首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
In an attempt to isolate the superoxide dismutase (SOD) gene from the anaerobic sulfate-reducing bacterium Desulfoarculus baarsii, a DNA fragment was isolated which functionally complemented an Escherichia coli mutant (sodA sodB) deficient in cytoplasmic SODs. This region carries two open reading frames with sequences which are very similar to that of the rbo-rub operon from Desulfovibrio vulgaris. Independent expression of the rbo and rub genes from ptac showed that expression of rbo was responsible for the observed phenotype. rbo overexpression suppressed all deleterious effects of SOD deficiency in E. coli, including inactivation by superoxide of enzymes containing 4Fe-4S clusters and DNA damage produced via the superoxide-enhanced Fenton reaction. Thus, rbo restored to the sodA sodB mutant the ability to grow on minimal medium without the addition of branched amino acids, and growth on gluconate and succinate carbon sources was no longer impaired. The spontaneous mutation rate, which is elevated in SOD-deficient mutants, returned to the wild-type level in the presence of Rbo, which also restored aerobic viability of sodA sodB recA mutants. Rbo from Desulfovibrio vulgaris, but not Desulfovibrio gigas desulforedoxin, which corresponds to the NH2-terminal domain of Rbo, complemented sod mutants. The physiological role of Rbo in sulfate-reducing bacteria is unknown. In E. coli, Rbo may permit the bacterium to avoid superoxide stress by maintaining functional (reduced) superoxide sensitive 4Fe-4S clusters. It would thereby restore enzyme activities and prevent the release of iron that occurs after cluster degradation and presumably leads to DNA damage.  相似文献   

5.
6.
An Escherichia coli double mutant, sodAsodB, that is deficient in both bacterial superoxide dismutases (Mn superoxide dismutase and iron superoxide dismutase) is unable to grow on minimal medium in the presence of oxygen and exhibits increased sensitivity to paraquat and hydrogen peroxide. Expression of the evolutionarily unrelated eukaryotic CuZn superoxide dismutase in the sodAsodB E. coli mutant results in a wild-type phenotype with respect to aerobic growth on minimal medium and in resistance to paraquat and hydrogen peroxide. This supports the hypothesis that superoxide dismutation is the in vivo function of these proteins. Analysis of the growth of sodAsodB cells containing plasmids encoding partially active CuZn superoxide dismutases, produced by in vitro mutagenesis, shows a correlation between cell growth and enzyme activity. Thus, the sodAsodB strain provides a controlled selection for varying levels of superoxide dismutase activity.  相似文献   

7.
Legionella pneumophila, the causative agent of Legionnaires' disease, contains two superoxide dismutases (SODs), a cytoplasmic iron enzyme (FeSOD) and a periplasmic copper-zinc SOD. To study the role of the FeSOD in L. pneumophila, the cloned FeSOD gene (sodB) was inactivated with Tn903dIIlacZ, forming a sodB::lacZ gene fusion. By using this fusion, expression of sodB was shown to be unaffected by a variety of conditions, including several that influence sod expression in Escherichia coli: aeration, oxidants, the redox cycling compound paraquat, manipulation of iron levels in the medium, and the stage of growth. A reproducible twofold decrease in sodB expression was found during growth on agar medium containing charcoal, a potential scavenger of oxyradicals, in comparison with growth on the same medium without charcoal. No induction was seen during growth in human macrophages. Additional copies of sodB+ in trans increased resistance to paraquat. Construction of a sodB mutant was attempted by allelic exchange of the sodB::lacZ fusion with the chromosomal copy of sodB. The mutant could not be isolated, and the allelic exchange was possible only if wild-type sodB was present in trans. These results indicate that the periplasmic copper-zinc SOD cannot replace the FeSOD. The data strongly suggest that sodB is an essential gene and that FeSOD is required for the viability of L. pneumophila. In contrast, Sod- mutants of E. coli and Streptococcus mutans grow aerobically and SOD is not required for viability in these species.  相似文献   

