首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by proliferation and insufficient apoptosis of synovial cells. NK4 is a hepatocyte growth factor antagonist and is implicated in cell proliferation, viability, and apoptosis of many tumour cells. This study aimed to investigate the role of NK4 in the regulation of human RA synovial cell proliferation and apoptosis. Fibroblast‐like synoviocytes (FLSs) isolated from RA patients and MH7A synovial cells were subjected to MTT, flow cytometry, and Western blot analysis. We found that NK4 suppressed cell proliferation through cell cycle arrest at the G0/G1 phase and induced apoptosis in RA synovial cells. Furthermore, NK4 altered the expression of cell cycle and apoptosis‐related proteins such as cyclin D1, cyclin B1, PCNA, p21, p53, Bcl‐2, Bax, cleaved caspase‐9, and cleaved caspase‐3. Additionally, NK4 reduced the phosphorylation level of NF‐κB p65 and upregulated the expression of sirt1, but did not change the levels of p38 and p‐p38 in RA‐FLS and MH7A cells. In conclusion, NK4 inhibits the proliferation and induces apoptosis of human RA synovial cells. NK4 is a promising therapeutic target for RA. We demonstrated that NK4 inhibited cell proliferation by inducing apoptosis and arresting cell cycle in RA‐FLS and MH7A cells. The apoptotic effects of NK4 may be mediated in part by decreasing Bcl‐2 protein level, increasing Bax and caspase 3 protein levels, and inhibiting NF‐κB signalling in RA‐FLS and MH7A cells. These findings reveal potential mechanism underlying the role of NK4 in RA synovial cells and suggest that NK4 is a promising agent for RA treatment.  相似文献   

3.
Apoptosis is reduced in the synovial tissue of patients with rheumatoid arthritis (RA), possibly due to decreased expression of pro-apoptotic genes. Programmed Cell Death 5 (PDCD5) has been recently identified as a protein that mediates apoptosis. Although PDCD5 is down-regulated in many human tumors, the role of PDCD5 in RA has not been investigated. Here we report that reduced levels of PDCD5 mRNA and protein are detected in RA synovial tissue (ST) and fibroblast-like synoviocytes (FLS) than in tissue and cells from patients with osteoarthritis (OA). We also report differences in the PDCD5 expression pattern in tissues from patients with these two types of arthritis. PDCD5 showed a scattered pattern in rheumatoid synovium compared with OA, in which the protein labeling was stronger in the synovial lining layer than in the sublining. We also observed increased expression and nuclear translocation of PDCD5 in RA patient-derived FLS undergoing apoptosis. Finally, overexpression of PDCD5 led to enhanced apoptosis and activation of caspase-3 in triptolide-treated FLS. We propose that PDCD5 may be involved in the pathogenesis of RA. These data also suggest that PDCD5 may serve as a therapeutic target to enhance sensitivity to antirheumatic drug-induced apoptosis in RA.  相似文献   

4.
5.
Reactive oxygen species (ROS) are implicated to play a role in initiating rheumatoid arthritis (RA) pathogenesis. We have investigated the mechanism(s) by which essential redox-active trace metals (RATM) may induce cell proliferation and cell death in rabbit synovial fibroblasts. These fibroblast-like synovial (FLS) cells, which express Toll-like receptor 4 (TLR4), were used as a model system that plays a role in potentially initiating RA through oxidative stress. Potassium peroxychromate (PPC, [Cr5+]), ferrous chloride (FeCl2, [Fe2+]), and cuprous chloride (CuCl, [Cu+]) in the indicated valency states were used as exogenous pro-oxidants that can induce oxidative stress through TLR4 coupled activation that also causes HMGB1 release. We measured the proliferation index (PI) of FLS, and examined the effect of RATM oxidants on apoptosis and autophagy by fluorescence cell-sorting flow cytometry (FC). Cell cycle was analysed by FC and autophagy-related protein expression levels were measured by western blot. Our data showed that as RATM as prooxidants increased intracellular ROS (iROS) that can induce oxidative stress. Whereas iROS increased PI in FLS, these reactive species also protected cells against apoptosis by inducing autophagy. Our results indicate that ROS/TLR4-coupled activation may contribute to the pathogenesis of RA in FLS by induction of autophagy. The signalling pathway by which inflammation and its tissue destructive sequel may occur in RA underlies the need for developing therapeutic agents that can inhibit release of tissue-damaging high mobility group box 1 (HMGB1), cytokines, and possess both trace metal chelating capacity and oxidant scavenging properties in a directed combinatorial therapy for RA.  相似文献   

