首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If the competitive ability of plants produced by self-pollination differs from that of plants derived by outcrossing, then the magnitude of inbreeding depression may be influenced by the composition of the competitive environment (i.e., the frequency of plants that have arisen from selfing and outcrossing in the neighborhood of "target" plants in which inbreeding depression is expressed). Here, we report the results of experiments designed to examine whether inbreeding depression is influenced by the frequency of inbred plants in the competitive neighborhood. Two species of the annual plant genus Amsinckia were studied, one a near-complete selfer (Amsinckia gloriosa) and the other a partial outcrosser (Amsinckia douglasiana). Competition experiments were conducted in artificial stands composed of different mixtures of inbred and outbred progeny. The fitnesses of progeny were found to be significantly influenced by the composition of the competing neighborhood. The fitness of target plants, however, did not vary monotonically with the frequency of inbred plants in the neighborhood. Rather, for A. gloriosa, maximum performance was observed when there was an intermediate frequency of inbred neighbors. For A. douglasiana, the opposite pattern was found. The results suggest that competition among progeny has the potential to play a role in the selection of self-fertilization and possibly in the maintenance of mixed mating systems.  相似文献   

2.
Inbreeding in plants typically reduces individual fitness but may also alter ecological interactions. This study examined the effect of inbreeding in the mixed-mating annual Mimulus guttatus on visitation by pollinators (Bombus impatiens) in greenhouse experiments. Previous studies of M. guttatus have shown that inbreeding reduced corolla size, flower number, and pollen quantity and quality. Using controlled crosses, we produced inbred and outbred families from three different M. guttatus populations. We recorded the plant genotypes that bees visited and the number of flowers probed per visit. In our first experiment, bees were 31% more likely to visit outbred plants than those selfed for one generation and 43% more likely to visit outbred plants than those selfed for two generations. Inbreeding had only a small effect on the number of flowers probed once bees arrived at a genotype. These differences were explained partially by differences in mean floral display and mean flower size, but even when these variables were controlled statistically, the effect of inbreeding remained large and significant. In a second experiment we quantified pollen viability from inbred and self plants. Bees were 37–54% more likely to visit outbred plants, depending on the population, even when controlling for floral display size. Pollen viability proved to be as important as floral display in predicting pollinator visitation in one population, but the overall explanatory power of a multiple regression model was weak. Our data suggested that bees use cues in addition to display size, flower size, and pollen reward quality in their discrimination of inbred plants. Discrimination against inbred plants could have effects on plant fitness and thereby reinforce selection for outcrossing. Inbreeding in plant populations could also reduce resource quality for pollinators, potentially resulting in negative effects on pollinator populations.  相似文献   

3.
Inbreeding depression is the reduction in fitness caused by mating between related individuals. Inbreeding is expected to cause a reduction in offspring fitness when the offspring themselves are inbred, but outbred individuals may also suffer a reduction in fitness when they depend on care from inbred parents. At present, little is known about the significance of such intergenerational effects of inbreeding. Here, we report two experiments on the burying beetle Nicrophorus vespilloides, an insect with elaborate parental care, in which we investigated inbreeding depression in offspring when either the offspring themselves or their parents were inbred. We found substantial inbreeding depression when offspring were inbred, including reductions in hatching success of inbred eggs and survival of inbred offspring. We also found substantial inbreeding depression when parents were inbred, including reductions in hatching success of eggs produced by inbred parents and survival of outbred offspring that received care from inbred parents. Our results suggest that intergenerational effects of inbreeding can have substantial fitness costs to offspring, and that future studies need to incorporate such costs to obtain accurate estimates of inbreeding depression.  相似文献   

4.
The ability of plants to respond to natural enemies might depend on the availability of genetic variation for the optimal phenotypic expression of defence. Selfing can affect the distribution of genetic variability of plant fitness, resistance and tolerance to herbivores and pathogens. The hypothesis of inbreeding depression influencing plant defence predicts that inbreeding would reduce resistance and tolerance to damage by natural enemies relative to outcrossing. In a field experiment entailing experimentally produced inbred and outcrossed progenies, we assessed the effects of one generation of selfing on Datura stramonium resistance and tolerance to three types of natural enemies, herbivores, weevils and a virus. We also examined the effect of damage on relative growth rate (RGR), flower, fruit, and seed production in inbred and outcrossed plants. Inbreeding significantly reduced plant defence to natural enemies with an increase of 4% in herbivore damage and 8% in viral infection. These results indicate inbreeding depression in total resistance. Herbivory increased 10% inbreeding depression in seed number, but viral damage caused inbred and outcrossed plants to have similar seed production. Inbreeding and outcrossing effects on fitness components were highly variable among families, implying that different types or numbers of recessive deleterious alleles segregate following inbreeding in D. stramonium. Although inbreeding did not equally alter all the interactions, our findings indicate that inbreeding reduced plant defence to herbivores and pathogens in D. stramonium.  相似文献   

