首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Background

Albumin constitutes the most abundant circulating antioxidant and prevents oxidative damages. However, in diabetes, this plasmatic protein is exposed to several oxidative modifications, which impact on albumin antioxidant properties.

Methods

Most studies dealing on albumin antioxidant activities were conducted on in vitro modified protein. Here we tried to decipher whether reduced antioxidant properties of albumin could be evidenced in vivo. For this, we compared the antioxidant properties of albumin purified from diabetic patients to in vitro models of glycated albumin.

Results

Both in vivo and in vitro glycated albumins displayed impaired antioxidant activities in the free radical-induced hemolysis test. Surprisingly, the ORAC method (Oxygen Radical Antioxidant Capacity) showed an enhanced antioxidant activity for glycated albumin. Faced with this paradox, we investigated antioxidant and anti-inflammatory activities of our albumin preparations on cultured cells (macrophages and adipocytes). Reduced cellular metabolism and enhanced intracellular oxidative stress were measured in cells treated with albumin from diabetics. NF-kB –mediated gene induction was higher in macrophages treated with both type of glycated albumin compared with cells treated with native albumin. Anti inflammatory activity of native albumin is significantly impaired after in vitro glycation and albumin purified from diabetics significantly enhanced IL6 secretion by adipocytes. Expression of receptor for advanced glycation products is significantly enhanced in glycated albumin-treated cells.

Conclusions and general significance

Our results bring new evidences on the deleterious impairments of albumin important functions after glycation and emphasize the importance of in vivo model of glycation in studies relied to diabetes pathology.  相似文献   

2.

Background

Oxidative damage results in protein modification, and is observed in numerous diseases. Human serum albumin (HSA), the most abundant circulating protein in the plasma, exerts important antioxidant activities against oxidative damage.

Scope of review

The present review focuses on the characterization of chemical changes in HSA that are induced by oxidative damage, their relevance to human pathology and the most recent advances in clinical applications.

Major conclusions

The antioxidant properties of HSA are largely dependent on Cys34 and its contribution to the maintenance of intravascular homeostasis, including protecting the vascular endothelium under disease conditions related to oxidative stress. Recent studies also evaluated the susceptibility of other important amino acid residues to free radicals. The findings suggest that a redox change in HSA is related to the oxidation of several amino acid residues by different oxidants. Further, Cys34 adducts, such as S-nitrosylated and S-guanylated forms also play an important role in clinical applications. On the other hand, the ratio of the oxidized form to the normal form of albumin (HMA/HNA), which is a function of the redox states of Cys34, could serve as a useful marker for evaluating systemic redox states, which would be useful for the evaluation of disease progression and therapeutic efficacy.

General significance

This review provides new insights into our current understanding of the mechanism of HSA oxidation, based on in vitro and in vivo studies.This article is part of a Special Issue entitled Serum Albumin.  相似文献   

3.

Background

Proteins are extremely reactive to oxidants and should represent a potential target of instable reactive oxygen. This may represent a problem for plasma proteins since they may be directly modified in vivo in a compartment where antioxidant enzymatic systems are scarcely represented. On the other hand, it is possible that some plasma components have evolved over time to guarantee protection, in which case they can be considered as anti-oxidants.

Scope of review

To present and discuss main studies which addressed the role of albumin in plasma antioxidant activity mainly utilizing in vitro models of oxidation. To present some advances on structural features of oxidized albumin deriving from studies carried out on in vitro models as well as albumin purified in vivo from patients affected by clinical conditions characterized by oxidative stress.

Major conclusions

There are different interaction with HOCl and chloramines. In the former case, HOCl produces an extensive alteration of 238Trp and 162Tyr, 425Tyr, 47Tyr, while thiol groups are only partially involved. Chloramines are extremely reactive with the unique free SH group of albumin (34Cys) with the formation of sulfenic and sulfinic acid as intermediates and sulfonic acid as end-product. Oxidized albumin has a modified electrical charge for the addition of an acidic residue and presents α-helix and random coil reorganization with subtle changes in domain orientation.

