首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two forms of exopolygalacturonase increase as peach fruits ripen   总被引:1,自引:0,他引:1  
Abstract. Freestone peach cultivars are distinguished from clingstone cultivars by a more extensive softening of the mesocarp tissue, and by the separation of mesocarp and endocarp during ripening. Cultivars of both types have been reported to develop exopolygalacturonase activity during ripening, but the enzyme has not been characterized in any detail. During development of freestone peaches ( Prunus persica L. var Coronet), two exopolygalacturonase enzymes were detected 42, 65 and 85 d after full bloom and in ripe fruit. During ripening one enzyme (exoPG 1) increased 36-fold and the other (exoPG 2) 90-fold but exoPG 2 accounted for a 73% of the total activity in ripe fruit. ExoPG 1 was purified 24-fold and exoPG 2 540-fold. ExoPG 2 is a slightly acidic glycoprotein. ExoPG 1 and exoPG 2 differ slightly in their pH optima and in their responses to calcium: each produces monogalacturonic acid as a reaction product. Similar enzymes were found in Flavorerest, a semi-freestone peach.  相似文献   

2.
Peach fruit are handled, processed, and marketed according to their stone adhesion and fruit softening type. Uncertainty exists over whether these simply inherited traits are controlled by two linked loci, Freestone (F) and Melting flesh (M) or one multi-allelic locus, and whether M is controlled by the cell wall degrading enzyme, endopolygalacturonase. From morphological and molecular analysis of two related segregating populations of peach, we conclude that a single locus containing at least one gene for endopolygalacturonase, controls both F and M with at least three effective alleles. A simple diagnostic PCR test is now available for the three major phenotypes of freestone melting flesh (FMF), clingstone melting flesh (CMF), and clingstone non-melting flesh (CNMF).  相似文献   

3.
Ethylene-induced abscission in leaf and fruit explants of peach involves different enzymes. In leaves abscission is accompanied by increased occurrence of cellulase forms differing in isoelectric point (pI 6.5 and 9.5). A polypeptide with a molecular mass of 51 kDa gives in a western blot a strong cross-reaction with an antibody raised against a maturation cellulase from avocado fruit. Cellulase activity is also found in abscising fruit explants but the amount is very low compared to that of the leaf explants. A northern analysis with a cellulase clone from avocado reveals the presence of two hybridizing mRNAs with a size of 2.2 kb and 1.8 kb, respectively. The steady-state level of the 2.2 kb mRNA is significantly increased by treatment with ethylene.Polygalacturonases are not detected in abscising leaves, but are strongly induced by ethylene in fruit explants. Of the three forms found, two are exopolygalacturonases while the third is an endoenzyme. Ethylene activates preferentially the endoenzyme and the basic exoenzyme but depresses the acid exopolygalacturonases. A northern analysis carried out with a cDNA coding for tomato endopolygalacturonase shows hybridization only with one endopolygalacturonase mRNA from in the fruit abscission zone. Treatment with ethylene causes an increase in the steady-state level of this mRNA. The differences in the enzyme patterns observed in fruit and leaf abscission zones and a differential enzyme induction suggest the feasibility to regulate fruit abscission in peach with the aid of antisense RNA genes.  相似文献   

4.
An improved genetic linkage map was constructed from a peach Ferjalou Jalousia® × Fantasia (J×F) F2 population. Ferjalou Jalousia® is a flat low-acidity clingstone peach, and Fantasia is a round, normally acidic freestone peach. This population is segregated for six Mendelian characters: pollen sterility, peach or nectarine fruit, flat or round fruit, clingstone, or freestone fruit. It also segregates for the D major gene controlling the fruit’s low acidity. A new character is reported here for the first time that segregates as a Mendelian character: trees bearing aborting fruits. These trees have flowers, but fruits start to fall 2 months after blooming. This recessive character has been named Af. We demonstrate that it is linked to the flat shape of the fruit. The previous map obtained from this cross was constructed using 63 individuals, whereas the present map was constructed using 207 individuals. Moreover, 82 simple-sequence repeat (SSR) markers, including 10 expressed sequence tag-SSRs, and 43 amplified fragment length polymorphism (AFLP) markers were added. Molecular markers linked to the six Mendelian characters were identified, and one of them has already been used for marker-assisted selection. This map will be used for detection of quantitative trait loci controlling organoleptic and nutritional fruit quality in peach.  相似文献   