5.
The evolution of selfing taxa from outcrossing ancestors has occurred repeatedly and is the subject of many theoretical models, yet few empirical studies have examined the immediate consequences of inbreeding in a population with variable expression of self-incompatibility. Because self-incompatibility breaks down with floral age in Campanula rapunculoides, we were able to mate outbred and selfed maternal plants in a crossing design which produced progeny with inbreeding coefficients of 0, 0.25, 0.50 and 0.75. Cumulative inbreeding depression in plants that were selfed for one generation was very high in families derived from strongly self-incompatible plants (average δ = 0.98), and somewhat lower in families derived from plants with weaker expression of self-incompatibility (average δ = 0.90). Relative to outbred progeny, inbred progeny produced fewer seeds, had lower rates of germination, less vegetative growth and fewer flowers per plant. Inbred progeny also took longer to germinate, and longer to produce a first leaf and to flower. Interestingly, inbred plants also produced 40% fewer seeds than outcrossed plants (t-test P < 0.001) even when mated to the same, unrelated pollen donor, suggesting that inbreeding can produce profound maternal effects. Most importantly, our results demonstrate that progeny derived from plants with stronger expression of self-incompatibility exhibited greater levels of inbreeding depression than progeny from plants with weaker expression of self-incompatibility. Moreover, the decline in fitness (cumulative, ln-transformed) over the four inbreeding levels was steeper for the progeny of the strongly self-incompatible lineages. These empirical results suggest that inbreeding depression and mating system phenotype have the potential to coevolve.  相似文献   

6.
Severe inbreeding depression is routinely observed in outcrossing species. If inbreeding load is due largely to deleterious alleles of large effect, such as recessive lethals or steriles, then most of it is expected to be purged during brief periods of inbreeding. In contrast, if inbreeding depression is due to the cumulative effects of many deleterious alleles of small effect, then it will be maintained in the face of periodic inbreeding. Whether or not inbreeding depression can be purged with inbreeding in the short term has important implications for the evolution of mating systems and the probability that a small population will go extinct. In this paper I evaluate the extent to which the tremendous inbreeding load in a primarily outcrossing population of the wildflower, Mimulus guttatus, is due to alleles of large effect. To do this, I first constructed a large outbred “ancestral” population by randomly mating plants collected as seeds from a natural population. From this population I formed 1200 lines that were maintained by self-fertilization and single seedling descent: after five generations of selling, 335 lines had survived the inbreeding process. Selection during the line formation is expected to have largely purged alleles of large effect from the collection of highly inbred lines. Because alleles with minor effects on fitness should have been effectively neutral, the inbreeding depression due to this class of genes should have been unchanged. The inbred lines were intercrossed to form a large, outcrossed “purged” population. Finally, I estimated the fitness of outbred and selfed progeny from the ancestral and purged populations to determine the contribution of major deleterious alleles on inbreeding depression. I found that although the average fitness of the outcrossed progeny nearly doubled following purging, the limited decline in inbreeding depression and limited increase in inbred fitness indicates that alleles of large effect are not the principle cause of inbreeding depression in this population. In aggregate, the data suggest that lethals and steriles make a minority contribution to inbreeding depression and that the increased outbred fitness is due primarily to adaptation to greenhouse conditions.  相似文献   

7.
8.

Background and Aims

Inbreeding via self-fertilization may have negative effects on plant fitness (i.e. inbreeding depression). Outbreeding, or cross-fertilization between genetically dissimilar parental plants, may also disrupt local adaptation or allelic co-adaptation in the offspring and again lead to reduced plant fitness (i.e. outbreeding depression). Inbreeding and outbreeding may also increase plant vulnerability to natural enemies by altering plant quality or defence. The effects of inbreeding and outbreeding on plant size and response to herbivory in the perennial herb, Vincetoxicum hirundinaria, were investigated.

Methods

Greenhouse experiments were conducted using inbred and outbred (within- and between-population) offspring of 20 maternal plants from four different populations, quantifying plant germination, size, resistance against the specialist folivore, Abrostola asclepiadis, and tolerance of simulated defoliation.