6.
Aggrecanases are key matrix-degrading enzymes that act by cleaving aggrecan at the Glu(373)-Ala(374) site. While these fragments have been detected in osteoarthritis (OA) and rheumatoid arthritis (RA) cartilage and synovial fluid, no information is available on the regulation or expression of the two key aggrecanases (aggrecanase-1 and aggrecanase-2) in synovial tissue (ST) or fibroblast-like synoviocytes (FLS). The aggrecanase-1 gene was constitutively expressed by both RA and OA FLS. Real-time PCR demonstrated that TGF-beta significantly increased aggrecanase-1 gene expression in FLS. Aggrecanase-1 induction peaked after 24 h of TGF-beta stimulation. The expression of aggrecanase-1 mRNA was significantly greater in RA ST than in OA or nonarthritis ST. Aggrecanase-2 mRNA and protein were constitutively produced by nonarthritis, OA, and RA FLS but were not increased by IL-1, TNF-alpha, or TGF-beta. Furthermore, OA, RA, and nonarthritis ST contained similar amounts of immunoreactive aggrecanase-2. The major form of the aggrecanase-2 enzyme was 70 kDa in nonarthritis ST, whereas a processed 53-kDa form was abundant in RA ST. Therefore, aggrecanase-1 and -2 are differentially regulated in FLS. Both are constitutively expressed, but aggrecanase-1 is induced by cytokines, especially TGF-beta. In contrast, aggrecanase-2 protein may be regulated by a post-translational mechanism in OA and RA ST. Synovial and FLS production of aggrecanase can contribute to cartilage degradation in RA and OA.  相似文献   

7.
We previously compared by microarray analysis gene expression in rheumatoid arthritis (RA) and osteoarthritis (OA) tissues. Among the set of genes identified as a molecular signature of RA, clusterin (clu) was one of the most differentially expressed. In the present study we sought to assess the expression and the role of CLU (mRNA and protein) in the affected joints and in cultured fibroblast-like synoviocytes (FLS) and to determine its functional role. Quantitative RT-PCR, Northern blot, in situ hybridization, immunohistochemistry, and Western blot were used to specify and quantify the expression of CLU in ex vivo synovial tissue. In synovial tissue, the protein was predominantly expressed by synoviocytes and it was detected in synovial fluids. Both full-length and spliced isoform CLU mRNA levels of expression were lower in RA tissues compared with OA and healthy synovium. In synovium and in cultured FLS, the overexpression of CLU concerned all protein isoforms in OA whereas in RA, the intracellular forms of the protein were barely detectable. Transgenic overexpression of CLU in RA FLS promoted apoptosis within 24 h. We observed that CLU knockdown with small interfering RNA promoted IL-6 and IL-8 production. CLU interacted with phosphorylated IkappaBalpha. Differential expression of CLU by OA and RA FLS appeared to be an intrinsic property of the cells. Expression of intracellular isoforms of CLU is differentially regulated between OA and RA. We propose that in RA joints, high levels of extracellular CLU and low expression of intracellular CLU may enhance NF-kappaB activation and survival of the synoviocytes.  相似文献   

