首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional induction of brown-like adipocytes in white adipose tissue (WAT) provides a defense against obesity. The aim of this study was to analyze the effects of milk fat globule membrane (MFGM) and its component phosphatidylcholine (PC) on the brown remodeling of WAT. Male C57BL/6 J mice were fed a high-fat diet (HFD) for 8 weeks and then fed HFD for another 8 weeks with MFGM. In vitro studies were performed in C3H10T1/2 pluripotent stem cells, 3T3-L1 pre-adipocytes and differentiated inguinal WAT stromal vascular cells (SVCs) to determine the role of MFGM and PC on the formation of brown-like adipocytes. MFGM decreased fasting glucose and serum insulin levels in HFD-fed mice. MFGM improved glucose tolerance and insulin sensitivity, and induced browning of inguinal WAT. MFGM and its component PC stimulated transformation of brown-like adipocytes in C3H10T1/2 pluripotent stem cells, 3T3-L1 adipocytes and SVCs by increasing the protein expression of UCP1, PGC-1α, PRDM16 as well as the mRNA expression of other thermogenic genes and beige cell markers. MFGM and PC also increased mitochondrial DNA (mtDNA) copy number, mitochondrial density and oxygen consumption rate and up-regulated the mRNA expression of mitochondria-biogenesis-related genes in vitro. PPARα inhibitor GW6471 treatment or knockdown of PPARα using lentivirus-expressing shRNA inhibited the PC-induced increase in the protein expression of UCP1, PGC-1α and PRDM16 in C3H10T1/2 pluripotent stem cells and 3T3-L1 adipocytes, indicating the potential role of PPARα in PC-mediated brown-like adipocyte formation. In conclusion, MFGM and milk PC induced adipose browning, which has major protective effects against obesity and metabolic dysfunction.  相似文献   

2.
Promoting white adipose tissue (WAT) to acquire brown-like characteristics is a promising approach for obesity treatment. Although raspberry ketone (RK) has been reported to possess antiobesity activity, its effects on the formation of brown-like adipocytes remain unclear. Therefore, we investigated the effects and underlying mechanism of RK on WAT browning in 3T3-L1 adipocytes and rats with ovariectomy (Ovx)-induced obesity. RK (100 μM) significantly induced browning of 3T3-L1 cells by increasing mitochondrial biogenesis and the expression of browning-specific proteins (PR domain containing 16, PRDM16; peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC-1α; uncoupling protein-1, UCP-1) and lipolytic enzymes (hormone-sensitive lipase and adipose triglyceride lipase). RK significantly reduced the expression of the autophagy-related protein Atg12 and increased the expression of p62 and heme oxygenase 1 (HO-1). Additionally, these effects of RK were reversed by the HO-1 inhibitor SnPP (20 μM). In addition, RK (160 mg/kg, gavage, for 8 weeks) significantly reduced body weight gain (Ovx+RK, 191.8 ± 4.6 g vs. Ovx, 223.6 ± 5.9; P < .05), food intake, the amount of inguinal adipose tissue (Ovx+RK, 9.05 ± 1.1 g vs Ovx, 12.9 ± 0.92 g; P < .05) and the size of white adipocytes in Ovx rats. Moreover, compared to expression in the Ovx group, the levels of browning-specific proteins were significantly higher and the levels of autophagy-related proteins were significantly lower in the Ovx+RK group. Therefore, this study elucidated the mechanism associated with RK-induced WAT browning and thus provides evidence to support the clinical use of RK for obesity treatment.  相似文献   