Key Results

Selfed plants were smaller and more susceptible to damage by A. asclepiadis than outcrossed plants. However, herbivore biomass on selfed and outcrossed plants did not differ. The effects of inbreeding on plant performance and resistance did not differ among plant populations or families, and no inbreeding depression at all was found in tolerance of defoliation. Between-population outcrossing had no effect on plant performance or resistance against A. asclepiadis, indicating a lack of outbreeding depression.

Conclusions

Since inbreeding depression negatively affects plant size and herbivore resistance, inbreeding may modify the evolution of the interaction between V. hirundinaria and its specialist folivore. The results further suggest that herbivory may contribute to the maintenance of a mixed mating system of the host plants by selecting for outcrossing and reduced susceptibility to herbivore attack, and thus add to the growing body of evidence on the effects of inbreeding on the mating system evolution of the host plants and the dynamics of plant–herbivore interactions.  相似文献   

9.
Most flowering plants are hermaphroditic and experience strong pressures to evolve self-pollination (automatic selection and reproductive assurance). Inbreeding depression (ID) can oppose selection for selfing, but it remains unclear if ID is typically strong enough to maintain outcrossing. To measure the full cost of sustained inbreeding on fitness, and its genomic basis, we planted highly homozygous, fully genome-sequenced inbred lines of yellow monkeyflower (Mimulus guttatus) in the field next to outbred plants from crosses between the same lines. The cost of full homozygosity is severe: 65% for survival and 86% for lifetime seed production. Accounting for the unmeasured effect of lethal and sterile mutations, we estimate that the average fitness of fully inbred genotypes is only 3–4% that of outbred competitors. The genome sequence data provide no indication of simple overdominance, but the number of rare alleles carried by a line, especially within rare allele clusters nonrandomly distributed across the genome, is a significant negative predictor of fitness measurements. These findings are consistent with a deleterious allele model for ID. High variance in rare allele load among lines and the genomic distribution of rare alleles both suggest that migration might be an important source of deleterious alleles to local populations.  相似文献   

10.
The maintenance of females in gender dimorphic populations requires that they have a fitness advantage to compensate for their loss of male reproductive function. We assess whether inbreeding avoidance provides this advantage in two subdioecious Wurmbea dioica populations by estimating seed production, outcrossing rates and inbreeding depression. Fruiting males produced less than half as many seeds as females, owing to low outcrossing rates and early acting inbreeding depression. Inbreeding coefficients of fruiting males demonstrated that progeny were more inbred than their parents, implying that few selfed progeny reach maturity, as confirmed by inbreeding depression estimates that exceeded 0.85. In a glasshouse experiment, open-pollinated females exhibited a fitness advantage of 3.7 relative to fruiting males, but when we increased fruiting male outcrossing rate, female advantage was only 1.4. This reduced advantage is insufficient to maintain females if nuclear genes control sex. Thus, inbreeding avoidance could maintain females at high frequencies, although this is contingent upon high frequencies of fruiting males, which can be altered by environmentally determined gender plasticity.  相似文献   

11.
Biparental inbreeding is thought to be a common feature of plant populations with restricted pollen dispersal. It is generally assumed that the inbreeding depression frequently observed to accompany self-fertilization can be extrapolated to the lesser degrees of consanguinity involved in biparental inbreeding, but this is virtually untested. To test this assumption, seeds collected from a single natural population of the self-incompatible annual Gaillardia pulchella were used to generate full-sib families derived by crossing either noninbred full-sibs (inbred families) or noninbred nonrelatives (outbred families). Members of each family were divided between high-stress and low-stress treatments that differed in soil volume and nutrient level. Inbred seedlings had a lower chance of survival, were more likely to be morphologically abnormal, and grew more slowly than outbred seedlings, indicating the presence of biparental inbreeding depression. Stress treatment had no significant effect on inbreeding depression, and no family stress-environment interactions were detected. Inbreeding did not increase the among-family variance in growth rate, suggesting that inbreeding depression of growth rate is caused by many genes with small individual effects. Relative to direct estimates of inbreeding depression, observed levels of near-neighbor outcrossing depression, presumed to be biparental inbreeding depression, are surprisingly high in many plant species.  相似文献   