8.
Pseudomonas aeruginosa is a strict aerobe which is likely exposed to oxygen reduction products including superoxide and hydrogen peroxide during the metabolism of molecular oxygen. To counterbalance the potentially hazardous effects of elevated endogenous levels of superoxide, most aerobic organisms possess one or more superoxide dismutases or compounds capable of scavenging superoxide. We have previously shown that P. aeruginosa possesses both an iron- and a manganese-cofactored superoxide dismutase (D. J. Hassett, L. Charniga, K. A. Bean, D. E. Ohman, and M. S. Cohen, Infect. Immun. 60:328-336, 1992). In this study, the genes encoding manganese (sodA)- and iron (sodB)- cofactored superoxide dismutase were cloned by using a cosmid library of P. aeruginosa FRD which complemented an Escherichia coli (JI132) strain devoid of superoxide dismutase activity. The sodA and sodB genes of P. aeruginosa, when cloned into a high-copy-number vector (pKS-), partially restored the aerobic growth rate defect, characteristic of the Sod- strain, to that of the wild type (AB1157) when grown in Luria broth. The nucleotide sequences of sodA and sodB have open reading frames of 612 and 579 bp that encode dimeric proteins of 22.9 and 21.2 kDa, respectively. These data were also supported by the results of in vitro expression studies. The deduced amino acid sequence of the P. aeruginosa manganese and iron superoxide dismutase revealed approximately 50 and 67% similarity with manganese and iron superoxide dismutases from E. coli, respectively. There was also remarkable similarity with iron and manganese superoxide dismutases from other phyla. The mRNA start site of sodB was mapped to 174 bp upstream of the ATG codon. A likely promoter with similarity to the -10 and -35 consensus sequence of E. coli was observed upstream of the ATG start codon of sodB. Regions sequenced 519 bp upstream of the sodA electrophoresis, sodA gene revealed no such promoter, suggesting an alternative mode of control for sodA. By transverse field electrophoresis, sodA and sodB were mapped to the 71- to 75-min region on the P. aeruginosa PAO1 chromosome. Strikingly, mucoid alginate-producing bacteria generated greater levels of manganese superoxide dismutase than nonmucoid revertants, suggesting that mucoid P. aeruginosa is responding to oxidative stress and/or changes in the redox status of the cell.  相似文献   

9.
Many eubacteria are resistant to the toxic oxidizing agent potassium tellurite, and tellurite resistance involves diverse biochemical mechanisms. Expression of the iscS gene from Geobacillus stearothermophilus V, which is naturally resistant to tellurite, confers tellurite resistance in Escherichia coli K-12, which is naturally sensitive to tellurite. The G. stearothermophilus iscS gene encodes a cysteine desulfurase. A site-directed mutation in iscS that prevents binding of its pyridoxal phosphate cofactor abolishes both enzyme activity and its ability to confer tellurite resistance in E. coli. Expression of the G. stearothermophilus iscS gene confers tellurite resistance in tellurite-hypersensitive E. coli iscS and sodA sodB mutants (deficient in superoxide dismutase) and complements the auxotrophic requirement of an E. coli iscS mutant for thiamine but not for nicotinic acid. These and other results support the hypothesis that the reduction of tellurite generates superoxide anions and that the primary targets of superoxide damage in E. coli are enzymes with iron-sulfur clusters.  相似文献   

10.
The sodB gene encoding the only superoxide dismutase (Fe-SOD) in cells of the cyanobacterium Synechocystis sp. PCC6803 was inactivated with gentamycin resistance aacC1 marker insertions located in the direct or inverted order toward the sodB gene. The corresponding delta sodB12 and delta sodB22 mutants are characterized by the complete absence of superoxide dismutase activity and the loss of viability upon standard photoautotrophic cultivation. Mutant cells can grow under conditions of a decreased illumination intensity and upon addition of NaHCO3 with catalase or bovine serum albumin in the growth medium. The delta sodB22 mutant is auxotrophic for leucine due to the polar effect of insertion into the sodB gene on the downstream leuB gene controlling leucine biosynthesis. These data suggest that Fe-SOD is very important for providing tolerance of Synechocystis cells to oxidative stress and that sodB and leuB genes are organized into a single operon.  相似文献   