8.
Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and destruction of cartilage and bone. The fibroblast-like synoviocyte (FLS) population is central to the development of pannus by migrating into cartilage and bone. We demonstrated previously that expression of the cell cycle inhibitor p21 is significantly reduced in RA synovial lining, particularly in the FLS. The aim of this study was to determine whether reduced expression of p21 in FLS could alter the migratory behavior of these cells. FLS were isolated from mice deficient in p21 (p21(-/-)) and were examined with respect to growth and migration. p21(-/-) and wild-type (WT) FLS were compared with respect to migration towards chemoattractants found in RA synovial fluid in the presence and absence of cell cycle inhibitors. Restoration of p21 expression was accomplished using adenoviral infection. As anticipated from the loss of a cell cycle inhibitor, p21(-/-) FLS grow more rapidly than WT FLS. In examining migration towards biologically relevant RA synovial fluid, p21(-/-) FLS display a marked increase (3.1-fold; p < 0.05) in migration compared to WT cells. Moreover, this effect is independent of the cell cycle since chemical inhibitors that block the cell cycle have no effect on migration. In contrast, p21 is required to repress migration as restoration of p21 expression in p21(-/-) FLS reverses this effect. Taken together, these data suggest that p21 plays a novel role in normal FLS, namely to repress migration. Loss of p21 expression that occurs in RA FLS may contribute to excessive invasion and subsequent joint destruction.  相似文献   

9.
Nuclear factor (NF)-kappaB is a key regulator of synovial inflammation. We investigated the effect of local NF-kappaB inhibition in rat adjuvant arthritis (AA), using the specific IkappaB kinase (IKK)-beta blocking NF-kappaB essential modulator-binding domain (NBD) peptide. The effects of the NBD peptide on human fibroblast-like synoviocytes (FLS) and macrophages, as well as rheumatoid arthritis (RA) whole-tissue biopsies, were also evaluated. First, we investigated the effects of the NBD peptide on RA FLS in vitro. Subsequently, NBD peptides were administered intra-articularly into the right ankle joint of rats at the onset of disease. The severity of arthritis was monitored over time, rats were sacrificed on day 20, and tissue specimens were collected for routine histology and x-rays of the ankle joints. Human macrophages or RA synovial tissues were cultured ex vivo in the presence or absence of NBD peptides, and cytokine production was measured in the supernatant by enzyme-linked immunosorbent assay. The NBD peptide blocked interleukin (IL)-1-beta-induced IkappaB alpha phosphorylation and IL-6 production in RA FLS. Intra-articular injection of the NBD peptide led to significantly reduced severity of arthritis (p < 0.0001) and reduced radiological damage (p = 0.04). This was associated with decreased synovial cellularity and reduced expression of tumor necrosis factor (TNF)-alpha and IL-1-beta in the synovium. Incubation of human macrophages with NBD peptides resulted in 50% inhibition of IL-1-beta-induced TNF-alpha production in the supernatant (p < 0.01). In addition, the NBD peptide decreased TNF-alpha-induced IL-6 production by human RA synovial tissue biopsies by approximately 42% (p < 0.01). Specific NF-kappaB blockade using a small peptide inhibitor of IKK-beta has anti-inflammatory effects in AA and human RA synovial tissue as well as in two important cell types in the pathogenesis of RA: macrophages and FLS. These results indicate that IKK-beta-targeted NF-kappaB blockade using the NBD peptide could offer a new approach for the local treatment of arthritis.  相似文献   