12.
The cost of inbreeding (inbreeding depression, ID) is an important variable in the maintenance of reproductive variation. Ecological interactions such as herbivory could modulate this cost, provided that defence traits harbour deleterious mutations and herbivores are responsible for differences in fitness. In the field, we manipulated the presence of herbivores on experimentally inbred and outcrossed plants of Solanum carolinense (horsenettle) for three years. Damage was greater on inbred plants, and ID for growth and fitness was significantly greater under herbivory. Inbreeding reduced phenolic expression both qualitatively (phytochemical diversity) and quantitatively, indicating deleterious load at loci related to the biosynthesis of defence compounds. Our results indicate that inbreeding effects on plant–herbivore interactions are mediated by changes to functional plant metabolites, suggesting that variation in inbreeding could be a predictor of defence trait variation. The magnitude of herbivore‐mediated, ecological ID indicates that herbivores could maintain outcrossing mating systems in nature.  相似文献   

13.
Inbreeding depression is a major selective force favoring outcrossing in flowering plants. However, some self-fertilization should weaken the harmful effects of inbreeding by exposing deleterious alleles to selection. This study examines the maintenance of inbreeding depression in the predominantly outcrossing species Pinus sylvestris L. (Scots pine). Open-pollinated and self-fertilized progeny of 23 maternal trees, originating from a natural stand in southern Finland, were grown at two sites. We observed significant inbreeding depression in two of the four life stages measured. Inbreeding depression was largest for seed maturation (δ = 0.74), where seedset in open-pollinated strobili (70.9%) was about four times higher than in selfed strobili (18.3%). Inbreeding depression in postgermination survival (upto an age of 23 years) was also high (δ = 0.62–0.75). No significant differences in height (δ = 0.05) or flowering (δ = 0.14) of the trees after 23 years were observed. Cumulative inbreeding depression was high (δ = 0.90–0.94) and differed significantly among maternal families (range 0.45–1.00). The magnitude of inbreeding depression among the 23 maternal parents was not significantly correlated between early (seed maturation) and later (postgermination survival) life stages, suggesting that its genetic basis varies across the life cycle. Size differences among the progeny types diminished in time due to nonrandom size-specific mortality, causing a decrease in the inbreeding depression estimates for height over time. Our results indicate that Scots pine exhibits high levels of inbreeding depression during both early and later stages of the life cycle. It is argued that self-fertilization in Scots pine is inefficient in purging the genetic load caused by highly deleterious mutations because of the nearly complete loss of selfed individuals over time. This results in an effectively random mating outcrossing population.  相似文献   

14.
Inbreeding depression (i.e. negative fitness effects of inbreeding) is central in evolutionary biology, affecting numerous aspects of population dynamics and demography, such as the evolution of mating systems, dispersal behaviour and the genetics of quantitative traits. Inbreeding depression is commonly observed in animals and plants. Here, we demonstrate that, in addition to genetic processes, epigenetic processes may play an important role in causing inbreeding effects. We compared epigenetic markers of outbred and inbred offspring of the perennial plant Scabiosa columbaria and found that inbreeding increases DNA methylation. Moreover, we found that inbreeding depression disappears when epigenetic variation is modified by treatment with a demethylation agent, linking inbreeding depression firmly to epigenetic variation. Our results suggest an as yet unknown mechanism for inbreeding effects and demonstrate the importance of evaluating the role of epigenetic processes in inbreeding depression.  相似文献   

15.
Inbreeding frequently leads to inbreeding depression, a reduction in the trait values of inbred individuals. Inbreeding depression has been documented in sexually selected characters in several taxa, and while there is correlational evidence that male fertility is especially susceptible to inbreeding depression, there have been few direct experimental examinations of this. Here, we assessed inbreeding depression in male fertility and a range of other male fitness correlates in Drosophila simulans. We found that male fertility and attractiveness were especially susceptible to inbreeding depression. Additionally, levels of testicular oxidative stress were significantly elevated in inbred males, although sperm viability did not differ between inbred and outbred males. Copulation duration, induction of oviposition, and the proportion of eggs hatching did not differ for females mated to inbred or outbred males. Nevertheless, our results clearly show that key male fitness components are impaired by inbreeding and provide evidence that aspects of male fertility are especially susceptible to inbreeding depression.  相似文献   

