首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the protective effects of thymol on altered plasma lipid peroxidation products and nonenzymic antioxidants in isoproterenol (ISO)‐induced myocardial infarcted rats. Male albino Wistar rats were pre and cotreated with thymol (7.5 mg/kg body weight) daily for 7 days. ISO (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce myocardial infarction (MI). Increased activity/levels of serum creatine kinase‐MB (CK‐MB), plasma thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes with decreased levels of plasma reduced glutathione (GSH), vitamin C, and vitamin E were observed in ISO‐induced myocardial infarcted rats. Pre and cotreatment with thymol (7.5 mg/kg body weight) showed normalized activity of serum CK‐MB and near normalized levels of plasma lipid peroxidation products, reduced GSH, vitamin C, and vitamin E in myocardial infarcted rats. Furthermore, the in vitro study on reducing power of thymol confirmed its potent antioxidant action. Thus, thymol protects ISO‐induced MI in rats by its antilipid peroxidation and antioxidant properties. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:368–373, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21431  相似文献   

2.
This article reports data on the preventive effect of (?)epigallocatechin gallate (EGCG) on lipid metabolism and lipoproteins in isoproterenol (ISO)‐induced myocardial infarction (MI) in Wistar rats. The rats were induced MI by ISO (100 mg/kg) at an interval of 24 h for 2 days. EGCG (30 mg/kg) was given to rats as pretreatment for 21 days orally using an intragastric tube. EGCG significantly reduced the increased serum levels of cholesterol, triglycerides, and free fatty acids in the heart and serum phospholipids (PLs) in ISO‐treated rats. It also significantly increased the reduced levels of heart PLs in ISO‐induced rats. EGCG reduced the levels of serum low‐density lipoprotein cholesterol and very low‐density lipoprotein cholesterol and increased serum high‐density lipoprotein (HDL)‐cholesterol in ISO‐treated rats. It also reduced the increased cholesterol/PL ratio and atherogenic index and significantly increased the reduced ratio of HDL‐cholesterol/total cholesterol. Also EGCG significantly increased the reduced activity of lecithin cholesterol acyl transferase in ISO‐treated rats. Thus, EGCG prevented the accumulation of lipids and altered the levels of lipoproteins in myocardial‐infarcted rats. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:387–393, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20302  相似文献   

3.
We evaluated the preventive effect of caffeic acid (CA) on lysosomal enzymes in isoproterenol (ISO)‐treated myocardial infarcted rats. Male albino Wistar rats were pretreated with CA (15 mg/kg) daily for a period of 10 days. After the pretreatment period, ISO (100 mg/kg) was subcutaneously injected to rats twice at an interval of 24 h. The activity of serum creatine kinase‐MB and lactate dehydrogenase was increased significantly (P < 0.05) in ISO‐induced myocardial infarcted rats. The levels of plasma thiobarbituric acid reactive substances and lipid hydroperoxides were significantly (P < 0.05) increased, and the level of plasma‐reduced glutathione was significantly (P < 0.05) decreased in ISO‐induced myocardial infarcted rats. The activities of lysosomal enzymes (β‐glucuronidase, β‐N‐acetylglucosaminidase, β‐galactosidase, cathepsin‐B and cathepsin‐D) were increased significantly (P < 0.05) in the serum and heart of ISO‐induced myocardial infarcted rats. ISO induction also resulted in decreased stability of membranes, which was reflected by lowered activities of β‐glucuronidase and cathepsin‐D in different fractions except cytosol. Pretreatment with CA (15 mg/kg) to ISO‐treated rats significantly (P < 0.05) prevented the changes in the activities of cardiac marker enzymes, the levels of lipid peroxidation products, reduced glutathione and the activities of lysosomal enzymes in the serum, heart, and subcellular fractions. Oral treatment with CA (15 mg/kg) to normal control rats did not show any significant effect. Thus, the results of our study showed that CA prevented the lysosomal membrane damage against ISO‐induced myocardial infarction. The observed effects of CA are due to membrane‐stabilizing, antilipo peroxidative, and antioxidant effects. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:115–122, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20319  相似文献   