10.
PUMA (p53-upregulated modulator of apoptosis) is a pro-apoptotic gene that can induce rapid cell death through a p53-dependent mechanism. However, the efficacy of PUMA gene therapy to induce synovial apoptosis in rheumatoid arthritis might have limited efficacy if p53 expression or function is deficient. To evaluate this issue, studies were performed to determine whether p53 is required for PUMA-mediated apoptosis in fibroblast-like synoviocytes (FLS). p53 protein was depleted or inhibited in human FLS by using p53 siRNA or a dominant-negative p53 protein. Wild-type and p53-/- murine FLS were also examined to evaluate whether p53 is required. p53-deficient or control FLS were transfected with PUMA cDNA or empty vector. p53 and p21 expression were then determined by Western blot analysis. Apoptosis was assayed by ELISA to measure histone release and caspase-3 activation, or by trypan blue dye exclusion to measure cell viability. Initial studies showed that p53 siRNA decreased p53 expression by more than 98% in human FLS. Loss of p53 increased the growth rate of cells and suppressed p21 expression. However, PUMA still induced apoptosis in control and p53-deficient FLS after PUMA cDNA transfection. Similar results were observed in p53-/- murine FLS or in human FLS transfected with a dominant-negative mutant p53 gene. These data suggest that PUMA-induced apoptosis in FLS does not require p53. Therefore, approaches to gene therapy that involve increasing PUMA expression could be an effective inducer of synoviocyte cell death in rheumatoid arthritis regardless of the p53 status in the synovium.  相似文献   

11.
OBJECTIVE: To investigate the expression pattern of cell cycle related gene products in active and quiescent Rheumatoid arthritis (RA). METHODS: Synovial tissue from 20 patients with active proliferative RA and 28 patients with RA in remission was immunohistochemically examined for expression of p53, p63, p21, p27, p16, cyclin D1, CDK4, RB, E2F, Ki-67 on tissue microarrays and by DNA flow cytometry for cell cycle phases. RESULTS: Elevated expression of p53 and p27 was found in synovial lining and in stromal cells in proliferative active RA. In the remission stage this finding was confined to the synovial lining. Most of the cells were in the G0-phase. Ki-67 proliferation index was maximum 10% in synovial cells. CONCLUSION: The p53 pathway is activated in synovial cells in active RA as well as in quiescent stage of disease. Differences in the spatial expression pattern of proteins involved in the p53 pathway in RA in remission compared to actively proliferating RA reflect the phasic nature of the disease and support in our opinion the concept of adaptive role of p53 pathway in RA.  相似文献   

12.
Macrophage-like synoviocytes and fibroblast-like synoviocytes (FLS) are known as the most active cells of rheumatoid arthritis (RA) and are close to the articular cartilage in a position enabling them to invade the cartilage. Macrophage-like synoviocytes and FLS expression of matrix metalloproteinases (MMPs) and their interaction has aroused great interest. The present article studied the expression of CD147, also called extracellular matrix metalloproteinase inducer, on monocytes/macrophages and FLS from RA patients and its potential role in enhancing MMPs and the invasiveness of synoviocytes. Expression of CD147 on FLS derived from RA patients and from osteoarthritis patients, and expression of CD147 on monocytes/macrophages from rheumatic synovial fluid and healthy peripheral blood were analyzed by flow cytometry. The levels of CD147, MMP-2 and MMP-9 mRNA in FLS were detected by RT-PCR. The role of CD147 in MMP production and the cells' invasiveness in vitro were studied by the co-culture of FLS with the human THP-1 cell line or monocytes/macrophages, by gel zymography and by invasion assay. The results showed that the expression of CD147 was higher on RA FLS than on osteoarthritis FLS and was higher on monocytes/macrophages from rheumatic synovial fluid than on monocytes/macrophages from healthy peripheral blood. RT-PCR showed that the expressions of CD147, MMP-2 and MMP-9 mRNA was higher in RA FLS than in osteoarthritis FLS. A significantly elevated secretion and activation of MMP-2 and MMP-9 were observed in RA FLS co-cultured with differentiated THP-1 cells or RA synovial monocytes/macrophages, compared with those co-cultured with undifferentiated THP-1 cells or healthy control peripheral blood monocytes. Invasion assays showed an increased number of invading cells in the co-cultured RA FLS with differentiated THP-1 cells or RA synovial monocytes/macrophages. CD147 antagonistic peptide inhibited the MMP production and the invasive potential. Our studies demonstrated that the CD147 overexpression on monocytes/macrophages and FLS in RA patients may be responsible for the enhanced MMP secretion and activation and for the invasiveness of synoviocytes. These findings suggest that CD147 may be one of the important factors in progressive joint destruction of RA and that CD147 may be a potential therapeutic target in RA treatment.  相似文献   