General significance

Albumin, is the major antioxidants in plasma with a concentration (0.8 mM) higher than other antioxidants by an exponential factor. Functional and protective roles in the presence of oxidative stress must be defined. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

4.

Objective

The parasympathetic nervous system regulates inflammation in peripheral tissues through a pathway termed the “cholinergic anti-inflammatory reflex” (CAIR). Mice deficient in the alpha 7 nicotinic acetylcholine receptor (α7−/−) have an impaired CAIR due to decreased signaling through this pathway. The purpose of this study was to determine if the increased inflammation in α7−/− mice is associated with enhanced serum and macrophage atherogenicity.

Methods

We measured serum markers of inflammation and oxidative stress, and macrophage atherogenicity in mouse peritoneal macrophages harvested from α7−/− mice on the background of C57BL/6 mice, as well as on the background of the atherosclerotic Apolipoprotein E-deficient (ApoE−/−) mice.

Results

α7-Deficiency had no significant effects on serum cholesterol, or on markers of serum oxidative stress (TBARS and paraoxonase1 activities). However, α7-deficiency significantly increased serum CRP and IL-6 (p < 0.05) levels in atherosclerotic mice, confirming an anti-inflammatory role for the α7 receptor. Macrophage cholesterol mass was increased by 25% in both normal and atherosclerotic mice in the absence of the α7 receptor (p < 0.05). This was accompanied by conditional increases in oxidized LDL uptake and in macrophage total peroxide levels. Furthermore, α7-deficiency reduced macrophage paraoxonase2 mRNA and activity by 50-100% in normal and atherosclerotic mice (p < 0.05 for each), indicating a reduction in macrophage anti-oxidant capacity in the α7−/− mice.

Conclusion

The above results suggest an anti-atherogenic role for the macrophage α7nAchr, through a mechanism that involves attenuated macrophage oxidative stress and decreased uptake of oxidized LDL.  相似文献   

5.

Background

Chronic lead (Pb2 +) exposure leads to the reduced lifespan of erythrocytes. Oxidative stress and K+ loss accelerate Fas translocation into lipid raft microdomains inducing Fas mediated death signaling in these erythrocytes. Pathophysiological-based therapeutic strategies to combat against erythrocyte death were evaluated using garlic-derived organosulfur compounds like diallyl disulfide (DADS), S allyl cysteine (SAC) and imidazole based Gardos channel inhibitor clotrimazole (CLT).

Methods

Morphological alterations in erythrocytes were evaluated using scanning electron microscopy. Events associated with erythrocyte death were evaluated using radio labeled probes, flow cytometry and activity gel assay. Mass spectrometry was used for detection of GSH-4-hydroxy-trans-2-nonenal (HNE) adducts. Fas redistribution into the lipid rafts was studied using immunoblotting technique and confocal microscopy.

Results

Combination of SAC and CLT was better than DADS and CLT combination and monotherapy with these agents in prolonging the survival of erythrocytes during chronic Pb2 + exposure. Combination therapy with SAC and CLT prevented redistribution of Fas into the lipid rafts of the plasma membrane and downregulated Fas-dependent death events in erythrocytes of mice exposed to Pb2 +.

Conclusion and general significance

Ceramide generation was a critical component of Fas receptor-induced apoptosis, since inhibition of acid sphingomyelinase (aSMase) interfered with Fas-induced apoptosis during Pb2 + exposure. Combination therapy with SAC and CLT downregulated apoptotic events in erythrocytes by antagonizing oxidative stress and Gardos channel that led to suppression of ceramide-initiated Fas aggregation in lipid rafts. Hence, combination therapy with SAC and CLT may be a potential therapeutic option for enhancing the lifespan of erythrocytes during Pb2 + toxicity.  相似文献   

6.
Wang F  Xing T  Wang N  Liu L 《Cytokine》2012,57(1):127-129

Objective

To investigate the levels of plasma CD146 and P-selectin in patients with type 2 diabetic nephropathy at different stages.