4.
The present study was designed to evaluate the preventive effects of N-acetyl cysteine on lipid peroxide metabolism in isoproterenol (ISO) induced myocardial infarcted rats. Male albino Wistar rats were pretreated with N-acetyl cysteine (5 and 10 mg/kg) daily for a period of 14 days. After the pretreatment period, ISO (100 mg/kg) was subcutaneously injected to rats twice at an interval of 24 h. Increased activities of serum creatine kinase, creatine kinase-MB, lactate dehydrogenase, and increased intensities of serum lactate dehydrogenase-isoenzyme bands (LDH-1, LDH-2) were observed in ISO-induced rats. The heart lipid peroxidation products were significantly increased, and the antioxidant system was significantly reduced in ISO-induced rats. Pretreatment with N-acetyl cysteine (5 and 10 mg/kg) to ISO-induced rats showed significant effects on all the biochemical parameters studied. Histopathological findings of the myocardium also showed the protective role of N-acetyl cysteine in ISO-induced rats. Furthermore, in vitro study confirmed the potent-free radical scavenging activity of N-acetyl cysteine. The effect at a dose of 10 mg/kg of N-acetyl cysteine was more pronounced than the dose, 5 mg/kg. The results of our study show that N-acetyl cysteine protects the heart against ISO-induced myocardial infarction by its free radical scavenging effect.  相似文献   

5.
The present study aims to evaluate the antihyperlipidaemic, antihypertrophic, and reducing effects of zingerone on isoproterenol‐induced hyperlipidaemia and hypertrophy in rats. Rats were pretreated with zingerone (6 mg/kg body weight) daily for a period of 14 days and then induced myocardial infarction with isoproterenol (100 mg/kg body weight) on days 15 and 16. Isoproterenol increased serum creatine kinase and lactate dehydrogenase activities in the rats. Increased levels/concentrations of serum and heart cholesterol and triglycerides were observed in isoproterenol‐induced myocardial infarcted rats. Isoproterenol also altered serum lipoproteins and the activity of liver 3‐hydroxy‐3‐methyl glutaryl‐coenzyme‐A‐reductase in the rats. The in vitro study revealed a very convincing reducing power of zingerone. Pretreatment with zingerone prevented hyperlipidaemia and cardiac hypertrophy, by virtue of its antihyperlipidaemic, antihypertrophic, and reducing properties in isoproterenol‐induced myocardial infarcted rats.  相似文献   

6.
The present study investigates the effect of aspartate and glutamate on mitochondrial function during myocardial infarction (MI) in wistar rats. Male albino wistar rats were pretreated with aspartate [100 mg(kgbody weight)(-1) day(-1)] or glutamate [100 mg(kg body weight)(-1) day(-1)] intraperitoneally for a period of 7 days. Following amino acid treatment, MI was induced in rats by subcutaneous injection of isoproterenol [200 mg(kg body weight)(-1) day(-1)] for 2 days at an interval of 24 h. Isoproterenol (ISO) induction resulting in significant (P<0.05) increase in the levels of cardiac mitochondrial lipid peroxidation with a decrease in reduced glutathione level. The activities of glutathione peroxidase and glutathione reductase were significantly (P<0.05) decreased by ISO. ISO-induction also caused significant (P<0.05) decrease in the activities of mitochondrial tricarboxylic acid cycle enzymes (malate dehydrogenase, isocitrate dehydrogenase, succinate dehydrogenase, alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome-c-oxidase). ISO significantly (P<0.05) reduced the cytochrome contents, ATP production, ADP/O ratio and oxidation of succinate in state 3/state 4 whereas significantly (P<0.05) increased NADH oxidation. Pretreatment with aspartate or glutamate significantly (P<0.05) reduced the alterations induced by ISO and maintained normal mitochondrial function. The present findings reveal the protective effect of aspartate and glutamate on cardiac mitochondrial function in myocardial infarction-induced rats.  相似文献   

7.
Hitherto unknown protective effect of N,α-l-rhamnopyranosyl vincosamide (VR), isolated from Moringa oleifera leaves in isoproterenol (ISO)-induced cardiac toxicity was evaluated in rats. Oral administration of VR at 40 mg/kg for 7 days markedly reduced the ISO-induced increase in the levels of serum cardiac markers such as troponin-T, creatine kinase-MB, lactate dehydrogenase and glutamate pyruvate transaminase as well as cardiac lipid peroxidation with a parallel increase in the cellular antioxidants suggesting its cardio-protective and free radical scavenging potential, which was latter confirmed by in vitro study. Rats treated with test compound also improved the ISO-induced abnormal changes in ECG as well as in cardiac histology. A reduction in myocardial necrosis was further evidenced by the tri-phenyl tetrazolium chloride (TTC) stain in isolated test drug pretreated rats.These findings suggest the cardio-protective potential of the isolated alkaloid and possibly the beneficial action is mediated through its free radical scavenging property.  相似文献   

8.