13.
PUMA (p53-upregulated modulator of apoptosis) is a pro-apoptotic gene that can induce rapid cell death through a p53-dependent mechanism. However, the efficacy of PUMA gene therapy to induce synovial apoptosis in rheumatoid arthritis might have limited efficacy if p53 expression or function is deficient. To evaluate this issue, studies were performed to determine whether p53 is required for PUMA-mediated apoptosis in fibroblast-like synoviocytes (FLS). p53 protein was depleted or inhibited in human FLS by using p53 siRNA or a dominant-negative p53 protein. Wild-type and p53-/- murine FLS were also examined to evaluate whether p53 is required. p53-deficient or control FLS were transfected with PUMA cDNA or empty vector. p53 and p21 expression were then determined by Western blot analysis. Apoptosis was assayed by ELISA to measure histone release and caspase-3 activation, or by trypan blue dye exclusion to measure cell viability. Initial studies showed that p53 siRNA decreased p53 expression by more than 98% in human FLS. Loss of p53 increased the growth rate of cells and suppressed p21 expression. However, PUMA still induced apoptosis in control and p53-deficient FLS after PUMA cDNA transfection. Similar results were observed in p53-/- murine FLS or in human FLS transfected with a dominant-negative mutant p53 gene. These data suggest that PUMA-induced apoptosis in FLS does not require p53. Therefore, approaches to gene therapy that involve increasing PUMA expression could be an effective inducer of synoviocyte cell death in rheumatoid arthritis regardless of the p53 status in the synovium.  相似文献   

14.
ObjectivesTNF-like weak inducer of apoptosis (TWEAK), a member of the TNF superfamily, has been shown to increase cytokine production by rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). In this study, we determined the effect of interaction between TWEAK and its receptor fibroblast growth factor-inducible-14 (Fn14) on cytokine expression in RAFLS.MethodsRAFLS were obtained from surgical synovial specimens and used at passage 5–10. Cytokine protein and mRNA expression were measured with ELISA and real time-PCR, respectively. Apoptotic cells were detected by TUNEL assay. RelB activation was detected by Western blot analysis.ResultsTWEAK inhibited IL-6 production from total synovial cells from RA. TWEAK weakly induced FLS IL-6 and IL-8, but in contrast TWEAK dose-dependently inhibited IL-6 and IL-8 production by TNFα-activated FLS. TWEAK did not induce apoptosis in FLS but inhibited proliferation of TNFα-activated FLS. TWEAK induced RelB activation and suppressed IL-6 mRNA expression in TNFα-activated FLS and both of these phenomenon were abolished by inhibition of new protein synthesis with cycloheximide.ConclusionsTWEAK has a previously unsuspected inhibitory effect on cytokine production by TNFα-activated RAFLS. This observation suggests that the effects of TWEAK on cytokine expression varies with the pro-inflammatory context, and that in TNFα-activated states such as RA TWEAK may have a net inhibitory effect.  相似文献   

15.
Rheumatoid arthritis (RA) is an autoimmune disease, pathologically characterized by lymphocyte infiltration of the synovial membrane that leads to chronic inflammation and progressive joint damage. RA develops as a result of increased cell infiltration and cell proliferation as well as impaired cell death. Activated cells in joints including lymphocytes and fibroblast-like synoviocytes (FLS) survive for a long time as a consequence of compromised apoptosis, but the mechanism underlying cell survival in synovium remains to be firmly established. Inhibition of apoptosis by survivin, as a critical antiapoptotic protein, contributes to both the persistence of autoreactive T lymphocytes and tumor-like phenotype of FLS in RA. In addition to the antiapoptotic role, survivin also has prognostic relevance in RA prodromal phase. Hence, this review provides an overview of the current knowledge regarding the involvement of survivin protein in the pathogenesis of RA.  相似文献   

