australis and Typha spp. in a Great Lakes coastal wetland presently undergoing Phragmites invasion to better understand how light availability influences leaf nitrogen content (Nmass) and photosynthetic capacity (Amax) in these species. Due to their horizontally oriented leaves, light attenuates more rapidly in monospecific stands of Phragmites than in monospecific stands of Typha, where leaves are more vertically-oriented. Whereas Typha canopies followed our prediction that patterns of Nmass and Amax should closely parallel patterns of canopy light availability, Nmass and Amax were consistent throughout Phragmites’ canopies. Moreover, we observed overall greater Nmass and lower photosynthetic nitrogen use efficiency in leaves of Phragmites than in leaves of Typha. Improved understanding of the link between Nmass and Amax in these canopies should improve our understanding of carbon and nitrogen cycling consequences of Phragmites invasion in wetland ecosystems.  相似文献   

9.
Plants differ in how much the response of net photosynthetic rate (P N) to temperature (T) changes with the T during leaf development, and also in the biochemical basis of such changes in response. The amount of photosynthetic acclimation to T and the components of the photosynthetic system involved were compared in Arabidopsis thaliana and Brassica oleracea to determine how well A. thaliana might serve as a model organism to study the process of photosynthetic acclimation to T. Responses of single-leaf gas exchange and chlorophyll fluorescence to CO2 concentration measured over the range of 10–35 °C for both species grown at 15, 21, and 27 °C were used to determine the T dependencies of maximum rates of carboxylation (VCmax), photosynthetic electron transport (Jmax), triose phosphate utilization rate (TPU), and mesophyll conductance to carbon dioxide (gm). In A. thaliana, the optimum T of P N at air concentrations of CO2 was unaffected by this range of growth T, and the T dependencies of VCmax, Jmax, and gm were also unaffected by growth T. There was no evidence of TPU limitation of P N in this species over the range of measurement conditions. In contrast, the optimum T of P N increased with growth T in B. oleracea, and the T dependencies of VCmax, Jmax, and gm, as well as the T at which TPU limited P N all varied significantly with growth T. Thus B. oleracea had much a larger capacity to acclimate photosynthetically to moderate T than did A. thaliana.  相似文献   

10.
In a glasshouse, Bemisia tabaci infestation largely reduced response of photosynthesis to irradiance and CO2 concentration of Mikania micrantha compared with the non-infested control (C) ones. The maximum irradiance-saturated photosynthetic rate (P max) and saturation irradiance (SI) of the infested M. micrantha were only 21.3 % and 6.5 % of the C-plants, respectively. B. tabaci infestation led to the reduction of contents of chlorophyll and carotenoids in M. micrantha, which was accompanied with the decrease of actual photosystem 2 (PS2) efficiency (ΦPS2), efficiency of excitation energy capture by open PS2 reaction centres (Fv′/Fm′), electron transport rate (ETR), and photochemical quenching (qP). Moreover, superoxide dismutase and catalase activities significantly decreased while proline and glutathione contents significantly increased in infested M. micrantha. Hence B. tabaci infestation not only induced direct damage of photosynthetic apparatus but also altered the antioxidant enzymes activities in M. micrantha, which might as consequences accelerate senescence of this weed.  相似文献   

11.
To better understand the requirement of light and soil water conditions in the invasion sites of two invasive weeds, Mikania micrantha and Chromolaena odorata, we investigated their structural and physiological traits in response to nine combined treatments of light [full, medium and low irradiance (LI)] and soil water (full, medium and low field water content) conditions in three glasshouses. Under the same light conditions, most variables for both species did not vary significantly among different water treatments. Irrespective of water treatment, both species showed significant decreases in maximum light saturated photosynthetic rate (P max), photosynthetic nitrogen-use efficiency, and relative growth rate under LI relative to full irradiance; specific leaf area, however, increased significantly from full to LI though leaf area decreased significantly, indicating that limited light availability under extreme shade was the critical factor restricting the growth of both species. Our results also indicated that M. micrantha performed best under a high light and full soil water combination, while C. odorata was more efficient in growth under a high light and medium soil water combination.  相似文献   

12.
The photosynthetic and respiratory responses of Gracilaria salicornia in the subtropical waters of Japan (in Okinawa) and in the tropical waters of Thailand (in Rayong and Phuket Provinces), were studied under various conditions of irradiance, salinity and temperature. This alga showed adaptability in its photosynthetic and respiratory responses to oceanic salinity as well as to subtropical to tropical temperature. Significant differences in the photosynthetic and respiratory rates among the G. salicornia populations collected from the above sites were observed. The Phuket population showed adaptability to high irradiance and temperature, characteristic of its natural sun-exposed environment, as it exhibited the highest I k and I c, and lowest α and higher P max at 30–35°C. On the other hand, the Okinawa population demonstrated adaptability to low submarine irradiance as it had a lower I k and I c than either population from Thailand. Its P max at 20–25°C was also higher than that of the Phuket population. The Rayong population, however, showed the highest P max, Rd, α, I k and I c, suggesting its adaptability to both sun and shade light conditions in its natural environment. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines  相似文献   