Mitochondrial dysfunction plays crucial role in the pathologenesis of myocardial infarction (MI). The present study evaluated the protective effect of α-bisabolol against isoproterenol (ISO)-induced mitochondrial dysfunction and apoptosis in rats. Male albino Wistar rats were pre- and co-treated with intraperitoneal injection of α-bisabolol (25 mg/kg body weight) daily for 10 days. To induce experimental MI, ISO (85 mg/kg body weight) was injected subcutaneously to the rats at an interval of 24 h for 2 days (9th and 10th day). ISO-induced MI was indicated by the decreased activities of heart creatine kinase and lactate dehydrogenase in rats. ISO administration also enhanced the concentrations of heart mitochondrial lipid peroxidation products and decreased the activities/concentrations of mitochondrial antioxidants, Kreb’s cycle dehydrogenases and mitochondrial electron transport chain complexes I, II?+?III and IV in rats. Furthermore, ISO triggers calcium overload and ATP depletion in the rat’s heart mitochondria followed by the mitochondrial cytochrome-C release and the activation of intrinsic pathway of apoptosis by upregulating the myocardial pro-apoptotic Bax, P53, APAF-1, active caspase-3, active caspase-9 and down regulating the expressions of anti-apoptotic Bcl-2. α-Bisabolol pre and co-treatment showed considerable protective effects on all the biochemical and molecular parameters studied. Transmission electron microscopic study and mitochondrial swelling assay confirmed our biochemical and molecular findings. The in vitro study on hydroxyl radical also revealed the potent free radical scavenging activity of α-bisabolol. Thus, α-bisabolol attenuates mitochondrial dysfunction and intrinsic pathway of apoptosis in ISO-induced myocardial infarcted rats.

  相似文献   

9.
This study was designed to evaluate the preventive effect of naringin in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Rats were pretreated with naringin (10, 20, and 40 mg/kg body weight) orally for a period of 56 days. After the treatment period, ISO (85 mg/kg body weight) was administered subcutaneously to rats at an interval of 24 h for 2 days. There was a significant increase in the levels of total, ester, and free cholesterol, triglycerides (TG), and free fatty acids (FFA) in serum and heart and decrease in heart phospholipids (PL) in ISO-induced rats. Altered levels of lipoproteins and activities of 3-hydroxy-3-methylglutaryl-Coenzyme reductase A in liver and heart, lecithin cholesterol acyl transferase and lipoprotein lipase in plasma were also observed in ISO-induced rats. Pretreatment with naringin (10, 20, and 40 mg/kg) for a period of 56 days significantly decreased the levels of total, ester, and free cholesterol, TG, FFA in serum and heart and increased PL in heart. It also minimized the alterations in serum lipoproteins and lipid metabolic enzymes in ISO-induced rats. Thus, naringin has a lipid-lowering effect in ISO-induced MI rats.  相似文献   

10.
This study was aimed to evaluate the preventive role of (-)epigallocatechin-gallate (EGCG) on lysosomal enzymes in isoproterenol (ISO)-induced myocardial infarcted rats. Male albino Wistar rats were pretreated with EGCG (30 mg/kg) daily for a period of 21 days. After the treatment period, ISO (100 mg/kg) was subcutaneously injected to rats at intervals of 24h for 2 days. The activities of lysosomal enzymes (beta-glucuronidase, beta-N-acetylglucosaminidase, beta-galactosidase, cathepsin-B and cathepsin-D) were increased significantly (P<0.05) in serum and the heart of ISO-induced rats. ISO-induction also resulted in decreased stability of membranes, which was reflected by decreased activities of beta-glucuronidase and cathepsin-D in mitochondrial, nuclear, lysosomal and microsomal fractions. Pretreatment with EGCG daily for a period of 21 days to ISO-induced rats prevented the changes in the activities of these enzymes. Oral treatment with EGCG (30 mg/kg) to normal control rats did not show any significant effect in all the biochemical parameters studied. Thus, the results of our study shows that EGCG protects the lysosomal membrane against ISO-induced cardiac damage. The observed effects might be due to the free radical scavenging and membrane stabilizing properties of EGCG.  相似文献   