16.
The hallmarks of rheumatoid arthritis (RA) are leukocytic infiltration of the synovium and expansiveness of fibroblast-like synoviocytes (FLS). The abnormal proliferation of FLS and their resistance to apoptosis is mediated, at least in part, by present in RA joints proinflammatory cytokines and growth factors. Because IL-15 exerts properties of antiapoptotic and growth factors, and is produced by RA FLS, we hypothesized that IL-15 participates in RA FLS activation. To test this hypothesis, we first examined whether RA FLS express chains required for high affinity functional IL-15R. Indeed, RA FLS express IL-15Ralpha at mRNA and protein levels. Moreover, we confirmed the presence of IL-2Rbeta and common gamma-chains. Interestingly, TNF-alpha or IL-1beta triggered significant elevation of IL-15Ralpha chain at mRNA and protein levels. Next, we investigated the effects of exogenous or endogenous IL-15 on Bcl-2 and Bcl-x(L) expression, FLS proliferation, and apoptosis. Exogenous IL-15 enhanced RA FLS proliferation and increased the level of mRNA-encoding Bcl-x(L). To test the role of endogenous IL-15 in the activation of RA FLS, an IL-15 mutant/Fcgamma2a protein exerting properties of specific antagonist to the IL-15Ralpha chain was used. We found that blocking IL-15 biological activities using this protein substantially reduced endogenous expression of Bcl-2 and Bcl-x(L), and RA FLS proliferation that was reflected by increased apoptosis. Thus, we have demonstrated that a distinctive phenotype of RA FLS, i.e., persistent activation, proliferation, and resistance to apoptosis, is related to the autocrine activation of IL-15Rs by FLS-derived IL-15.  相似文献   

17.
Expression of vascular cell adhesion molecule-1 (VCAM-1) in synovial tissue was determined using the immunoperoxidase technique. Normal, rheumatoid arthritis (RA), and osteoarthritis (OA) synovia bound VCAM-1 antibodies in the intimal lining as well as blood vessels. The amount of VCAM-1 was significantly greater in the synovial lining of RA and OA tissues compared with normal synovium (p less than 0.002). There was also a trend toward greater levels of VCAM-1 staining in blood vessels of arthritic tissue (RA greater than OA greater than normal). Because VCAM-1 staining was especially intense in the synovial lining, VCAM-1 expression and regulation was studied on cultured fibroblast-like synoviocytes (FLS) derived from this region. Both VCAM-1 and intercellular adhesion molecule 1 were constitutively expressed on FLS. VCAM-1 expression was further increased by exposure to IL-1 beta, TNF-alpha, IL-4, and IFN-gamma. These cytokines (except for IL-4) also induced intercellular adhesion molecule 1 expression on FLS. ELAM was not detected on resting or cytokine-stimulated FLS. The specificity of VCAM-1 for FLS was demonstrated by the fact that only trace amounts were detected on normal and RA dermal fibroblasts. Cytokines induced intercellular adhesion molecule 1 display on dermal fibroblasts but had minimal effect on VCAM-1 expression. Finally, in adherence assays, Jurkat cell binding to resting FLS monolayers was inhibited by antibody to alpha 4/beta 1 integrin (VLA-4), CS-1 peptide from alternatively spliced fibronectin (which is another VLA-4 ligand), and, to a lesser extent, anti-VCAM-1 antibody. After cytokine stimulation of FLS, Jurkat-binding significantly increased, and this increase was blocked by anti-VCAM-1 antibody. Therefore, both CS-1 and VCAM-1 participate in VLA-4-mediated adherence to resting FLS in vitro, and VCAM-1 is responsible for the increase in Jurkat binding mediated by cytokines.  相似文献   