Methods

A total of 80 patients with type 2 diabetes mellitus were enrolled in the present study. According to 24 h urinary albumin excretion ratio and renal function, they were further divided into group of diabetes without microalbuminuria (DN0, n = 20), microalbuminuria group (DN1, n = 20), macroalbuminuria group (DN2, n = 20) and renal insufficiency group (DN3, n = 20). Another 20 healthy subjects were enrolled as control group (non-DM). Plasma CD146 and P-selectin were measured by ELISA.

Results

Plasma CD146 and P-selectin were significantly increased in patients with type 2 diabetes with microalbuminuria (DN1) compared with health control (CD146: 415.3 ± 29.0 vs. 243.5 ± 14.7 ng/ml, P < 0.05; P-selectin: 66.8 ± 3.4 vs. 45.3 ± 2.7 ng/ml, P < 0.001). With the development of diabetic nephropathy, both plasma CD146 and P-selectin level progressively rise, with the highest levels in patients with significant renal insufficiency (DN3: 515.9 ± 36.9 and 81.5 ± 5.1 ng/ml respectively, P < 0.001). Moreover, the increase in CD146 is positively co-related to the rise of P-selectin in patients with type 2 diabetes.

Conclusion

Expression of CD146 and P-selectin in patients with type 2 diabetes is elevated, and they are positively correlated with severity of diabetic nephropathy.  相似文献   

7.

Background

Human serum albumin acts as a reservoir and transport protein for endogenous (e.g. fatty acids or bilirubin) and exogenous compounds (e.g. drugs or nutrients) in the blood. The binding of a drug to albumin is a major determinant of its pharmacokinetic and pharmacodynamic profile.

Scope of review

The present review discusses recent findings regarding the nature of drug binding sites, drug-albumin binding in certain diseased states or in the presence of coadministered drugs, and the potential of utilizing albumin–drug interactions in clinical applications.

Major conclusions

Drug–albumin interactions appear to predominantly occur at one or two specific binding sites. The nature of these drug binding sites has been fundamentally investigated as to location, size, charge, hydrophobicity or changes that can occur under conditions such as the content of the endogenous substances in question. Such findings can be useful tools for the analysis of drug–drug interactions or protein binding in diseased states. A change in protein binding is not always a problem in terms of drug therapy, but it can be used to enhance the efficacy of therapeutic agents or to enhance the accumulation of radiopharmaceuticals to targets for diagnostic purposes. Furthermore, several extracorporeal dialysis procedures using albumin-containing dialysates have proven to be an effective tool for removing endogenous toxins or overdosed drugs from patients.

General significance

Recent findings related to albumin–drug interactions as described in this review are useful for providing safer and efficient therapies and diagnoses in clinical settings. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

8.

Background

The relevance of discrete localization of hepatobiliary transporters in specific membrane microdomains is not well known.

Aim

To determine whether the Na+/taurocholate cotransporting polypeptide (Ntcp), the main hepatic sinusoidal bile salt transporter, is localized in specific membrane microdomains.

Methods

Presence of Ntcp in membrane rafts obtained from mouse liver was studied by immunoblotting and immunofluorescence. HEK-293 cells stably transfected with rat Ntcp were used for in vitro studies. Expression, localization and function of Ntcp in these cells were assessed by immunoblotting, immunofluorescence and biotinylation studies and Na+-dependent taurocholate uptake assays, respectively. The effect of cholesterol depletion/repletion assays on Ntcp function was also investigated.

Results

Ntcp localized primarily to membrane rafts in in vivo studies and localized partially in membrane rafts in transfected HEK-293 cells. In these cells, membrane cholesterol depletion resulted in a shift of Ntcp localization into non-membrane rafts, which correlated with a 2.5-fold increase in taurocholate transport. Cholesterol repletion shifted back part of Ntcp into membrane rafts, and normalized taurocholate transport to values similar to control cells.

Conclusion

Ntcp localizes in membrane rafts and its localization and function are regulated by membrane cholesterol content. This may serve as a novel regulatory mechanism of bile salt transport in liver.  相似文献   

9.