13.
Feng YL  Auge H  Ebeling SK 《Oecologia》2007,153(3):501-510
The general-purpose genotype hypothesis and the hypothesis of the evolution of invasiveness predict that invasive species are characterized by particular traits that confer invasiveness. However, these traits are still not well-defined. In this study, ecophysiological traits of eight populations of the invasive shrub Buddleja davidii from a wide range of European locations and five co-occurring native woody species in Germany were compared in a common garden experiment. We hypothesized that the invader has higher resource capture ability and utilization efficiency than the natives. No differences were detected among the eight populations of B. davidii in any of the traits evaluated, indicating that the invader did not evolve during range expansion, thus providing support to the general-purpose genotype hypothesis. The invader showed significantly higher maximum electron transport rate, maximum carboxylation rate, carboxylation efficiency, light-saturated photosynthetic rate (P max) and photosynthetic nitrogen utilization efficiency (PNUE) than the five natives. Leaf nitrogen content was not significantly different between the invader and the natives, but the invader allocated more nitrogen to the photosynthetic machinery than the natives. The increased nitrogen content in the photosynthetic machinery resulted in a higher resource capture ability and utilization efficiency in the invader. At the same intercellular CO2 concentration, P max was significantly higher in the invader than in the natives, again confirming the importance of the higher nitrogen allocation to photosynthesis. The invader reduced metabolic cost by increasing the ratio of P max to dark respiration rate (R d), but it did not reduce carbon cost by increasing the specific leaf area and decreasing leaf construction cost. The higher nitrogen allocation to the photosynthetic machinery, P max, PNUE and P max/R d may facilitate B. davidii invasion, although studies involving a wide range of invasive species are needed to understand the generality of this pattern and to fully assess the ecological advantages afforded by these features.  相似文献   

14.
In order to reveal the drought resistance and adaptation of the C4 desert plant Haloxylon ammodendron under artificially controlled soil moisture regimes, representative plants were selected to measure canopy photosynthesis using canopy photosynthetic measurement system. The results showed that appropriate soil moisture significantly enhances the canopy and leaf photosynthetic capacity, and extremely high soil moisture is not conducive to the photosynthesis of H. ammodendron.  相似文献   

15.
Net photosynthetic rate (PN), transpiration rate (E), water use efficiency (WUE), stomatal conductance (gs), and stomatal limitation (Ls) were investigated in two Syringa species. The saturation irradiance (SI) was 400 µmol m-2s-1 for S. pinnatifolia and 1 700 µmol m-2s-1 for S. oblata. Compared with S. oblata, S. pinnatifolia had extremely low g s . Unlike S. oblata, the maximal photosynthetic rate (Pmax) in S. pinnatifoliaoccurred around 08:00 and then fell down, indicating this species was sensitive to higher temperature and high photosynthetic photon flux density. However, such phenomenon was interrupted by the leaf development rhythms before summer. A relatively lower PN together with a lower leaf area and shoot growth showed the capacity for carbon assimilation was poorer in S. pinnatifolia.  相似文献   

16.
Photosynthetic parameters were measured in two invasive weeds, Mikania micrantha and Chromolaena odorata, grown in soil under full, medium, and low irradiance and full, medium, and low water supply. Both species showed significantly higher net photosynthetic rate, quantum yield of PS 2 photochemistry and photochemical quenching coefficient under high than low irradiance. For M. micrantha, low irradiance caused decreased chlorophyll content (Chl), Chl a/b ratio and maximum photochemical efficiency of PS 2 (Fv/Fm), while drought decreased Chl content and Fv/Fm and increased nonphotochemical quenching (NPQ). However, these parameters were much less affected in C. odorata except that Chl content and NPQ slightly increased under drought and high irradiance. High irradiance increased xanthophyll pools in both species, especially M. micrantha under combination with drought.  相似文献   

17.
Indocalamus longiauritus (a dwarf bamboo) dominates forest understory and functions as an ecological filter to hinder the regeneration of canopy tree species in many temperate forests. However, the physiological mechanism underlying the function of ecological filters is not clear. In this study, we measured leaf-level carbon capture ability and use efficiency of the dwarf bamboo and the co-existing Fagus lucida (beech) and Castanopsis lamontii (chinkapin) seedlings in forest understory and small gaps in a beech–chinkapin mixed forest in the summer of 2005. The results indicated that I. longiauritus exhibited greater carbon capture ability, as indexed by light-saturated photosynthetic rate (P max), maximal carboxylation rate, maximal electron transport rate and carboxylation efficiency, than the co-occurring F. lucida and C. lamontii seedlings in both forest understory and small gaps. Higher carbon capture ability in I. longiauritus was related to its greater partition of absorbed light energy to photochemistry. I. longiauritus had higher photosynthetic nitrogen use efficiency than F. lucida and C. lamontii seedlings in both light environments. However, water use efficiency (WUE) in I. longiauritus was higher than F. lucida but lower than C. lamontii. This intermediate WUE in I. longiauritus was related to its intermediate light-saturated stomatal conductance. In addition, I. longiauritus reduced metabolic cost by increasing the ratio of P max to respiration rate, leading to increased net carbon balance. On the other hand, F. lucida and C. lamontii seedlings had greater plasticity of carbon capture ability and leaf structural traits, which might facilitate colonization of gaps and realization of natural regeneration in these species.  相似文献   