11.
At therapeutic dose, loperamide is a safe over‐the‐counter antidiarrheal drug but could induce cardiotoxic effect at a supratherapeutic dose. In this study, we use cardiac and oxidative biomarkers to evaluate loperamide‐induced cardiotoxicity in rats. Rats were orally gavaged with 1.5, 3, or 6 mg/kg body weight (BW) of loperamide hydrochloride for 7 days. The results after 7 days administration of loperamide, revealed dose‐dependent increase (P < 0.05) in aspartate aminotransferase, lactate dehydrogenase, creatine kinase‐MB, and serum concentration of cardiac troponin I, total homocysteine, and nitric oxide. A 50% decrease in antioxidant enzymes activity was observed at 6 mg/kg BW. Furthermore, malondialdehyde and fragmented DNA also increased significantly in the heart of the treatment groups. Loperamide provoked cardiotoxicity through oxidative stress, lipid peroxidation, and DNA fragmentation in rats. This study has provided a possible biochemical explanation for the reported cardiotoxicity induced by loperamide overdose.  相似文献   

12.
This study was aimed to evaluate the preventive effect of diosgenin and exercise on tissue antioxidant status in isoproterenol-induced myocardial infarction (MI) in male Wistar rats. Levels of lipid peroxides, reduced glutathione (GSH), and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidise and glutathione reductase) and antiperoxidative enzymes (catalase and superoxide dismutase) in the plasma and the heart tissue of experimental groups of rats were determined. Pretreatment with diosgenin and exercise exerted an antioxidant effect against isoproterenol-induced myocardial infarction by blocking the induction of lipid peroxidation. A tendency to prevent the isoproterenol-induced alterations in the level of GSH, in the activities of glutathione-dependent antioxidant enzymes and antiperoxidative enzymes was also observed. Histopathological findings of the myocardial tissue showed a protective role for combination of diosgenin and exercise in isoproterenol (ISO)-treated rats. Thus, the present study reveals that preconditioning with diosgenin and exercise exerts cardioprotective effect against ISO-induced MI due to its free radical scavenging and antioxidant effects, which maintains the tissue defense system against myocardial damage.  相似文献   

13.
Abstract

Altered mitochondrial function and free radical-mediated tissue damage have been suggested as an important pathological event in isoproterenol (ISO)-induced cardiotoxicity. This study was undertaken to know the preventive effect of morin on mitochondrial damage in ISO-induced cardiotoxicity in male Wistar rats. Myocardial infarction (MI) in rats was induced by ISO (85 mg/kg) at an interval of 24 hours for 2 days. Morin was given to rats as pre-treatment for 30 days orally using an intragastric tube. ISO-treated rats showed a significant elevation of mitochondrial thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (HP) level and pre-treatment with morin significantly prevented the increase of TBARS and HP level to near normality. The level of enzymic and non-enzymic antioxidants was decreased significantly in ISO-treated rats and pre-treatment with morin significantly increased the levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and reduced glutathione to normality. The activities of mitochondrial enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase were decreased significantly in ISO-treated myocardial ischemic rats and upon pre-treatment with morin restored these enzymes activity to normality. In addition, the decreased activities of cytochrome-C oxidase and NADH-dehydrogenases were observed in ISO-treated rats and pre-treatment with morin prevented the activities of cytochrome-C oxidase and NADH-dehydrogenase to normality. Pre-treatment with morin favorably restored the biochemical and functional parameters to near normal indicating morin to be a significant protective effect on cardiac mitochondrial function against ISO-induced MI in rats.  相似文献   

14.
Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress‐induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)‐I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase‐12. Treatment with ginsenoside Rg1 (10–20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase‐12 protein expression in a dose‐dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress‐induced apoptosis in diabetic rats.  相似文献   