Background

Kidney is known as the most sensitive target organ for depleted uranium (DU) toxicity in comparison to other organs. Although the oxidative stress and mitochondrial damage induced by DU has been well investigated, the precise mechanism of DU-induced nephrotoxicity has not been thoroughly recognized yet.

Methods

Kidney mitochondria were obtained using differential centrifugation from Wistar rats and mitochondrial toxicity endpoints were then determined in both in vivo and in vitro uranyl acetate (UA) exposure cases.

Results

Single injection of UA (0, 0.5, 1 and 2 mg/kg, i.p.) caused a significant increase in blood urea nitrogen and creatinine levels. Isolated mitochondria from the UA-treated rat kidney showed a marked elevation in oxidative stress accompanied by mitochondrial membrane potential (MMP) collapse as compared to control group. Incubation of isolated kidney mitochondria with UA (50, 100 and 200 μM) manifested that UA can disrupt the electron transfer chain at complex II and III that leads to induction of reactive oxygen species (ROS) formation, lipid peroxidation, and glutathione oxidation. Disturbances in oxidative phosphorylation were also demonstrated through decreased ATP concentration and ATP/ADP ratio in UA-treated mitochondria. In addition, UA induced a significant damage in mitochondrial outer membrane. Moreover, MMP collapse, mitochondrial swelling and cytochrome c release were observed following the UA treatment in isolated mitochondria.

General significance

Both our in vivo and in vitro results showed that UA-induced nephrotoxicity is linked to the impairment of electron transfer chain especially at complex II and III which leads to subsequent oxidative stress.  相似文献   

10.

Background

Substantial evidence suggests that increased oxidative stress in hemodialysis (HD) patients may contribute to cardiovascular complications. Oxidative modifications of human serum albumin (HSA), the largest thiol pool in plasma, alter its biological properties and may affect its antioxidant potential in HD patients.

Methods

We conducted a long-term follow-up study in a cohort of normoalbuminemic HD patients to examine the impact of redox state of serum albumin on patients’ survival by measuring the human nonmercaptoalbumin (HNA) fraction of HSA.

Results

After adjusting for potential demographic, anthropometric, and clinical confounders, a positive association of HNA level with the risk of death from cardiovascular disease (CVD) and all-cause mortality was observed in normoalbuminemic HD patients. Using stratified analysis, we found a stronger association between HNA level and the risk of death from CVD and all-cause mortality in patients with pre-existing CVD.

Conclusions

Serum HNA level is a positive predictor of mortality in normoalbuminemic HD patients, especially among those with pre-existing CVD. Increased oxidative stress resulting from biological changes in serum albumin levels could contribute to accelerated atherosclerosis and the development of cardiovascular disease in HD patients.  相似文献   

11.

Background

Metal ions such as copper or zinc are involved in the development of neurodegenerative pathologies and metabolic diseases such as diabetes mellitus. Albumin structure and functions are impaired following metal- and glucose-mediated oxidative alterations. The aim of this study was to elucidate effects of Cu(II) and Zn(II) ions on glucose-induced modifications in albumin by focusing on glycation, aggregation, oxidation and functional aspects.

Methods

Aggregation and conformational changes in albumin were monitored by spectroscopy, fluorescence and microscopy techniques. Biochemical assays such as carbonyl, thiol groups, albumin-bound Cu, fructosamine and amine group measurements were used. Cellular assays were used to gain functional information concerning antioxidant activity of oxidized albumins.

Results

Both metals promoted inhibition of albumin glycation associated with an enhanced aggregation and oxidation process. Metal ions gave rise to the formation of β-amyloid type aggregates in albumin exhibiting impaired antioxidant properties and toxic activity to murine microglia cells (BV2). The differential efficiency of both metal ions to inhibit albumin glycation, to promote aggregation and to affect cellular physiology is compared.

Conclusions and general significance

Considering the key role of oxidized protein in pathology complications, glycation-mediated and metal ion-induced impairment of albumin properties might be important parameters to be followed and fought.  相似文献   

12.