18.
Abnormalities in the p53 tumor suppressor gene have been detected in rheumatoid arthritis (RA) and could contribute to the pathogenesis of chronic disease. To determine whether synoviocytes from invasive synovium in RA have an increased number of mutations compared with non-erosion synoviocytes, p53 cDNA subclones from fibroblast-like synoviocytes (FLS) derived from erosion and non-erosion sites of the same synovium were examined in patients requiring total joint replacement. Ten erosion FLS lines and nine non-erosion FLS lines were established from nine patients with RA. Exons 5-10 from 209 p53 subclones were sequenced (114 from erosion FLS, 95 from non-erosion FLS). Sixty percent of RA FLS cell lines and 8.6% of the p53 subclones isolated from FLS contained p53 mutations. No significant differences were observed between the erosion and non-erosion FLS with regard to the frequency or type of p53 mutation. The majority of the mutations were missense transition mutations, which are characteristic of oxidative damage. In addition, paired intact RA synovium and cultured FLS from the same joints were evaluated for p53 mutations. Matched synovium and cultured synoviocytes contained p53 mutations, although there was no overlap in the specific mutations identified in the paired samples. Clusters of p53 mutations in subclones were detected in some FLS, including one in codon 249, which is a well-recognized 'hot spot' associated with cancer. Our data are consistent with the hypothesis that p53 mutations are randomly induced by genotoxic exposure in small numbers of RA synoviocytes localized to erosion and non-erosion regions of RA synovium. The determining factor for invasiveness might be proximity to bone or cartilage rather than the presence of a p53 mutation.  相似文献   

19.
Cysteine-rich protein 61 (Cyr61)/CCN1 is a product of an immediate early gene and functions in mediating cell adhesion and inducing cell migration. We previously showed that increased production of Cyr61 by fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA) promotes FLS proliferation and participates in RA pathogenesis with the IL-17-dependent pathway. However, whether Cyr61 in turn regulates Th17 cell differentiation and further enhances inflammation of RA remained unknown. In the current study, we explored the potential role of Cyr61 as a proinflammatory factor in RA pathogenesis. We found that Cyr61 treatment dramatically induced IL-6 production in FLS isolated from RA patients. Moreover, IL-6 production was attenuated by Cyr61 knockdown in FLS. Mechanistically, we showed that Cyr61 activated IL-6 production via the αvβ5/Akt/NF-κB signaling pathway. Further, using a coculture system consisting of purified CD4(+) T cells and RA FLS, we found that RA FLS stimulated Th17 differentiation, and the pro-Th17 differentiation effect of RA FLS can be attenuated or stimulated by Cyr61 RNA interference or addition of exogenous Cyr61, respectively. Finally, using the collagen-induced arthritis animal model, we showed that treatment with the anti-Cyr61 mAb led to reduction of IL-6 levels, decrease of Th17 response, and attenuation of inflammation and disease progression in vivo. Taken together, our results reveal a novel role of Cyr61 in promoting Th17 development in RA via upregulation of IL-6 production by FLS, thus adding a new layer into the functional interplay between FLS and Th17 in RA pathogenesis. Our study also suggests that targeting of Cyr61 may represent a novel strategy in RA treatment.  相似文献   

20.
Our previous reports revealed that calpain has proteoglycanase activity and exists in synovial fluid in osteoarthritis and rheumatoid arthritis. We examined the effects of cytokines on expression of the calpain-calpastatin system in fibroblastic synoviocytes (FLS). Primary cultures of human FLS from osteoarthritis (OA) and rheumatoid arthritis (RA) patients were stimulated with inflammatory cytokines and the amounts of m-calpain and calpastatin mRNAs expressed were determined by Northern blotting. Northern blots were subjected to computerized densitometer and band intensities were determined. Interleukin-1 (IL-1) down-regulated m-calpain and tissue-type calpastatin mRNA expression in OA and RA FLS. In RA FLS, although IL-6 did not alter m-calpain mRNA expression, IL-1 + tumor necrosis factor (TNF) and IL-1 + transforming growth factor (TGF) down-regulated m-calpain mRNA expression. These results provide new information about the effects of inflammatory cytokines on calpain and calpastatin system in OA and RA pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号