首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
  rgen Schumann 《BBA》1987,890(3):326-334
Phosphorylation of ADP and nucleotide exchange by membrane-bound coupling factor CF1 are very fast reactions in the light, so that a direct comparison of both reactions is difficult. By adding substrate ADP and phosphate to illuminated thylakoids together with the uncoupler FCCP, the phosphorylation time is limited and the amount of ATP formed can be reduced to less than 1 ATP per enzyme. Low concentrations of medium nucleotides during illumination increase the amount of ATP formed during uncoupling presumably by binding to the tight nucleotide binding site (further designated as ‘site A’) with an affinity of 1 to 7 μM for ADP and ATP. ATP formation itself shows half-saturation at about 30 μM. Loosely bound nucleotides are exchanged upon addition of nucleotides with uncoupler (Schumann, J. (1984) Biochim. Biophys. Acta 766, 334–342). Release depends binding of nucleotides to a second site. The affinity of this site for ADP (in the presence of phosphate) is about 30 μM. It is assumed that phosphorylation and induction of exchange both occur on the same site (site B). During ATP hydrolysis, an ATP molecule is bound to site A, while on another site, ATP is hydrolyzed rapidly. The affinity of ADP for the catalytic site (70 μM) is in the same range as the observed Michaelis constant of ADP during phosphorylation; it is assumed that site B is involved in ATP hydrolysis. Site A exhibits some catalytic activity; it might be that site A is involved in ATP formation in a dual-site mechanism. For ATP hydrolysis, however, direct determination of exchange rates showed that the exchange rate of ATP bound to site A is about 30-times lower than ATP hydrolysis under the same conditions.  相似文献   

2.
The sensitivity of the catalytic activities of the D. salina chloroplast coupling factor 1 (CF1) to chemical modification by N-ethylmaleimide has been investigated. (i) When D. salina thylakoid membranes are treated with N-ethylmaleimide, both photophosphorylation and the inducible CF1 ATPase activity are partially (approx. 60%) inhibited. The inhibition of both activities does not require the presence of a proton-motive force, and the inhibition of photophosphorylation is directly related to the N-ethylmaleimide-covalent modification of CF1 as shown by (a) the time-course for the inhibition and (b) the maximal extent of inhibition. (ii) Treatment of the purified, latent, D. salina CF1 with low concentrations of N-ethylmaleimide also results in the partial (approx. 60%) inhibition of the inducible ATPase activity (I50 ≈ 50 μM). The inhibition does not require the presence of the chemical modifier during the activation of the enzyme. (iii) N-ethylmaleimide-induced inhibition of the ATPase activity of either membrane-bound or solubilized CF1 is partially reversed by either (a) prolonged incubation at low concentrations of N-ethylmaleimide or (b) short incubation times at high concentrations of N-ethylmaleimide. The results are interpreted as indicating multiple binding sites on the D. salina CF1 that have different rates of reactivity with N-ethylmaleimide. Those sites (or site) that react rapidly with N-ethylmaleimide cause(s) an inhibition of both ATP synthase and ATPase activities, whereas those sites (or site) that react more slowly partially restore(s) the original-ATPase activity. The effects of N-ethylmaleimide on the catalytic activity of D. salina CF1 are probably mediated by N-ethylmaleimide-induced conformational changes of the enzyme.  相似文献   

3.

1. 1. Tightly bound ATP and ADP, found on the isolated mitochondrial ATPase, exchange only slowly at pH 8, but the exchange is increased as the pH is reduced. At pH 5.5, more than 60% of the bound nucleotide exchanges within 2.5 min.

2. 2. Preincubation of the isolated ATPase with ADP leads to about 50% inhibition of ATP hydrolysis when the enzyme is subsequently assayed in the absence of free ADP. This effect, which is reversed by preincubation with ATP, is absent on the membrane-bound ATPase. This inhibition seems to involve the replacement of tightly bound ATP by ADP.

3. 3. Using these two findings, the binding specificity of the tight nucleotide binding sites was determined. iso-Guanosine, 2′-deoxyadenosine and formycin nucleotides displaced ATP from the tight binding sites, while all other nucleotides tested did not. The specificities of the tight sites of the isolated and membrane-bound ATPase were similar, and higher than that of the hydrolytic site.

4. 4. The nucleotide specificities of ‘coupled processes’ nucleoside triphosphate-driven reversal of electron transfer, nucleoside triphosphate-32Pi exchange and phosphorylation were higher than that of the hydrolytic site of the ATPase and similar to that of the tight nucleotide binding sites.