Introduction

Glucocorticoids are known to attenuate bone formation in vivo leading to decreased bone volume and increased risk of fractures, whereas effects on the joint tissue are less characterized. However, glucocorticoids appear to have a reducing effect on inflammation and pain in osteoarthritis. This study aimed at characterizing the effect of glucocorticoids on chondrocytes, osteoclasts, and osteoblasts.

Experimental

We used four model systems to investigate how glucocorticoids affect the cells of the joint; two intact tissues (femoral head- and cartilage-explants), and two separate cell cultures of osteoblasts (2T3-pre-osteoblasts) and osteoclasts (CD14+-monocytes). The model systems were cultured in the presence of two glucocorticoids; prednisolone or dexamethasone. To induce anabolic and catabolic conditions, cultures were activated by insulin-like growth factor I/bone morphogenetic protein 2 and oncostatin M/tumor necrosis factor-α, respectively. Histology and markers of bone- and cartilage-turnover were used to evaluate effects of glucocorticoid treatment.

Results

Prednisolone treatment decreased collagen type-II degradation in immature cartilage, whereas glucocorticoids did not affect collagen type-II in mature cartilage. Glucocorticoids had an anti-catabolic effect on catabolic-activated cartilage from a bovine stifle joint and murine femoral heads. Glucocorticoids decreased viability of all bone cells, leading to a reduction in osteoclastogenesis and bone resorption; however, bone morphogenetic protein 2-stimulated osteoblasts increased bone formation, as opposed to non-stimulated osteoblasts.

Conclusions

Using highly robust in vitro models of bone and cartilage turnover, we suggest that effects of glucocorticoids highly depend on the activation and differential stage of the cell targeted in the joint. Present data indicated that glucocorticoid treatment may be beneficial for articular cartilage, although detrimental effects on bone should be taken into account.  相似文献   

13.

Background

Neuronal iron accumulation is thought to be relevant to the pathogenesis of Parkinson’s disease (PD), although the mechanism remains elusive. We hypothesized that neuronal iron uptake may be stimulated by functional mitochondrial iron deficiency.

Objective

To determine firstly whether the mitochondrial toxin, 1-methyl-4-phenylpyridinium iodide (MPP+), results in upregulation of iron-import proteins and transporters of iron into the mitochondria, and secondly whether similar changes in expression are induced by toxins with different mechanisms of action.

Methods

We used quantitative PCR and Western blotting to investigate expression of the iron importers, divalent metal transporter, transferrin receptor 1 and 2 (TfR1 and TfR2) and mitoferrin-2 and the iron exporter ferroportin in differentiated SH-SY5Y cells exposed to three different toxins relevant to PD, MPP+, paraquat (a free radical generator) and lactacystin (an inhibitor of the ubiquitin-proteasome system (UPS)).

Results

MPP+ resulted in increased mRNA and protein levels of genes involved in cellular iron import and transport into the mitochondria. Similar changes occurred following exposure to paraquat, another inducer of oxidative stress. Lactacystin also resulted in increased TfR1 mRNA levels, although the other changes were not found.

Conclusion

Our results support the hypothesis of a functional mitochondrial iron deficit driving neuronal iron uptake but also suggest that differences exist in neuronal iron handling induced by different toxins.  相似文献   

14.

Background

Sodium octanoate (Oct) and N-acetyl-l-tryptophan (N-AcTrp) are widely used as stabilizers during pasteurization and storage of albumin products. However, exposure to light photo-degrades N-AcTrp with the formation of potentially toxic compounds. Therefore, we have examined the usefulness of N-acetyl-l-methionine (N-AcMet) in comparison with N-AcTrp for long-term stability, including photo stability, of albumin products.

Methods

Recombinant human serum albumin (rHSA) with and without additives was photo-irradiated for 4 weeks. The capability of the different stabilizers to scavenge reactive oxygen species (ROS) was examined by ESR spectrometry. Carbonyl contents were assessed by a spectrophotometric method using fluoresceinamine and Western blotting, whereas the structure of rHSA was examined by SDS-PAGE, far-UV circular dichroism and differential scanning calorimetry. Binding was determined by ultrafiltration.