11.
Mu transposons carrying the chloramphenicol resistance marker have been inserted into the cloned Escherichia coli genes sodA and sodB coding for manganese superoxide dismutase (MnSOD) and iron superoxide dismutase (FeSOD) respectively, creating mutations and gene fusions. The mutated sodA or sodB genes were introduced into the bacterial chromosome by allelic exchange. The resulting mutants were shown to lack the corresponding SOD by activity measurements and immunoblot analysis. Aerobically, in rich medium, the absence of FeSOD or MnSOD had no major effect on growth or sensitivity to the superoxide generator, paraquat. In minimal medium aerobic growth was not affected, but the sensitivity to paraquat was increased, especially in the sodA mutant. A sodA sodB double mutant completely devoid of SOD was also obtained. It was able to grow aerobically in rich medium, its catalase level was unaffected and it was highly sensitive to paraquat and hydrogen peroxide; the double mutant was unable to grow aerobically on minimal glucose medium. Growth could be restored by removing oxygen, by providing an SOD-overproducing plasmid or by supplementing the medium with the 20 amino acids. It is concluded that the total absence of SOD in E. coli creates a conditional sensitivity to oxygen.  相似文献   

12.
A gene (sod) encoding superoxide dismutase (SOD) was cloned from Streptococcus mutans in Escherichia coli, and its nucleotide sequence was determined. The presumptive amino acid sequence of its product revealed that the SOD is basically of Mn type. Insertional inactivation of the sod gene resulted in the loss of SOD activity in crude extracts, indicating that the gene represents the only functional gene for SOD in S. mutans. Moreover, Southern blot analysis indicated that the S. mutans chromosome had no additional gene which was hybridizable with an oligonucleotide probe specific for an SOD motif. The SOD-deficient mutants were able to grow aerobically, albeit more slowly than the parent strains.  相似文献   

13.
A new strategy for molecular cloning in the cyanobacterium Anacystis nidulans R-2 is described. This strategy involved the use of a transposon and was developed for the cloning of a gene encoding methionine biosynthesis. A met::Tn901 mutant was isolated. Chromosomal DNA fragments were cloned in the Escherichia coli plasmid vector pACYC184. A recombinant plasmid carrying the inactivated met::Tn901 gene was selected after transformation to E. coli. The cloned met::Tn901 DNA fragment was used as a probe to select the corresponding A. nidulans R-2 wild-type met gene from a gene library prepared in E. coli, using the newly constructed shuttle cosmid vector pPUC29. When transformed into A. nidulans Met- mutants, this cloned gene allowed the mutants to grow prototrophically.  相似文献   

14.
A clone overproducing iron superoxide dismutase has been isolated from an Escherichia coli cosmid bank. Subcloning located the gene responsible for iron superoxide dismutase overproduction on a 6.6-kilobase PstI restriction endonuclease fragment. Maxicell analysis, followed by immunological identification of iron superoxide dismutase protein, demonstrated that the structural gene, sodB, of iron superoxide dismutase has been cloned.  相似文献   

15.
16.
To investigate the role of superoxide dismutases (SOD) in root colonization and oxidative stress, mutants of Pseudomonas putida lacking manganese-superoxide dismutase (MnSOD) (sodA), iron-superoxide dismutase (FeSOD) (sodB), or both were generated. The sodA sodB mutant did not grow on components washed from bean root surfaces or glucose in minimal medium. The sodB and sodA sodB mutants were more sensitive than wild type to oxidative stress generated within the cell by paraquat treatment. In single inoculation of SOD mutants on bean, only the sodA sodB double mutant was impaired in growth on root surfaces. In mixed inoculations with wild type, populations of the sodA mutant were equal to those of the wild type, but levels of the sodB mutant and, to a great extent, the sodA sodB mutant, were reduced. Confocal microscopy of young bean roots inoculated with green fluorescent protein-tagged cells showed that wild type and SOD single mutants colonized well predominantly at the root tip but that the sodA sodB double mutant grew poorly at the tip. Our results indicate that FeSOD in P. putida is more important than MnSOD in aerobic metabolism and oxidative stress. Inhibition of key metabolic enzymes by increased levels of superoxide anion may cause the impaired growth of SOD mutants in vitro and in planta.  相似文献   