3.
4.
Obesity is nowadays related to other pathological conditions such as inflammation, insulin resistance, and diabetes, but little is known about the relationship between psychological stress and adipocytes. We decided to study the expression of the translocator protein (TSPO) 18-kDa, peroxisome proliferator-activated receptor-γ (PPAR-γ), mitochondrial uncoupling protein-1 (UCP-1), and adipocyte morphology in the adipose tissue of rats subjected to stress conditions. In our model of stress, rats fasted for 24 h were placed in a restraint cage and then immersed vertically to the level of the xiphoid process in a water bath at 23 °C for 7 h. After that period, we removed the epididymal adipose tissues for the subsequent analysis. The optical and electron microscopy revealed that adipocytes of control rats formed a continuous epithelial-like cell layer; on the contrary in the adipocytes of stressed rats some cells have merged together and the number of vessels formed seems to increase. Stressed adipocytes presented unilocular cells with numerous mitochondria with a morphology ranging between that of brown adipose tissue (BAT) and white adipose tissue (WAT). Interestingly, when we investigated the subcellular distribution of UCP-1 by immunogold electron microscopy, the adipose tissue of stressed rats was positive for UCP-1. From the immunoblot analysis with anti-PPAR-γ antibody, we observed an increased expression of PPAR-γ in the adipocytes of stressed group compared with control group (P < 0.05). Stress induced the expression of TSPO 18-kDa receptor (B(max) = 106.45 ± 5.87 fmol/mg proteins), which is undetectable by saturation-binding assay with [(3)H]PK 11195 in the control group.  相似文献   

5.
6.
This study investigated the effects of a grape pomace extract (GPE) rich in phenolic compounds on brown-like adipocyte induction and adiposity in spontaneously hypertensive (SHR) and control normotensive Wistar–Kyoto (WKY) rats fed a high-fat diet (HFD). HFD consumption for 10 weeks significantly increased epididymal white adipose tissue (eWAT) in WKY but not in SHR rats. Supplementation with GPE (300 mg/kg body weight/day) reduced adipocyte diameter and increased levels of proteins that participate in adipogenesis and angiogenesis, i.e., peroxisome-proliferator activated receptor gamma (PPARγ), vascular endothelial grow factor-A (VEGF-A) and its receptor 2 (VEGF-R2), and partially increased the uncoupling protein 1 (UCP-1) in WKY. In both strains, GPE attenuated adipose inflammation. In eWAT from SHR, GPE increased the expression of proteins involved in adipose tissue “browning,” i.e., PPARγ-coactivator-1α (PGC-1α), PPARγ, PR domain containing 16 (PRDM16) and UCP-1. In primary cultures of SHR adipocytes, GPE-induced UCP-1 up-regulation was dependent on p38 and ERK activation. Accordingly, in 3T3-L1 adipocytes treated with palmitate, the addition of GPE (30 μM) activated the β-adrenergic signaling cascade (PKA, AMPK, p38, ERK). This led to the associated up-regulation of proteins involved in mitochondrial biogenesis (PGC-1α, PPARγ, PRDM16 and UCP-1) and fatty acid oxidation (ATGL). These effects were similar to those exerted by (−)-epicatechin and quercetin, major phenolic compounds in GPE. Overall, in HFD-fed rats, supplementation with GPE promoted brown-like cell formation in eWAT and diminished adipose dysfunction. Thus, winemaking residues, rich in bioactive compounds, could be useful to mitigate the adverse effects of HFD-induced adipose dysfunction.  相似文献   

7.
To determine the differences between brown adipocytes from interscapular brown tissue (iBAT) and those induced in white adipose tissue (WAT) with respect to their thermogenic capacity, we examined two essential characteristics: the dynamics of mitochondrial turnover during reversible transitions from 29 °C to 4 °C and the quantitative relationship between UCP1 and selected subunits of mitochondrial respiratory complex in the fully recruited state. To follow the kinetics of induction and involution of mitochondria, we determined the expression pattern of UCP1 and other mitochondrial proteins as well as analyzed mtDNA content after cold stimulation and reacclimation to thermoneutrality. We showed that UCP1 turnover is very different in iBAT and inguinal WAT (ingWAT); the former showed minimal changes in protein content, whereas the latter showed major changes. Similarly, in iBAT both mtDNA content and the expression of mitochondrial proteins were stable and expressed at similar levels during reversible transitions from 29 °C to 4 °C, whereas ingWAT revealed dynamic changes. Further analysis showed that in iBAT, the expression patterns for UCP1 and other mitochondrial proteins resembled each other, whereas in ingWAT, UCP1 varied ∼100-fold during the transition from cold to warmth, and no other mitochondrial proteins matched UCP1. In turn, quantitative analysis of thermogenic capacity determined by estimating the proportion of UCP1 to respiratory complex components showed no significant differences between brown and brite adipocytes, suggesting similar thermogenic potentiality. Our results indicate that dynamics of brown adipocytes turnover during reversible transition from warm to cold may determine the thermogenic capacity of an individual in a changing temperature environment.  相似文献   