Results

N-AcMet was found to be a superior ROS scavenger both before and after photo-irradiation. The number of carbonyl groups formed was lowest in the presence of N-AcMet. According to SDS-PAGE, N-AcMet stabilizes the monomeric form of rHSA, whereas N-AcTrp induces degradation of rHSA during photo-irradiation. The decrease in α-helical content of rHSA was the smallest in the presence of Oct, without or with N-AcMet. Photo-irradiation did not affect the denaturation temperature or calorimetric enthalpy of rHSA, when N-AcMet was present.

Conclusion

The weakly bound N-AcMet is a superior protectant of albumin, because it is a better ROS-protector and structural stabilizer than N-AcTrp, and it is probable and also useful for other protein preparations.

General significance

N-AcMet is an effective stabilizer of albumin during photo-irradiation, while N-Ac-Trp promotes photo-oxidative damage to albumin.  相似文献   

15.

Background

Neurite outgrowth is an important aspect of neuronal plasticity and regeneration after neuronal injury. Alpha-lipoic acid (LA) has been used as a therapeutic approach for a variety of neural disorders. We recently reported that LA prevents local anesthetics-induced neurite loss. In this study, we hypothesized that LA administration promotes neurite outgrowth.

Methods

To test our hypothesis, we treated mouse neuroblastoma N2a cells and primary neurons with LA. Neurite outgrowth was evaluated by examination of morphological changes and by immunocytochemistry for β-tubulin-3. ROS production was examined, as were the phosphorylation levels of ERK and Akt. In separate experiments, we determined the effects of the inhibition of ERK or PI3K/Akt as well as ROS production on LA-induced neurite outgrowth.

Results

LA promoted significantly neurite outgrowth in a time- and concentration-dependent manner. LA stimulation significantly increased the phosphorylation levels of both Akt and ERK and transiently induced ROS production. PI3K/Akt inhibition did not affect LA-induced neurite outgrowth. However, the inhibition of ERK activation completely abolished LA-induced neurite outgrowth. Importantly, the prevention of ROS production by antioxidants attenuated LA-stimulated ERK activation and completely abolished LA-promoted neurite outgrowth.

Conclusion

Our data suggest that LA stimulates neurite outgrowth through the activation of ERK signaling, an effect mediated through a ROS-dependent mechanism.  相似文献   

16.

Purpose

Ginseng (Araliaceae), demonstrates widespread biological effects because of its purported antioxidant and other properties. The present study was undertaken to investigate the effects of American ginseng root extract on glucose-induced oxidative stress and associated oxidative damage to human umbilical vein endothelial cells (HUVECs).

Methods

Following pretreatment with various concentrations of ginseng (alcoholic extract), HUVECs were incubated with various concentrations of d-glucose ranging from 5 to 25 mmol/l for 24 h. l-Glucose was used at a concentration of 25 mmol/l as a control.

Results

Glucose-induced oxidative stress detected by intracellular reactive oxygen species accumulation, superoxide anion generation and DNA damage in HUVECs were significantly prevented by ginseng. Treatment of HUVECs with ginseng further led to significant prevention of glucose-induced NF-κB activation. Glucose-induced increase in fibronectin (FN), EDB+FN (a splice variant of FN), endothelin-1 (ET-1) and vascular endothelial growth factor (VEGF) mRNAs and protein levels were also prevented by ginseng treatment.

Conclusion

These data indicate that American ginseng prevented glucose-induced damage in the HUVECs through its antioxidant properties.  相似文献   

17.
Manganese superoxide dismutase (MnSOD) is vital to the protection of mitochondria and cells against oxidative stress. Earlier, we demonstrated that catalytically active homo-tetramer of MnSOD can be stabilized by oxidative cross-linking. Here we report that this effect may be translated into increased radioresistance of mouse embryonic cells (MECs) by pre-exposure to oxidative stress. Pre-treatment of MECs with antimycin A, rotenone or H2O2 increased their survival after irradiation. Using MnSOD siRNA, we show that MECs with decreased MnSOD levels displayed a lowered ability to preconditioning. Thus oxidative preconditioning may be used for targeted regulation of MnSOD.