17.
The nucleotide sequence of the iron superoxide dismutase gene from Escherichia coli K12 has been determined. Analysis of the DNA sequence and mapping of the mRNA start reveal a unique promoter and a putative rho-independent terminator, and suggest that the Fe dismutase gene constitutes a monocistronic operon. The gene encodes a polypeptide product consisting of 192 amino acid residues with a calculated Mr of 21,111. The published N-terminal amino acid sequence of E. coli B Fe dismutase (Steinman, H. M., and Hill, R. L. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 3725-3729), along with the sequences of seven other peptides reported here, was located in the primary structure deduced from the K12 E. coli gene sequence. A new molecular model for iron dismutase from E. coli, based on the DNA sequence and x-ray data for the E. coli B enzyme at 3.1 A resolution, allows detailed comparison of the structure of the iron enzyme with manganese superoxide dismutase from Thermus thermophilus HB8. The structural similarities are more extensive than indicated by earlier studies and are particularly striking in the vicinity of the metal-ligand cluster, which is surrounded by conserved aromatic residues. The combined structural and sequence information now available for a series of Mn and Fe superoxide dismutases identifies variable regions in these otherwise very similar molecules; the principal variable site occurs in a surface region between the two long helices which dominate the N-terminal domain.  相似文献   

18.
We have taken advantage of the transformation properties of the cyanobacterium Anacystis nidulans R2 to investigate the importance of thioredoxin for photosynthetic growth. The gene encoding thioredoxin m, designated trxM, was cloned from A. nidulans using a synthetic oligonucleotide probe. Based on the nucleotide sequence, thioredoxin m of A. nidulans is composed of 107 amino acids and shares 84, 48, and 48% sequence identity with thioredoxins from Anabaena, spinach, and Escherichia coli, respectively. The trxM gene is single copy and is transcribed on a 510-nucleotide mRNA. We demonstrate that disruption of the trxM gene with a kanamycin resistance gene cartridge is a lethal mutation. Although dispensable in E. coli, thioredoxin is essential for the photosynthetic growth of A. nidulans.  相似文献   

19.
A gene encoding cobalamin-dependent methionine synthase (EC 2.1.1.13) has been isolated from a plasmid library of Escherichia coli K-12 DNA by complementation to methionine prototrophy in an E. coli strain lacking both cobalamin-dependent and -independent methionine synthase activities (RK4536:metE, metHH). Maxicell expression of a series of plasmids containing deletions in the metH structural gene was employed to map the position and orientation of the gene on the cloned DNA fragment. A 6.3-kilobase EcoRI-SalI fragment containing the gene was cloned into the sequencing vector pGEM3B for double-stranded DNA sequencing; the MetH coding region consists of 3372 nucleotides. The enzyme was purified from an overproducing strain of E. coli harboring the recombinant plasmid, in which the level of methionine synthase was elevated 30- to 40-fold over wild-type E. coli. Recombinant enzyme is a protein of 123,640 molecular weight and has a turnover number of 1,450 min-1 in the standard assay. These values are to be compared with previously reported values of 133,000 for the molecular weight and 1,240-1,560 min-1 for the turnover number of the homogenous enzyme purified from a wild-type strain of E. coli B (Frasca, V., Banerjee, R. V., Dunham, W. R., Sands, R. H., and Matthews, R. G. (1988) Biochemistry 27, 8458-8465). Limited proteolysis of the native enzyme with trypsin resulted in loss of enzyme activity but retention of bound cobalamin on a peptide fragment of 28,000 molecular weight. This fragment has been shown to extend from residue 643 to residue 900 of the 1124-residue deduced amino acid sequence.  相似文献   

20.
Mitochondrial manganese-containing superoxide dismutase was purified around 112-fold with an overall yield of 1.1% to apparent electrophoretic homogeneity from the dimorphic pathogenic fungus, Candida albicans. The molecular mass of the native enzyme was 106 kDa and the enzyme was composed of four identical subunits with a molecular mass of 26 kDa. The enzyme was not sensitive to either cyanide or hydrogen peroxide. The N-terminal amino acid sequence alignments (up to the 18th residue) showed that the enzyme has high similarity to the other eukaryotic manganese-containing superoxide dismutases. The gene sod2 encoding manganese-containing superoxide dismutase has been cloned using a product obtained from polymerase chain reaction. Sequence analysis of the sod2 predicted a manganese-containing superoxide dismutase that contains 234 amino acid residues with a molecular mass of 26173 Da, and displayed 57% sequence identity to the homologue of Saccharomyces cerevisiae. The deduced N-terminal 34 amino acid residues may serve as a signal peptide for mitochondrial translocation. Several regulatory elements such as stress responsive element and haem activator protein 2/3/4/5 complex binding sites were identified in the promoter region of sod2. Northern analysis with a probe derived from the cloned sod2 revealed a 0.94-kb band, which corresponds approximately to the expected size of mRNA deduced from sod2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号