5. 5. The different nucleotide specificities of uncoupled ATP hydrolysis and coupled processes can be explained even if both processes involve a single common site on the ATPase molecule. This model requires that energy can be ‘coupled’ only when it is released/utilised in the nucleotide binding steps of the mechanism.

6. 6. Adenosine β,γ-imidotriphosphate (AMP-PNP) is not a simple reversible inhibitor of the ATPase, since incubation requires preincubation and is not reversed when the compound is diluted out, or by addition of ATP. This compound inhibits the isolated and membrane-bound ATPase equally well. Its guanosine analogue does not act in this way.

7. 7. In submitochondrial particles, ADP inhibited uncoupled hydrolysis of ATP much more effectively than coupled hydrolysis, the latter being measured both directly (from ATP hydrolysis in the absence of uncoupler) or indirectly, by monitoring ATP-driven reduction of NAD+ by succinate.

8. 8. The effects of ADP and AMP-PNP were interpreted as providing evidence for two of the intermediates in the proposed scheme for coupled triphosphate hydrolysis.

Abbreviations: ε-ATP, N1,N6-ethenoadenosine triphosphate; 8-BrATP, 8-bromoadenosine triphosphate; AMP-PNP, adenosine β,γ-imidotriphosphate; GMP-PNP, guanosine β,γ-imidotriphosphate; N1,O-ATP, adenosine-N1-oxide triphosphate; rro-ATP 2,2′[1-(9-adenyl)-1′-(triphosphoryl-oxymethyl)-dihydroxydiethyl ether; and similarly for the respective diphosphates; NTP, NDP, nucleoside tri-, diphosphate; ANS, 1-anilino-8-naphthalene sulphonate; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; HEPES, N-2-hydroxyethylpiperazine-N′-2-ethane sulphonic acid; MES, 2-(N-morpholino)-ethane sulphonic acid; TES, tris(hydroxymethyl)methylamino ethane sulphonic acid  相似文献   


4.
《FEBS letters》1988,230(1-2):109-115
We investigated the binding of subunit δ to solubilized chloroplast ATPase. Purified δ was covalently labeled with eosin 5-isothiocyanate and its rotational correlation time was determined by a photoselection technique as a function of added CF1 (containing δ) and of CF1(−δ) (lacking δ). In aqueous buffer the rotational correlation time of labeled δ was 33 ns. This is compatible with a rather elongated shape with the dimensions 2b = 100 Å/2a = 28 Å. Binding of δ to CF1 decreased the rotational correlation time about 10-fold. The result was a biphasic decay of the laser flash-induced absorption anisotropy which was analyzed to yield the proportion of δ (bound to CF1) relative to δ (free). CF1(−δ), which completely lacked the δ-subunit, bound one δ (mol/mol) with high affinity (Kd ≈ 100 nM) and at least another δ with about 20-fold lower affinity. The δ-containing CF1, revealed only the low-affinity site(s) for δ. This was compatible with a 1:1 stoichiometry of δ in isolated CF1.  相似文献   

5.
The Pt2 (II) isomeric terminal hydrides [(CO)(H)Pt(μ-PBu2)2Pt(PBu2H)]CF3SO3 (1a), and [(CO)Pt(μ-PBu2)2Pt(PBu2H)(H)]CF3SO3 (1b), react rapidly with 1 atm of carbon monoxide to give the same mixture of two isomers of the Pt2 (I) dicarbonyl [Pt2(μ-PBu2)(CO)2(PBu2H)2]CF3SO3 (3-Pt); the solid state structure of the isomer bearing the carbonyl ligands pseudo-trans to the bridging phosphide was solved by X-ray diffraction. A remarkable difference was instead found between the reactivity of 1a and 1b towards carbon disulfide or isoprene. In both cases 1b reacts slowly to afford [Pt2(μ-PBu2)(μ,η22-CS2)(PBu2H)2]CF3SO3 (4-Pt), and [Pt2(μ-PBu2)(μ,η22-isoprene) (PBu2H)2]CF3SO3 (6-Pt), respectively. In the same experimental conditions, 1a is totally inert. A common mechanism, proceeding through the preassociation of the incoming ligand followed by the P---H bond formation between one of the bridging P atoms and the hydride ligand, has been suggested for these reactions.  相似文献   