Structured summary

MINT-7288408: MnSOD (uniprotkb:P04179) and MnSOD (uniprotkb:P04179) physically interact (MI:0915) by zymography (MI:0512)  相似文献   

18.

Background

Albumins are multifunctional proteins present in the blood serum of animals. They can bind and transport a wide variety of ligands which they accommodate due to their conformational flexibility. Serum albumins are highly conserved both in amino acid sequence and three-dimensional structure. Several mammalian and avian serum albumins (SAs) are also allergens. Sensitization to one of the SAs coupled with the high degree of conservation between SAs may result in cross-reactive antibodies in allergic individuals. Sensitivity to SA generally begins with exposure to an aeroallergen, which can then lead to cross-sensitization to serum albumins present in food.

Scope of review

This review focuses on the allergenicity of SAs presented in a structural context.

Major conclusions

SA allergenicity is unusual taking into account the high sequence identity and similarity between SA from different species and human serum albumin. Cross-reactivity of human antibodies towards different SAs is one of the most important characteristics of these allergens.

General significance

Establishing a relationship between sequence and structure of different SAs and their interactions with antibodies is crucial for understanding the mechanisms of cross-sensitization of atopic individuals. Structural information can also lead to better design and production of recombinant SAs to replace natural proteins in allergy testing and desensitization. Therefore, structural analyses are important for diagnostic and treatment purposes. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

19.

Objective

Set up a framework for evaluating automatic segmentation methods of tumour volumes on PET images.

Patient and methods

This study was performed with PET images of 18 patients with non-Hodgkin's lymphoma. One target lesion per patient was pointed out. Each lesion was then three times manually delineated by five experts. Four automatic methods (the application of a threshold of 42% of the maximum SUV, the MIP-based method, the Daisne et al. method and the Nestle et al. method) were evaluated by comparison with the set of manual delineations.

Results

From the manual delineations, we have concluded to a moderate intra-operator variability and to a reduced interoperator reproducibility. From statistical tests performed on various quantitative criteria, there was no significant difference between the MIP-based method, the Daisne et al. method and the Nestle et al. one. The application of a threshold of 42% of the maximum SUV appears to be less efficient.

Conclusion

This work proposes a comparison and an evaluation protocol for segmentation methods. The generated data set will be distributed online for the community to simplify the evaluation of any new method of segmentation.  相似文献   

20.

Purpose

Epidemiological data suggest that green tea (GT) consumption may protect against cardiovascular diseases (CVDs) and different types of cancer. This effect is attributed primarily to the antioxidant properties of flavanols from GT. This review provides an overview of controlled intervention studies investigating the effect of GT consumption on antioxidant effects ex vivo and in vivo.

Methods

The Medline and Cochrane databases were searched independently by two investigators for controlled intervention studies (English) on GT consumption and antioxidant effects published up to June 2010. Thirty-one studies investigating antioxidant effects ex vivo [plasma antioxidant capacity (AC), DNA's resistance against oxidative induced damage) or in vivo (lipid and protein oxidation, DNA damage] met the criteria. Results were compared by considering the participants, the dose of GT, the amount of ingested flavanols, the duration of supplementation and the investigated biomarkers.

Results

The comparison between the studies was difficult as relevant data, e.g., on flavanol concentration in plasma (10 of 31 studies) or on major antioxidants contributing to AC, were often missing. Lipid peroxidation and DNA damage were commonly investigated. Data on protein oxidation are scarce. An antioxidant effect of at least one parameter (increase in AC or reduction of oxidative stress marker) was observed in 15 out of 22 studies by daily consumption of GT, primarily in participants exposed to oxidative stress (smokers or mixed collectives of smokers and non-smokers and physical activity) and in 6 out of 9 studies investigating the bolus consumption of GT.

Conclusion

There is limited evidence that regular consumption of GT in amounts of at least 0.6-1.5 l/day may increase AC and reduce lipid peroxidation (especially oxidation of LDL). This may contribute to the protection against CVDs and different types of cancer. Beneficial effects seem to be more likely in participants exposed to oxidative challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号