5.
6.
7.
Molecular characterization of tomato fruit polygalacturonase   总被引:5,自引:0,他引:5  
Summary Using the expression vector gt11 and immunological detection, cDNA clones of an endopolygalacturonase gene of tomato (Lycopersicon esculentum Mill.) were isolated and sequenced. The 1.6 kb cDNA sequence predicts a single open reading frame encoding a polypeptide of 457 amino acids. The PG2A isoform of tomato fruit endopolygalacturonase was purified and 80% of the amino acid sequence determined. The amino acid sequence predicted by the cDNA sequence was identical to the amino acid sequence of the PG2A isoform. The position of the codon for the N-terminal amino acid of mature PG2A in the open reading frame indicates the presence of a 71 amino acid N-terminal signal peptide which is post-translationally processed. The C-terminus of purified PG2A occurred 13 amino acids before the stop codon in the cDNA suggesting that C-terminal processing of PG2A may also occur. The nucleotide and amino acid sequence data predict a mature protein of 373 amino acids and a polypeptide molecular weight of 40279. The sequence contains four potential glycosylation sites. Northern analysis detected endopolyga-lacturonase mRNA in stage 3 (turning) and stage 6 (red) ripening fruit, but not in leaves, roots, or green fruit of normal cultivars or in mature fruit of the rin mutant.  相似文献   

8.
A genomic DNA sequence (PpACO1) encoding 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) from peach (Prunus persica L. Batsch cv. Loring) was isolated. It has four exons interrupted by three introns and 2.9 kb of flanking region 5' of the translational start codon. Previous work with the cDNA demonstrated that accumulation of the peach ACO message correlated with increasing amounts of ethylene synthesized by the fruit as they ripened. To identify regulatory elements in the peach ACC oxidase gene, chimeric fusions between 403, 610, 901, 1319, 2141, and 2919 bp of the 5' flanking region of the PpACO1 sequence and the beta-glucuronidase (GUS) coding sequence were constructed and used to transform tomato (Lycopersicon esculentum [Mill] cv. Pixie). Fruits from the various promoter lines were analysed for GUS expression by histochemical GUS staining, GUS quantitative enzyme activity determination, and measuring the relative amounts of GUS mRNA. Constructs with the smallest promoter of 403 bp had significant GUS expression in fruit, but not in other tissues, indicating the presence of a region that affects tissue-specific expression. An increase in GUS expression was observed with promoters longer than 901 bp, indicating an enhancer region between -1319 and -901. The full-length promoter of 2919 bp directed GUS expression in the green stage of fruit development, and increased GUS expression as fruit matured, indicating a regulatory region between -2919 and -2141 that controls the temporal expression of the gene in fruit. Only the full-length promoter sequence demonstrated responsiveness to ethylene.  相似文献   

9.
As in many other fleshy fruits, the predominant organic acids in ripe peach ( Prunus persica (L.) Batsch) fruit are malic and citric acids. The accumulation of these metabolites in fruit flesh is regulated during fruit development. Six peach fruit-related genes implicated in organic acid metabolism (mitochondrial citrate synthase; cytosolic NAD-dependent malate dehydrogenase, and cytosolic NADP-dependent isocitrate dehydrogenase) and storage (vacuolar proton translocating pumps: one vacuolar H+-ATPase, and two vacuolar H+-pyrophosphatases) were cloned. Five of these peach genes were homologous to genes isolated from fruit in other fleshy fruit species. Phylogenetic and expression analyses suggested the existence of a particular vacuolar pyrophosphatase highly expressed in fruit. The sixth gene was the first cytosolic NAD-dependent malate dehydrogenase gene isolated from fruit. Gene expression was studied during the fruit development of two peach cultivars, a normal-acid (Fantasia) and a low-acid (Jalousia) cultivar. The overall expression patterns of the organic acid-related genes appeared strikingly similar for the two cultivars. The genes involved in organic acid metabolism showed a stronger expression in ripening fruit than during the earlier phases of development, but their expression patterns were not necessarily correlated with the changes in organic acid contents. The tonoplast proton pumps showed a biphasic expression pattern more consistent with the patterns of organic acid accumulation, and the tonoplast pyrophosphatases were more highly expressed in the fruit of the low-acid cultivar during the second rapid growth phase of the fruit.  相似文献   

10.
Expansins are plant proteins that have the capacity to induce extension in isolated cell walls and are thought to mediate pH-dependent cell expansion. J.K.C. Rose, H.H. Lee, and A.B. Bennett ([1997] Proc Natl Acad Sci USA 94: 5955-5960) reported the identification of an expansin gene (LeExp1) that is specifically expressed in ripening tomato (Lycopersicon esculentum) fruit where cell wall disassembly, but not cell expansion, is prominent. Expansin expression during fruit ontogeny was examined using antibodies raised to recombinant LeExp1 or a cell elongation-related expansin from cucumber (CsExp1). The LeExp1 antiserum detected expansins in extracts from ripe, but not preripe tomato fruit, in agreement with the pattern of LeExp1 mRNA accumulation. In contrast, antibodies to CsExp1 cross-reacted with expansins in early fruit development and the onset of ripening, but not at a later ripening stage. These data suggest that ripening-related and expansion-related expansin proteins have distinct antigenic epitopes despite overall high sequence identity. Expansin proteins were detected in a range of fruit species and showed considerable variation in abundance; however, appreciable levels of expansin were not present in fruit of the rin or Nr tomato mutants that exhibit delayed and reduced softening. LeExp1 protein accumulation was ethylene-regulated and matched the previously described expression of mRNA, suggesting that expression is not regulated at the level of translation. We report the first detection of expansin activity in several stages of fruit development and while characteristic creep activity was detected in young and developing tomato fruit and in ripe pear, avocado, and pepper, creep activity in ripe tomato showed qualitative differences, suggesting both hydrolytic and expansin activities.  相似文献   