6.
Preillumination of intact cells of the eukaryotic, halotolerant, cell-wall-less green alga Dunaliella salina induces a dark ATPase activity the magnitude of which is about 3–5-fold higher than the ATPase activity observed in dark-adapted cells. The light-induced activity arises from the activation and stabilization in vivo of chloroplast coupling factor 1 (CF1). This activity, 150–300 μmol ATP hydrolyzed/mg Chl per h, rapidly decays (with a half-time of about 6 min at room temperature) in intact cells but only slowly decays (with a half-time of about 45 min at room temperature) if the cells are lysed by osmotic shock immediately after illumination. The activated form of the ATPase in lysed cells is inhibited if the membranes are treated with ferri- but not ferrocyanide, suggesting that the stabilization of the activated form of CF1 is due to the reduction of the enzyme in vivo in the light.  相似文献   

7.
The photoreactive nucleotide 3'-O-(4-benzoyl)benzoyl ADP (BzADP) is not a substrate for photophosphorylation but is a strong competitive inhibitor (Ki 2-25μM) with respect to ADP and ATP in photophosphorylation or ATP hydrolysis and Pi-ATP exchange reactions, respectively. The analog binds tightly to the membrane-bound CF1, competes with the right binding of ADP, and prevents the inactivation of the enzyme by tight binding of ADP. Upon irradiation with long wavelength ultraviolet light, the tightly bound BzADP becomes covalently attached to both the - and β-subunits of the enzyme.  相似文献   

8.
Abstract: Agonist, but not antagonist, interactions with histamine H2-receptors labeled by [3H]mepyramine are regulated selectively by sodium, divalent cations, and guanine nucleotides. Sodium decreases the affinity of histamine and the agonist 2-amino-ethylpyridine for [3H]mepyramine sites in guinea pig brain membranes up to 10-fold. The effect of sodium is exerted to a lesser extent by lithium, while potassium and rubidium are much weaker. Guanine nucleotides also decrease the affinity of histamine for H1 binding sites about twofold. GTP and its nonmetabolized analogue GMP-PNP as well as GDP exert similar effects, while GMP, ATP, ADP, and AMP are inactive. The effects of GTP and sodium on histamine interactions with H1-receptors are additive. By contrast, certain divalent cations enhance the potency of histamine at H1-receptors. Manganese is most potent, while magnesium is almost as active as manganese and calcium is essentially inactive. Sodium, divalent cations, and guanine nucleotides have negligible effects on the interactions of antihistamines with H1-receptors.  相似文献   

9.
Polyphosphates of different chain lengths (P3, P4, P15, P35), (1 μM) inhibited 10, 60, 90 and 100%, respectively, the primer (tRNA) dependent synthesis of poly(A) catalyzed poly(A) polymerase from Saccharomyces cerevisiae. The relative inhibition evoked by p4A and P4 (1 μM) was 40 and 60%, respectively, whereas 1 μM Ap4A was not inhibitory. P4 and P15 were assayed as inhibitors of the enzyme in the presence of (a) saturating tRNA and variable concentrations of ATP and (b) saturating ATP and variable concentrations of tRNA. In (a), P4 and P15 behaved as competitive inhibitors, with Ki values of 0.5 μM and 0.2 μM, respectively. In addition, P4 (at 1 μM) and P15 (at 0.3 μM) changed the Hill coefficient (nH) from 1 (control) to about 1.3 and 1.6, respectively. In (b), the inhibition by P4 and P15 decreased V and modified only slightly the Km values of the enzyme towards tRNA.  相似文献   

10.
The presence of ATP at non-catalytic sites of the chloroplast F1-ATPase (CF1) eliminates a considerable lag in onset of enzyme activity that otherwise occurs in the presence of bicarbonate [Milgrom, Y. M., Ehler, L. & Boyer, P. D. (1991) J. Biol. Chem. 266, 11551-11558]. Sulfite is known to be much more effective than bicarbonate in stimulating ATPase activity CF1. Results reported here show that when assayed in the presence of sulfite, CF1, with some non-catalytic sites empty or filled with GT(D)P, is able to hydrolyze both ATP and GTP. Thus, the presence of adenine nucleotides at non-catalytic sites is not necessary for catalytic turnover of CF1. However, even though CF1 with empty non-catalytic sites shows a significant initial activity, the prior binding of adenine nucleotides at non-catalytic site(s) results in further activation of MgATPase and MgGTPase activities, even at relatively high sulfite and substrate concentrations. Although extensive activation of CF1 results from the presence of sulfite, with or without nucleotide binding at non-catalytic sites, the Km remains constant, at about 50 microM for MgATP and 400 microM for MgGTP. The results obtained show that the ATPase activity of CF1 is determined by the fraction of the active enzyme. The inactive CF1.ADP.Mg2+ formed during MgATP hydrolysis can be rapidly trapped by azide to provide a measure of the fraction of inactive enzyme. Increasing the concentration of sulfite increases the fraction of active CF1 in the assay medium. Measurements with radioactively labeled nucleotides show that the presence of ATP at non-catalytic sites promotes the ATP-dependent release of inhibitory ADP from a catalytic site. The activating effect of ATP binding at non-catalytic sites results from increasing the portion of CF1 in an active state during steady-state ATP hydrolysis.  相似文献   