8.
Lycopene (LYC), one of the major carotenoids in tomatoes, has been preclinically and clinically used to obesity and type 2 diabetes management. However, whether its ability of countering body weight gain is related to induction of brown-like adipocyte phenotype in white adipose tissues (WAT) remains largely unknown. Activation of peroxisome proliferator-activated receptor γ (PPARγ) serves the brown-like phenotype conversion and energy expenditure. Here, we show that LYC treatment promotes glucose consumption and improves insulin sensitivity, as well as fosters white adipocytes browning through up-regulating mRNA and protein expression levels of PPARγ, uncoupling protein 1, PPARγ coactivator-1α and PR domain-containing 16 in the differentiated 3T3-L1 adipocytes and primary adipocytes, as well as in the WAT of HFD-exposed obese mice. In addition, LYC treatment attenuates body weight gain and improves serum lipid profiles as well as promotes brown adipose tissue activation in obese mice. Moreover, PPARγ is induced with LYC intervention in mitochondria respiration and browning in white adipocytes and tissues. Taken together, these results suggest that LYC counteracts obesity and improves glucose and lipid metabolism through induction of the browning via up-regulation of PPARγ, which offers a new perspective of this compound to combat obesity and obesity-related disorders.  相似文献   

9.
We are facing a revival of the strategy to counteract obesity and associated metabolic disorders by inducing thermogenesis mediated by mitochondrial uncoupling protein-1 (UCP1). Thus, the main focus is on the adaptive non-shivering thermogenesis occurring both in the typical depots of brown adipose tissue (BAT) and in UCP1-containing cells that could be induced in white adipose tissue (WAT). Because contribution of WAT to resting metabolic rate is relatively small, the possibility to reduce adiposity by enhancing energy expenditure in classical white adipocytes is largely neglected. However, several pieces of evidence support a notion that induction of energy expenditure based on oxidation of fatty acids (FA) in WAT may be beneficial for health, namely: (i) studies in both humans and rodents document negative association between oxidative capacity of mitochondria in WAT and obesity; (ii) pharmacological activation of AMPK in rats as well as cold-acclimation of UCP1-ablated mice results in obesity resistance associated with increased oxidative capacity in WAT; and (iii) combined intervention using long-chain n-3 polyunsaturated FA (omega 3) and mild calorie restriction exerted synergism in the prevention of obesity in mice fed a high-fat diet; this was associated with strong hypolipidemic and insulin-sensitizing effects, as well as prevention of inflammation, and synergistic induction of mitochondrial oxidative phosphorylation (OXPHOS) and FA oxidation, specifically in epididymal WAT. Importantly, these changes occurred without induction of UCP1 and suggested the involvement of: (i) futile substrate cycle in white adipocytes, which is based on lipolysis of intracellular triacylglycerols and re-esterification of FA, in association with the induction of mitochondrial OXPHOS capacity, β-oxidation, and energy expenditure; (ii) endogenous lipid mediators (namely endocannabinoids, eicosanoids, prostanoids, resolvins, and protectins) and their cognate receptors; and (iii) AMP-activated protein kinase in WAT. Quantitatively, the strong induction of FA oxidation in WAT in response to the combined intervention is similar to that observed in the transgenic mice rendered resistant to obesity by ectopic expression of UCP1 in WAT. The induction of UCP1-independent FA oxidation and energy expenditure in WAT in response to the above physiological stimuli could underlie the amelioration of obesity and low-grade WAT inflammation, and it could reduce the release of FA from adipose tissue and counteract harmful consequences of lipid accumulation in other tissues. In this respect, new combination treatments may be designed using naturally occurring micronutrients (e.g. omega 3), reduced calorie intake or pharmaceuticals, exerting synergism in the induction of the mitochondrial OXPHOS capacity and stimulation of lipid catabolism in white adipocytes, and improving metabolic flexibility of WAT. The role of mutual interactions between adipocytes and immune cells contained in WAT in tissue metabolism should be better characterised. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