18.
Insect herbivory has variable effects on plant physiology; so greater understanding is needed about how injury alters photosynthesis on individual injured and uninjured leaves. Gas exchange and light-adapted leaf chlorophyll fluorescence measurements were collected from uninjured and mechanical partial leaf defoliation in two experiments with Nerium oleander (Apocynaceae) leaves, and one experiment with Danaus plexippus herbivory on Asclepias curassavica (Asclepiadaceae) leaves. Gas exchange impairment (lower photosynthetic rate (P n ), stomatal conductance (g s)) indicates water stress in a leaf, suggests stomatal limitations causing injury P n impairment. The same pattern of gas exchange impairment also occurred on uninjured leaves opposite from injured leaves in both N. oleander experiments. This is an interesting result because photosynthetic impairment is rarely reported on injured leaves near injured leaves. No photosynthetic changes occurred in uninjured A. curassavica leaves opposite from D. plexippus-fed leaves. Partially defoliated leaves that had P n and g s reductions lacked any significant changes in intercellular leaf [CO2], C i. These results neither support, nor are sufficient to reject, stomatal limitations to photosynthesis. Manually imposed midrib vein severance in N. oleander experiment #1 significantly increased leaf C i, indicating mesophyll limitations to photosynthesis. Maximal light-adapted leaf photochemical efficiency () and also non-photochemical quenching (q N) were reduced by mechanical or insect herbivory to both study species, suggesting leaf trouble handling excess light energy not used for photochemistry. Midrib injury on N. oleander leaves and D. plexippus herbivory on A. curassavica leaves also reduced effective quantum yield (ΦPSII) and photochemical quenching (q P); so reduced plastoquinone pools could lead to additional PSII reaction center closure.  相似文献   

19.
During plant species invasions, the role of adaptive processes is particularly of interest in later stages of range expansion when populations start invading habitats that initially have not been disposed to invasions. The dioecious tree Acer negundo, primarily invasive in Europe in wet habitats along riversides and in floodplains, has increased its abundance in dry habitats of industrial wasteland and ruderal sites during the last decades in Eastern Germany. We chose 21 invasive populations from wet and from dry habitats in the region of Halle, Saxony-Anhalt, Germany, to test whether Acer negundo exhibits a shift in life-history strategy during expansion into more stressful habitats. We analyzed variables of habitat quality (pH, soil moisture, exchangeable cations, total C and N content) and determined density, sex ratio and regeneration of the populations. In addition, we conducted germination experiments and greenhouse studies with seedlings in four different soil moisture environments. Local adaptation was studied in a reciprocal transplant experiment. We found habitat type differentiation with lower nutrient and water supply at the dry sites than at the moist sites and significant differences in the number of seedlings in the field. In accordance, seeds from moist habitats responded significantly faster to germination treatments. In the transplant experiment, leaf life span was significantly larger for populations originating from dry habitat types than from moist habitats. This observed shift in life history strategy during secondary invasion of A. negundo from traits of establishment and rapid growth towards traits connected with persistence might be counteracted by high gene flow among populations of the different habitat types. However, prolonged leaf life span at dry sites contributed remarkably to the invasion of less favourable habitats, and, thus, is a first indication of ongoing adaptation.  相似文献   

20.
Australian carnivorous pitcher plant Cephalotus follicularis Labill. produces two types of leaves. During the spring time, the plant produces a foliage type of noncarnivorous leaf called lamina. Later, the second type of leaf is produced — carnivorous pitcher. Using simultaneous measurements of gas exchange and chlorophyll (Chl) fluorescence photosynthetic efficiency of these two distinct forms of leaves were compared. In addition stomatal density, an important component of gas exchange, and Chl concentration were also determined. Pitcher trap had lower net photosynthetic rate (P N) in comparison to noncarnivorous lamina, whereas the rate of respiration (R D) was not significantly different. This was in accordance with lower stomatal density and Chl concentration in the pitcher trap. On the other hand maximum quantum yield of PSII (Fv/Fm) and effective quantum yield of photochemical energy conversion in PSII (ΦPSII) was not significantly different. Nonphotochemical quenching (NPQ) was significantly higher in the lamina at higher irradiance. These data are in accordance with hypothesis that changing the leaf shape in carnivorous plants to make it a better trap generally makes it less efficient at photosynthesis. However, the pitcher of Cephalotus had much higher P N than it was expected from the data set of the genus Nepenthes. Because it is not possible to optimize for contrasting function such as photosynthesis and carnivory, it is hypothesized that Cephalotus pitchers are less elaborated for carnivorous function than the pitchers of Nepenthes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号