11.
R.J. Wagenvoord  A. Kemp  E.C. Slater 《BBA》1980,593(2):204-211
1. When irradiated 8-azido-ATP becomes covalently bound (as the nitreno compound) to beef-heart mitochondrial ATPase (F1) as the triphosphate, either in the absence or presence of Mg2+, label covalently bound is not hydrolysed.

2. In the presence of Mg2+ the nitreno-ATP is bound to both the and β subunits, mainly (63%) to the subunits.

3. After successive photolabelling of F1 with 8-azido-ATP (no Mg2+) and 8-azido-ADP (with Mg2+) 4 mol label is bound to F1, 2 mol to the and 2 mol to the β subunits.

4. When the order of photolabelling is reversed, much less 8-nitreno-ATP is bound to F1 previously labelled with 8-nitreno-ADP. It is concluded that binding to the -subunits hinders binding to the β subunits.

5. F1 that has been photolabelled with up to 4 mol label still contains 2 mol firmly bound adenine nucleotides per mol F1.

6. It is concluded that at least 6 sites for adenine nucleotides are present in isolated F1.  相似文献   


12.
The effect of exogenous adenine nucleotides on CO2 fixation and oxygen evolution was studied with mesophyll protoplast extracts of the C4 plant Digitaria sanguinalis. Exogenous ATP was found to stimulate the rate of pyruvate and pyruvate + oxalacetate induced CO2 fixation, as well as reverse the inhibition of CO2 fixation by carbonyl cyanide m-chlorophenyl hydrazone and several electron transport inhibitors. The ATP-dependent stimulation of CO2 fixation varied from 40 to 70 μmol CO2 fixed/mg chlorophyll per h, suggesting that ATP was crossing the chloroplast membranes at rates of 80–140 μmol/mg chlorophyll per h, since 2 ATP are required for each CO2 fixed. Fixation of CO2 could also be induced in the dark by exogenous ATP, in which case ADP accumulated outside the chloroplasts. This suggests that external ATP is exchanging for internal ADP. In contrast, ADP and AMP were found not to traverse chloroplast membranes, on the basis that neither nucleotide inhibited CO2 fixation or stimulated oxygen evolution that was limited by available ADP for phosphorylation. Further evidence that ATP can enter the chloroplasts was obtained by direct measurements of the increase in ATP in the chloroplasts due to addition of exogenous ATP in the dark. These studies yielded minimal rates of ATP uptake on the order of 30–40 μmol/mg chlorophyll per h. It is suggested that a membrane translocator exists that specifically transports ATP into the chloroplasts in exchange for ADP. The significance of these findings are considered with respect to the C4 pathway of photosynthesis.  相似文献   

13.
  nter Schmidt  Peter Gr  ber 《BBA》1987,890(3):392-394
The kinetics of proton-transport coupled ATP synthesis in CF0F1 reconstituted into asolectin liposomes was investigated upon energization of the membrane by an artificially generated ΔpH and Δψ. With a rapid mixing system the rate of ATP synthesis was measured at short reaction times (under 200 ms) where all parameters (ΔpH, Δψ, substrate and product concentrations) remain practically constant at their initial values. The rate of ATP synthesis depends, in a sigmoidal way, on ΔpH, the maximal rate being 200 ATP per CF0F1 per s. At constant ΔpH, an additional diffusion potential increases the rate until the maximal rate is reached.  相似文献   