11.
12.
13.
A polygalacturonase was extracted from ripening tomato fruit. A four step procedure was developed producing a 44-fold increase in specific activity with 9% recovery. The enzyme was found to rapidly degrade pectic acid but not pectin. No transeliminase activity was detected. Viscosity and per cent hydrolysis studies formed a basis for suggesting that this enzyme cleaves its substrate in a random manner and is likely to be an endopolygalacturonase.  相似文献   

14.
15.
A gene (PGN1) encoding extracellular endopolygalacturonase was isolated from the fungal maize pathogen Cochliobolus carbonum race 1. A probe was synthesized by polymerase chain reaction using oligonucleotides based on the endopolygalacturonase amino acid sequence. Genomic and cDNA copies of the gene were isolated and sequenced. The corresponding mRNA was present in C. carbonum grown on pectin but not on sucrose as carbon source. The single copy of PGN1 in C. carbonum was disrupted by homologous integration of a plasmid containing an internal fragment of the gene. Polygalacturonase activity in one transformant chosen for further analysis was 10% or 35% of the wild-type activity based on viscometric or reducing sugar assays, respectively. End product analysis indicated that the residual activity in the mutant was due to an exopolygalacturonase. Pathogenicity on maize of the mutant lacking endopolygalacturonase activity was qualitatively indistinguishable from the wild-type strain, indicating that in this disease interaction endopolygalacturonase is not required. Either pectin degradation is not critical to this interaction or exopolygalacturonase alone is sufficient.  相似文献   

16.
A beta-galactosidase (EC 3.2.1.23) from peach (Prunus persica cv Mibackdo) was purified and characterized. The purified peach beta-galactosidase was 42 kDa in molecular mass and showed high enzyme activity against a the beta-galactosidase substrate, rho-nitrophenyl-beta-D-galactopyranoside. The Km and Vmax values of the enzyme activity of the peach beta-galactosidase were 5.16 and 0.19 mM for rho-nitrophenyl-beta-D-galactopyranoside mM/h, respectively. The optimum pH of the enzyme activity was pH 3.0, but it was relatively stable from pH 3.0-10.0. The temperature optimum was 50 degrees C. The enzyme activities were not improved in the buffers that contained Ca2+, Cu2+, Zn2+, and Mg2+, which indicates that the purified peach beta-galactosidase did not require these cations as co-factors. However, the enzyme was completely inhibited by Hg2+. The purified protein was cross-reacted with an antibody against the persimmon fruit beta-galactosidase. A further comparison of the N-terminal amino acid sequence of the purified protein showed high homologies to those of beta-galactosidase in apple (87%), persimmon (80%), and tomato (87%). Therefore, enzymatic, immunological, and molecular evidences in this study indicate that the purified 42-kDa protein is a peach beta-galactosidase.  相似文献   

17.
A E Loraine  S Yalovsky  S Fabry    W Gruissem 《Plant physiology》1996,110(4):1337-1347
Rab proteins attach to membranes along the secretory pathway where they contribute to distinct steps in vesicle-mediated transport. To bind membranes, Rab proteins in fungal and animal cells must be isoprenylated by the enzyme Rab geranylgeranyl transferase (Rab GGTase). We have isolated three tomato (Lycopersicon esculentum, M.) cDNAs (LeRab 1A, B, and C) encoding Rab-like proteins and show here that all three are substrates for a Rab GGTase-like activity in plant cells. The plant enzyme is similar to mammalian Rab GGTase in that the plant activity (a) is enhanced by detergent and (b) is inhibited by mutant Rab lacking a prenylation consensus sequence. LeRab1B contains a rare prenylation target motif and was the best substrate for the plant, but not the yeast, Rab GGTase. LeRab1A, B, and C are functional homologs of the Saccharomyces cerevisiae Rab protein encoded by YPT1 and are differentially expressed in tomato. LeRab1A mRNA, but not that of LeRab1B or C, is induced by ethylene in tomato seedlings and is also upregulated in ripening fruit. The increase in LeRab1A mRNA expression in ripe fruit may be linked to increased synthesis and export of enzymes like polygalacturonase, pectin esterase, and other enzymes important in fruit softening.  相似文献   