15.
Although β‐adrenoceptor (β‐AR) blockade is an important mode of therapy for congestive heart failure (CHF), subcellular mechanisms associated with its beneficial effects are not clear. Three weeks after inducing myocardial infarction (MI), rats were treated daily with or without 20 and 75 mg/kg atenolol, a selective β1‐AR antagonist, or propranolol, a non‐selective β‐AR antagonist, for 5 weeks. Sham operated rats served as controls. All animals were assessed haemodynamically and echocardiographically and the left ventricle (LV) was processed for the determination of myofibrillar ATPase activity, α‐ and β‐myosin heavy chain (MHC) isoforms and gene expression as well as cardiac troponin I (cTnI) phosphorylation. Both atenolol and propranolol at 20 and 75 mg/kg doses attenuated cardiac hypertrophy and lung congestion in addition to increasing LV ejection fraction and LV systolic pressure as well as decreasing heart rate, LV end‐diastolic pressure and LV diameters in the infarcted animals. Treatment of infarcted animals with these agents also attenuated the MI‐induced depression in myofibrillar Ca2+‐stimulated ATPase activity and phosphorylated cTnI protein content. The MI‐induced decrease in α‐MHC and increase in β‐MHC protein content were attenuated by both atenolol and propranolol at low and high doses; however, only high dose of propranolol was effective in mitigating changes in the gene expression for α‐MHC and β‐MHC. Our results suggest that improvement of cardiac function by β‐AR blockade in CHF may be associated with attenuation of myofibrillar remodelling.  相似文献   

16.
ObjectiveTo evaluate the cardio-protection of syringic acid (SA) in combination with resveratrol (RV) in isoproterenol (ISO) induced myocardial infarcted (MI) rats.MethodsGroups of all rats were subjected oral pre-treatment at the beginning of the study with SA (50 mg/kg), RV (50 mg/kg) and combination (COMB) of SA (25 mg/kg) and RV (25 mg/kg) along with gallic acid (GA) (50 mg/kg) for 30 days. After sacrification, homogenate of heart tissue along with serum were utilized for further biochemical investigations. The effects on creatine kinase (CK), aspartate transaminase (AST), alanine transaminase (ALT) and gamma glutamyl transferase (GGT) were studied in serum and heart tissues. Glutathione-s-transferase (GST), glutathione peroxidase (GPX) and reduced glutathione (GSH), membrane bound enzymes and electrolytes were tested in heart tissues. Body weights and heart weights were also observed along with high sensitivity C-reactive protein (hs-CRP), uric acid and total protein content (TPC) in serum.ResultsCK, AST, ALT and GGT levels in serum were augmented significantly while these enzymes are decreased in cardiac tissue samples of ISO–treated rats. GST, GPX, GSH, Na+/K+, Mg2+, Ca2+ ATPases, K+ ions were significantly decreased while Na+ and Ca2+ ions were increased in the heart tissues of ISO-injected rats. Loss and gain of body and heart weights were noticed significantly in rats having ISO administration. ISO group showed significant increase in hs-CRP and Uric acid while significant decrease in TPC. All of actions of ISO were ameliorated by COMB.ConclusionsCOMB suppressed ISO induced MI in rats and exhibited cardio-protection.  相似文献   

17.
18.
The aim of this study was to assess the possible protective effects of thymol and carvacrol (CAR) against doxorubicin (DOX)‐induced cardiotoxicity. A single dose of DOX (10 mg/kg i.v.) injected to male rats revealed significant increases in serum lactate dehydrogenase, creatine kinase, creatine kinase isoenzyme‐MB, aspartate transaminase, tumor necrosis factor‐alpha, and cardiac troponin levels. It also increased heart contents of malondialdehyde and caspase‐3 accompanied by a significant reduction in heart content of reduced glutathione as well as catalase and superoxide dismutase activity as compared with the control group. In contrast, administration of thymol (20 mg/kg p.o.) and/or CAR (25 mg/kg p.o.) for 14 days before DOX administration and for 2 days after DOX injection ameliorated the heart function and oxidative stress parameters. Summarily, thymol was more cardioprotective than CAR. Moreover, a combination of thymol and CAR had a synergistic cardioprotective effect that might be attributed to antioxidant, anti‐inflammatory, and antiapoptotic activities.  相似文献   

19.
20.
Increase in 4‐hydroxy‐2‐nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)‐infused type 1 diabetes mellitus (DM) rats. Eight‐week‐old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg?1). The rats were infused with ISO (5 mg kg?1) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin‐like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm2), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE‐induced decrease in proteasome activity may be involved in the cardiac pathology in STZ‐injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号