14.
《FEBS letters》1994,350(2-3):195-198
The H+-ATPase from chloroplasts, CF0F1, was isolated, purified and reconstituted into asolectin liposomes. The enzyme was brought either into the oxidized state or into the reduced state, and the rate of ATP synthesis was measured after energisation of the proteoliposomes with an acid—base transition ΔpH (pHin = 5.0, pHout = 8.5) and a K+/valinomycin diffusion potential, Δφ (K+in = 0.6 mM, K+out = 60 mM). A rate of 250 s−1 was observed with the reduced enzyme (85 s−1 in the absence of Δφ). A rate of 50 s−1 was observed with the oxidized enzyme under the same conditions (15 s−1 in the absence of Δφ). The reconstituted enzyme contained 2 ATPbound per CF0F1 and 1 ADPbound per CF0F1. Upon energisation the enzyme was activated and 0.9 ADP per CF0F1, was released. Binding of ADP to the active reduced enzyme was observed under different conditions. In the absence of phosphate the rate constant for ADP binding was 105 M−1·s−1 under energized and de-energized conditions. In the presence of phosphate the rate of ADP binding drastically increased under energized conditions, and strongly decreased under de-energized conditions.  相似文献   

15.
Characterization of [3H]Guanine Nucleotide Binding Sites in Brain Membranes   总被引:2,自引:0,他引:2  
[3H]GTP [guanosine triphosphate] and [3H]GMP-PNP [guanosine 5'-(beta, 8-imino)triphosphate, a nonmetabolized analog of GTP] have been utilized as ligands to characterize binding sites of guanine nucleotides to rat brain membranes. Binding of both [3H]GTP and [3H]GMP-PNP is saturable, with respective KD values of 0.76 and 0.42 microM. The number of binding sites for GMP-PNP (4 nmol/g) is three times greater than for GTP (1.5 nmol/g). This discrepancy is caused by rapid degradation of GTP to guanosine by brain membranes, which can be partially prevented by addition of 100 microM-ATP. The binding of [3H]guanine nucleotides is selective, with approximately equipotent inhibition by GTP, GDP, and GMP-PNP (at 0.2--1.0 microM), but no inhibition by other nucleotides at 100 microM concentrations. The bindings sites for guanine nucleotides in brain membranes appear not to be associated with microtubules, since treatments that reduce [3H]colchicine binding by 65% have no effect on [3H]GTP binding. [3H]Guanine nucleotide binding is widely distributed in various organs, with highest levels in liver and brain and lowest levels in skeletal muscle. The characteristics of these binding sites in brain show specificity properties of sites that regulate neurotransmitter receptors and adenylate cyclase.  相似文献   

16.
17.
This paper demonstrates that the inhibition of F1 ATPase activity by the natural inhibitor protein IF1 is correlated to triphosphate nucleotide entrapment in F1. The complete balance of nucleotides bound after preincubation with Mg-[alpha-32P]GTP or Mg-[alpha-32P]ATP, used to promote IF1 inhibition, has been established on purified F1 containing 0.7 mol of non-exchangeable endogenous nucleotides. As many as 4 mol of labelled guanine- or adenine- nucleotides are trapped in F1; at least one of these nucleotides is a triphosphate. On the contrary, in the absence of IF1, no triphosphate nucleotide is significantly retained and the diphosphate nucleotides bound are mainly exchangeable.  相似文献   

18.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

19.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

20.
The mechanisms whereby adenosine-5−triphosphate (ATP)_regulated the inositol phospholipid-signalling system were studied in rat hepatocytes. Intact hepatocytes respond to extracellular ATP, adenosine-5′-O-(3-thiotriphosphate) (ATPγS), ADP and weakly to guanosine-5′-triphosphate (GTP), but not to other purine nucleotides (GDP or AMP). This is consistent with the ideal that a P2 purinergic receptor is coupled to the phosphatidylinositol metabolism in these cells. Partially purified plasma membranes prepared from myo-[3H]inositol prelabelled hepatocytes exhibit a phosphatidylinositol-4,5-bisphosphate phospholipase C activity sensitive to ATP, ATPγS and guanosine-5′-O-(3-thiotriphosphate) (GTPγS). Moreover the GTPγS effect of greatly enhanced by ATP and ATPγS. These potentiating effects differ according to the adenylnucleotide considered. ATP produces (1) an increase in the GTPγS-PLC sensitivity, (2) a potentiation of the phospholipase C (PLC) response induced by maximal dose of GTPγS, and (3) an increase in the inositol lipids pools. At variance, ATPγS, a nonhydrolysable analogue of ATP, only increases the PLC-sensitivity towards GTPγS. These results may signify that ATP stimulates inositol phosphate accumulation via at least two distinct mechanisms (i) a direct activation of a P2 purinergic receptor coupled to a PLC via a GTP binding protein and (ii) a stimulation of the phosphatidylinositol (PI) and phosphatidyinositol-4-phosphate (PIP) kinases which increased the pool of phospholipase C substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号