10.
Recent studies suggested the persistence of brown adipocytes in adult humans, as opposed to being exclusively present in infancy. In this study, we investigated the presence of brown-like adipocytes in adipose tissue (AT) samples of children and adolescents aged 0 to 18 years and evaluated the association with age, location, and obesity. For this, we analysed AT samples from 131 children and 23 adults by histological, immunohistochemical and expression analyses. We detected brown-like and UCP1 positive adipocytes in 10.3% of 87 lean children (aged 0.3 to 10.7 years) and in one overweight infant, whereas we did not find brown adipocytes in obese children or adults. In our samples, the brown-like adipocytes were interspersed within white AT of perirenal, visceral and also subcutaneous depots. Samples with brown-like adipocytes showed an increased expression of UCP1 (>200fold), PRDM16 (2.8fold), PGC1α and CIDEA while other brown/beige selective markers, such as PAT2, P2RX5, ZIC1, LHX8, TMEM26, HOXC9 and TBX1 were not significantly different between UCP1 positive and negative samples. We identified a positive correlation between UCP1 and PRDM16 within UCP1 positive samples, but not with any other brown/beige marker. In addition, we observed significantly increased PRDM16 and PAT2 expression in subcutaneous and visceral AT samples with high UCP1 expression in adults. Our data indicate that brown-like adipocytes are present well beyond infancy in subcutaneous depots of non-obese children. The presence was not restricted to typical perirenal locations, but they were also interspersed within WAT of visceral and subcutaneous depots.  相似文献   

11.
Free fatty acids (FFA) are important extracellular and intracellular signaling molecules and are thought to be involved in beta-adrenergic-induced remodeling of adipose tissue, which involves a transient inflammatory response followed by mitochondrial biogenesis and increased oxidative capacity. This work examined the role of hormone-sensitive lipase (HSL), a key enzyme of acylglycerol metabolism, in white adipose tissue (WAT) remodeling using genetic inactivation or pharmacological inhibition. Acute treatment with the beta(3)-adrenergic agonist CL-316,243 (CL) induced expression of inflammatory markers and caused extravasation of myeloid cells in WAT of wild-type (WT) mice. HSL-knockout (KO) mice had elevated inflammatory gene expression in the absence of stimulation, and acute injection of CL did not further recruit myeloid cells, nor did it further elevate inflammatory gene expression. Acute pharmacological inhibition of HSL with BAY 59-9435 (BAY) had no effect on inflammatory gene expression in WAT or in cultured 3T3-L1 adipocytes. However, BAY prevented induction of inflammatory cytokines by beta-adrenergic stimulation in WAT in vivo and in cultured 3T3-L1 adipocytes. Chronic CL treatment stimulated mitochondrial biogenesis, expanded oxidative capacity, and increased lipid droplet fragmentation in WT mice, and these effects were significantly impaired in HSL-KO mice. In contrast to HSL-KO mice, mice with defective signaling of Toll-like receptor 4, a putative FFA receptor, showed normal beta-adrenergic-induced remodeling of adipose tissue. Overall, results reveal the importance of HSL activity in WAT metabolic plasticity and inflammation.  相似文献   

12.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brown-like adipocytes were discovered in WAT. These brown-like adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expression pattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation (adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