18.
A major endopolygalacturonase excreted by Pseudomonas solanacearum was purified to greater than 95% homogeneity and shown to have an isoelectric point of 9.0 and a subunit molecular mass of 52 kilodaltons (kDa). The gene encoding this enzyme (pglA) was isolated from a genomic library of P. solanacearum DNA based on its expression in Escherichia coli and shown to be contained on a 1.8-kilobase DNA fragment. The identity of the pglA gene product and the 52-kDa polygalacturonase was demonstrated by immunoadsorption and isoelectric focusing experiments. The cloned pglA gene was apparently expressed from its own promoter in E. coli and its product was partially secreted into the periplasm. The pglA gene was insertionally inactivated in vitro and used to mutate the chromosomal pglA gene of P. solanacearum by marker exchange mutagenesis. The resulting mutant strain was deficient in production of the 52-kDa polygalacturonase and took twice as long to wilt and kill tomato plants as the wild-type parent in plant bioassay experiments. Complementation in trans with the wild-type cloned pglA gene restored virulence to near wild-type levels. The data indicate that the pglA gene is important, but not absolutely necessary, for pathogenesis.  相似文献   

19.
Peach softening is usually attributed to the dismantling of the cell wall in which endo-polygalacturonase (endo-PG)-catalysed depolymerization of pectins plays a central role. In this study, the hypothesis that the function of endo-PG is critical for achieving a melting flesh fruit texture but not for reducing fruit firmness was tested by comparing pericarp morphology and endo-PG expression and localization in melting (MF) and non-melting flesh (NMF) fruit at successive stages of ripening. MF Bolero, Springbelle, and Springcrest, and NMF Oro-A and Jonia cultivars were analysed. Both MF and NMF fruit were left to ripen on the tree and reached a firmness of <10 Newtons (N). The image analysis of pericarp tissues revealed that during softening the loss of cell turgidity was a process common to mesocarp cells of all MF and NMF fruit and was clearly visible in peaches with a firmness of less than ~20?N. In contrast, the loss of cell adhesion was a feature exclusively observed in ripe MF fruit pericarp. In this ripe fruit, large numbers of endo-PG isoforms were highly expressed and the enzyme localization corresponded to the middle lamella. As a consequence, wide apoplastic spaces characterized the pericarp of ripe MF peaches. In contrast, no loss of cell adhesion was observed in any NMF fruit or in unripe MF peaches. Accordingly, no endo-PG was detected in unripe NMF fruit, whereas few and poorly expressed enzyme isoforms were revealed in ripe NMF and in unripe MF peaches. In this fruit, the poorly expressed endo-PG localized mainly in vesicles within the cytoplasm and inner primary cell wall. On the whole the results suggested that endo-PG function was needed to achieve melting flesh texture, which was characterized by wide apoplastic spaces and partially deflated mesocarp cells. Conversely, endo-PG activity had no critical influence on the reduction of fruit firmness given the capacity of NMF peaches to soften, reaching values of 5-10?N. As in tomato, the change of symplast/apoplast water status seems to be the main process through which peach fruit regulates its firmness.  相似文献   

20.
Hexanal and cis-3-hexenal are principal flavor volatiles in ripe tomato fruit, but whether they accumulate during ripening or are formed upon maceration of the tissue has not been clarified. This has been addressed by measuring levels of these aldehydes in green and ripe fruit with discrimination between intrinsic aldehyde content and aldehyde generation following tissue disruption. Volatile sampling of tomato fruit homogenates was accomplished by purge/trapping, followed by thermal desorption on a gas chromatograph equipped with a mass selective detector. Incubation of some samples with alcohol dehydrogenase to convert the aldehydes to their respective alcohols permitted positive identification of the isomeric form of hexenal as cis-3-hexenal. Red and green tomato fruit homogenized in buffer with saturated CaCl2 contained low (0.1-0.8 µg g?1 fresh weight) levels of hexanal and cis-3-hexenal; thus there is minimal endogenous volatile content in intact fruit. Volatile levels increased rapidly, up to 10-fold, following homogenization of ripe tomato fruit in the absence of CaCl2, and more modestly in corresponding green tomato fruit homogenates. Incubation with the appropriate lipoxygenase/hydroperoxide lyase substrate (linoleic acid for hexanal, linolenic acid for cis-3-hexenal) doubled the amount of volatile compound produced. Hexanal generation was suppressed in the presence of linolenic acid, suggesting that the enzyme complex has greater affinity for this substrate. As well, levels of cis-3-hexenal, but not hexanal, tended to decline within 30 min of homogenization, possibly reflecting a specific degradative process. The results collectively indicate that the contribution of six-carbon aldehydes to tomato fruit flavor is attributable to metabolism invoked following tissue disruption rather than within the intact fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号