16.
Many plants display limited seed dispersal, thereby creating an opportunity for sibling competition, i.e. fitness-determined interactions between related individuals. Here I investigated the consequences of intra-specific competition, by varying density and genetic composition of neighbors, on the performance of seedlings derived by selfing or outcrossing of the partially self-fertilizing plant Plantago coronopus (L.). Seedlings from eight plants, randomly selected from an area of about 50 m2 in a natural population, were used in (i) a density series with either one, four or eight siblings of each cross type per pot and (ii) a replacement series with eight plants per pot where selfed and outcrossed siblings were grown intermixed in varying frequencies. Density had a pronounced effect on plant performance. But, except for singly grown individuals, no differences were detected between selfed and outcrossed progenies in vegetative and reproductive biomass. When grown intermixed, selfed offspring were always inferior to their outcrossed relatives. The magnitude of reduction in performance was dependent on the number of outcrossed relatives a selfed seedling had to compete with, giving rise to a frequency-dependent fitness advantage to outcrossed seedlings. The major result of this study is (i) that the relative fitness of inbred progeny is strongly affected by the type of competitors (inbred or outbred) and (ii) that inbreeding depression varies according to the density and frequency of outbred plants and could be considered as a density- and frequency-dependent phenomenon. It is argued that sibling competition, due to the small genetic neighborhood of P. coronopus, might be an important selective force in natural populations of this species.  相似文献   

17.
Inbreeding can profoundly affect the interactions of plants with herbivores as well as with the natural enemies of the herbivores. We studied how plant inbreeding affects herbivore oviposition preference, and whether inbreeding of both plants and herbivores alters the probability of predation or parasitism of herbivore eggs. In a laboratory preference test with the specialist herbivore moth Abrostola asclepiadis and inbred and outbred Vincetoxicum hirundinaria plants, we discovered that herbivores preferred to oviposit on outbred plants. A field experiment with inbred and outbred plants that bore inbred or outbred herbivore eggs revealed that the eggs of the outbred herbivores were more likely to be lost by predation, parasitism or plant hypersensitive responses than inbred eggs. This difference did not lead to differences in the realized fecundity as the number of hatched larvae did not differ between inbred and outbred herbivores. Thus, the strength of inbreeding depression in herbivores decreases when their natural enemies are involved. Plant inbreeding did not alter the attraction of natural enemies of the eggs. We conclude that inbreeding can significantly alter the interactions of plants and herbivores at different life-history stages, and that some of these alterations are mediated by the natural enemies of the herbivores.  相似文献   

18.
An optimal crossing distance exists within plant populations if inbreeding and outbreeding depression operate simultaneously. In a population of tetraploid Digitalis purpurea, maternal plants were pollinated with donors at four distances: 0 (self-pollination), 1, 6 and 30 m. Lifetime fitness of F1 progeny was investigated in greenhouse experiments, and significant inbreeding and outbreeding depression were detected at five vs. three life history traits. Inbreeding depression increased at later life stages, whereas outbreeding depression was relatively constant. The existence of within-population outbreeding depression suggests substantial genetic structuring at moderate distances in D. purpurea, and corroborates recent findings of significant outbreeding depression in F1 progeny in polyploids. The moderate inbreeding depression found in this predominately outcrossing population supports the notion that effects of inbreeding are less severe in polyploids than in diploids.  相似文献   

19.
Inbreeding depression was studied in two populations of a Mediterranean allogamous colonizing species Crepis sancta. In order to test the hypothesis that the magnitude of inbreeding depression can be modified by successional processes, the growth and survival of individuals resulting from two generations of inbred crosses including selfing were analysed with interspecific competition (in natural vegetation) and without interspecific competition (by removing natural vegetation). Inbreeding depression was weak for seed production. Germination was little affected by inbreeding but mortality and the number of capitula showed inbreeding depression, especially in the presence of competition. This suggests that inbreeding depression is very sensitive to variations in environmental conditions such as interspecific competition. As a consequence, inbreeding depression cannot be considered as constant in natural conditions.  相似文献   

20.
Inbreeding depression is common among plants and may distort mating system estimates. Mating system studies traditionally ignore this effect, nonetheless an assessment of inbreeding depression that may have occurred before progeny evaluation could be necessary. In the neotropical Pinus chiapensis inbreeding depression was evaluated using regression analysis relating progeny F-values with seed germinability, the mating system was analysed in three populations with contrasting size, using isozymes, obtained a corrected outcrossing rate. Selfing decreased seed viability by 19%, relative to an outcrossed plant. Multilocus outcrossing rates, t(m), varied widely among populations. In the two smallest populations t(m) congruent with 1. Therefore, inbreeding depression did not affect the estimates, but overestimated t(m) by 10% in the third population, which has a true mixed mating system (selfing was the major source of inbreeding), and an unusually low t(m) for pines (t(m) = 0.54, uncorrected, t(m) = 0.49, corrected). Inbreeding depression may be an uneven source of bias for outcrossing estimates even at the infraspecific level. Accuracy [corrected] but not precision [corrected] may be gained by including inbreeding depression in outcrossing estimates. Therefore, caution should be taken when comparing t(m) among species or even populations within the same species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号