13.
Non-shivering thermogenesis (NST) is a heat generating process controlled by the mitochondria of brown adipose tissue (BAT). In the recent decade, ‘functionally’ acting brown adipocytes in white adipose tissue (WAT) has been identified as well: the so-called process of the ‘browning’ of WAT. While the importance of uncoupling protein 1 (UCP1)-oriented mitochondrial activation has been intensely studied, the role of peroxisomes during the browning of white adipocytes is poorly understood. Here, we assess the change in peroxisomal membrane proteins, or peroxins (PEXs), during cold stimulation and importantly, the role of PEX13 in the cold-induced remodeling of white adipocytes. PEX13, a protein that originally functions as a docking factor and is involved in protein import into peroxisome matrix, was highly increased during cold-induced recruitment of beige adipocytes within the inguinal WAT of C57BL/6 mice. Moreover, beige-induced 3 T3-L1 adipocytes and stromal vascular fraction (SVF) cells by exposure to the peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone showed a significant increase in mitochondrial thermogenic factors along with peroxisomal proteins including PEX13, and these were confirmed in SVF cells with the beta 3 adrenergic receptor (β3AR)-selective agonist CL316,243. To verify the relevance of PEX13, we used the RNA silencing method targeting the Pex13 gene and evaluated the subsequent beige development in SVF cells. Interestingly, siPex13 treatment suppressed expression of thermogenic proteins such as UCP1 and PPARγ coactivator 1 alpha (PGC1α). Overall, our data provide evidence supporting the role of peroxisomal proteins, in particular PEX13, during beige remodeling of white adipocytes.  相似文献   

14.
Triiodothyroacetic acid (TRIAC) is a physiological product of triiodothyronine (T(3)) metabolism, with high affinity for T(3) nuclear receptors. Its interest stems from its potential thermogenic effects. Thus this work aimed 1) to clarify these thermogenic effects mediated by TRIAC vs. T(3) in vivo and 2) to determine whether they occurred predominantly in adipose tissues. To examine this, control rats were infused with equimolar T(3) or TRIAC doses (0.8 or 4 nmolx100 g body wt(-1) x day(-1)) or exposed for 48 h to cold. Both T(3) doses and only the highest TRIAC dose inhibited plasma and pituitary thyroid-stimulating hormone (TSH) and thyroxine (T(4)) in plasma and tissues. Interestingly, the lower TRIAC dose marginally inhibited plasma T(4). T(3) infusion increased plasma and tissue T(3) in a tissue-specific manner. The highest TRIAC dose increased TRIAC concentrations in plasma and tissues, decreasing plasma T(3). TRIAC concentrations in tissues were <10% those of T(3). Under cold exposure or high T(3) doses, TRIAC increased only in white adipose tissue (WAT). Remarkably, only the lower TRIAC dose activated thermogenesis, inducing ectopic uncoupling protein (UCP)-1 expression in WAT and maximal increases in UCP-1, UCP-2, and lipoprotein lipase (LPL) expression in brown adipose tissue (BAT), inhibiting UCP-2 in muscle and LPL in WAT. TRIAC, T(3), and cold exposure inhibited leptin secretion and mRNA in WAT. In summary, TRIAC, at low doses, induces thermogenic effects in adipose tissues without concomitant inhibition of TSH or hypothyroxinemia, suggesting a specific role regulating energy balance. This selective effect of TRIAC in adipose tissues might be considered a potential tool to increase energy metabolism.  相似文献   

15.
Beta3-adrenergic receptors (AR) are nearly exclusively expressed in brown and white adipose tissues, and chronic activation of these receptors by selective agonists has profound anti-diabetes and anti-obesity effects. This study examined metabolic responses to acute and chronic beta3-AR activation in wild-type C57Bl/6 mice and congenic mice lacking functional uncoupling protein (UCP)1, the molecular effector of brown adipose tissue (BAT) thermogenesis. Acute activation of beta3-AR doubled metabolic rate in wild-type mice and sharply elevated body temperature and BAT blood flow, as determined by laser Doppler flowmetry. In contrast, beta3-AR activation did not increase BAT blood flow in mice lacking UCP1 (UCP1 KO). Nonetheless, beta3-AR activation significantly increased metabolic rate and body temperature in UCP1 KO mice, demonstrating the presence of UCP1-independent thermogenesis. Daily treatment with the beta3-AR agonist CL-316243 (CL) for 6 days increased basal and CL-induced thermogenesis compared with naive mice. This expansion of basal and CL-induced metabolic rate did not require UCP1 expression. Chronic CL treatment of UCP1 KO mice increased basal and CL-stimulated metabolic rate of epididymal white adipose tissue (EWAT) fourfold but did not alter BAT thermogenesis. After chronic CL treatment, CL-stimulated thermogenesis of EWAT equaled that of interscapular BAT per tissue mass. The elevation of EWAT metabolism was accompanied by mitochondrial biogenesis and the induction of genes involved in lipid oxidation. These observations indicate that chronic beta3-AR activation induces metabolic adaptation in WAT that contributes to beta3-AR-mediated thermogenesis. This adaptation involves lipid oxidation in situ and does not require UCP1 expression.  相似文献   

16.
17.
The mitochondrial respiratory uncoupling protein 1 (UCP1) partially uncouples substrate oxidation and oxidative phosphorylation to promote the dissipation of cellular biochemical energy as heat in brown adipose tissue. We have recently shown that expression of UCP1 in 3T3-L1 white adipocytes reduces the accumulation of triglycerides. Here, we investigated the molecular basis underlying UCP1 expression in 3T3-L1 adipocytes. Gene expression data showed that forced UCP1 expression down-regulated several energy metabolism pathways; but ATP levels were constant. A metabolic flux analysis model was used to reflect the gene expression changes onto metabolic processes and concordance was observed in the down-regulation of energy consuming pathways. Our data suggest that adipocytes respond to long-term mitochondrial uncoupling by minimizing ATP utilization.  相似文献   

18.
Brown adipocytes are characterized by a high number of uncoupling protein 1 (UCP1)-positive mitochondrial content and increased thermogenic capacity. As UCP1-enriched cells can consume lipids by generating heat, browning of white adipocytes is now highlighted as a promising approach for the prevention of obesity and obesity-associated metabolic diseases. Upon cold exposure or β-adrenergic stimuli, downregulation of microRNA-133 (miR-133) elevates the expression levels of PR domain containing 16 (Prdm16), which has been shown to be a brown adipose determination factor, in brown adipose tissue and subcutaneous white adipose tissues (WAT). Here, we show that treatment of reversine to white adipocytes induces browning via suppression of miR-133a. Reversine treatment promoted the expression of brown adipocyte marker genes, such as Prdm16 and UCP1, increasing the mitochondrial content, while decreasing the levels of miR-133a and white adipocyte marker genes. Ectopic expression of miR-133a mimic reversed the browning effects of the reversine treatment. Moreover, intraperitoneal administration of reversine in mice upregulated thermogenesis and resulted in resistance to high-fat diet-mediated weight gain as well as browning of subcutaneous and epididymal WAT. Taken together, we found a novel way to promote browning of white adipocytes through downregulation of miR-133a followed by activation of Prdm16, with a synthetic chemical, reversine.  相似文献   

19.
20.
Neuropeptide Y (NPY) injected into the hypothalamic paraventricular nucleus (PVN) stimulates feeding and decreases uncoupling protein (UCP)-1 mRNA in brown adipose tissue (BAT). The present studies were undertaken to determine whether UCP-2 in white adipose tissue (WAT) and UCP-3 in muscle are regulated by NPY in the PVN. PVN-cannulated male Sprague-Dawley rats were injected with either saline or NPY (PVN, 117 pmol, 0.5 microl) every 6 h for 24 h. NPY in the PVN stimulated feeding and decreased UCP-1 mRNA in BAT independent of NPY-induced feeding. UCP-2 mRNA in WAT was unchanged by NPY. In acromiotrapezius muscle, NPY decreased UCP-3 mRNA, but this was reversed by restricting food intake to control levels. In biceps femoris muscle, NPY alone had no effect on UCP-3 mRNA, but UCP-3 mRNA was significantly increased in the NPY-treated rats that were restricted to control levels of intake. These results suggest that UCP-2 in WAT and UCP-3 in muscle are not subject to specific regulation by NPY in the PVN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号