首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Systems biology approaches can reveal intermediary levels of organization between genotype and phenotype that often underlie biological phenomena such as polygenic effects and protein dispensability. An important conceptualization is the module, which is loosely defined as a cohort of proteins that perform a dedicated cellular task. Based on a computational analysis of limited interaction datasets in the budding yeast Saccharomyces cerevisiae, it has been suggested that the global protein interaction network is segregated such that highly connected proteins, called hubs, tend not to link to each other. Moreover, it has been suggested that hubs fall into two distinct classes: "party" hubs are co-expressed and co-localized with their partners, whereas "date" hubs interact with incoherently expressed and diversely localized partners, and thereby cohere disparate parts of the global network. This structure may be compared with altocumulus clouds, i.e., cotton ball-like structures sparsely connected by thin wisps. However, this organization might reflect a small and/or biased sample set of interactions. In a multi-validated high-confidence (HC) interaction network, assembled from all extant S. cerevisiae interaction data, including recently available proteome-wide interaction data and a large set of reliable literature-derived interactions, we find that hub-hub interactions are not suppressed. In fact, the number of interactions a hub has with other hubs is a good predictor of whether a hub protein is essential or not. We find that date hubs are neither required for network tolerance to node deletion, nor do date hubs have distinct biological attributes compared to other hubs. Date and party hubs do not, for example, evolve at different rates. Our analysis suggests that the organization of global protein interaction network is highly interconnected and hence interdependent, more like the continuous dense aggregations of stratus clouds than the segregated configuration of altocumulus clouds. If the network is configured in a stratus format, cross-talk between proteins is potentially a major source of noise. In turn, control of the activity of the most highly connected proteins may be vital. Indeed, we find that a fluctuation in steady-state levels of the most connected proteins is minimized.  相似文献   

2.
The characterization of protein interactions is essential for understanding biological systems. While genome-scale methods are available for identifying interacting proteins, they do not pinpoint the interacting motifs (e.g., a domain, sequence segments, a binding site, or a set of residues). Here, we develop and apply a method for delineating the interacting motifs of hub proteins (i.e., highly connected proteins). The method relies on the observation that proteins with common interaction partners tend to interact with these partners through a common interacting motif. The sole input for the method are binary protein interactions; neither sequence nor structure information is needed. The approach is evaluated by comparing the inferred interacting motifs with domain families defined for 368 proteins in the Structural Classification of Proteins (SCOP). The positive predictive value of the method for detecting proteins with common SCOP families is 75% at sensitivity of 10%. Most of the inferred interacting motifs were significantly associated with sequence patterns, which could be responsible for the common interactions. We find that yeast hubs with multiple interacting motifs are more likely to be essential than hubs with one or two interacting motifs, thus rationalizing the previously observed correlation between essentiality and the number of interacting partners of a protein. We also find that yeast hubs with multiple interacting motifs evolve slower than the average protein, contrary to the hubs with one or two interacting motifs. The proposed method will help us discover unknown interacting motifs and provide biological insights about protein hubs and their roles in interaction networks.  相似文献   

3.
A number of interesting issues have been addressed on biological networks about their global and local properties. The connection between the topological properties of proteins in Protein–Protein Interaction (PPI) networks and their biological relevance has been investigated focusing on hubs, i.e. proteins with a large number of interacting partners. We will survey the literature trying to answer the following questions: Do hub proteins have special biological properties? Do they tend to be more essential than non-hub proteins? Are they more evolutionarily conserved? Do they play a central role in modular organization of the protein interaction network? Are there structural properties that characterize hub proteins?  相似文献   

4.
5.
The availability of large-scale protein-protein interaction networks for numerous organisms provides an opportunity to comprehensively analyze whether simple properties of proteins are predictive of the roles they play in the functional organization of the cell. We begin by re-examining an influential but controversial characterization of the dynamic modularity of the S. cerevisiae interactome that incorporated gene expression data into network analysis. We analyse the protein-protein interaction networks of five organisms, S. cerevisiae, H. sapiens, D. melanogaster, A. thaliana, and E. coli, and confirm significant and consistent functional and structural differences between hub proteins that are co-expressed with their interacting partners and those that are not, and support the view that the former tend to be intramodular whereas the latter tend to be intermodular. However, we also demonstrate that in each of these organisms, simple topological measures are significantly correlated with the average co-expression of a hub with its partners, independent of any classification, and therefore also reflect protein intra- and inter- modularity. Further, cross-interactomic analysis demonstrates that these simple topological characteristics of hub proteins tend to be conserved across organisms. Overall, we give evidence that purely topological features of static interaction networks reflect aspects of the dynamics and modularity of interactomes as well as previous measures incorporating expression data, and are a powerful means for understanding the dynamic roles of hubs in interactomes.  相似文献   

6.
7.
It has been claimed that proteins with more interaction partners (hubs) are both physiologically more important (i.e., less dispensable) and, owing to an assumed high density of binding sites, slow evolving. Not all analyses, however, support these results, probably because of biased and less-than reliable global protein interaction data. Here we provide the first examination of these issues using a comprehensive literature-curated dataset of well-substantiated protein interactions in Saccharomyces cerevisiae. Whereas use of less reliable yeast two-hybrid data alone can reject the possibility that local connectivity correlates with measures of dispensability, in higher quality datasets a relatively robust correlation is observed. In contrast, local connectivity does not correlate with the rate of protein evolution even in reliable datasets. This perhaps surprising lack of correlation with evolutionary rate appears in part to arise from the fact that hub proteins do not have a higher density of residues associated with binding. However, hub proteins do have at least one other set of unusual features, namely rapid turnover and regulation, as manifest in high mRNA decay rates and a large number of phosphorylation sites. This, we suggest, is an adaptation to minimize unwanted activation of pathways that might be mediated by adventitious binding to hubs, were they to actively persist longer than required at any given time point. We conclude that hub proteins are more important for cellular growth rate and under tight regulation but are not slow evolving.  相似文献   

8.
9.
Hub proteins are proteins that maintain promiscuous molecular recognition. Because they are reported to play essential roles in cellular control, there has been a special interest in the study of their structural and functional properties, yet the mechanisms by which they evolve to maintain functional interactions are poorly understood. By combining biophysical simulations of coarse-grained proteins and analysis of proteins-complex crystallographic structures, we seek to elucidate those mechanisms. We focus on two types of hub proteins: Multi hubs, which interact with their partners through different interfaces, and Singlish hubs, which do so through a single interface. We show that loss of structural stability is required for the evolution of protein-protein-interaction (PPI) networks, and it is more profound in Singlish hub systems. In addition, different ratios of hydrophobic to electrostatic interfacial amino acids are shown to support distinct network topologies (i.e., Singlish and Multi systems), and therefore underlie a fundamental design principle of PPI in a crowded environment. We argue that the physical nature of hydrophobic and electrostatic interactions, in particular, their favoring of either same-type interactions (hydrophobic-hydrophobic), or opposite-type interactions (negatively-positively charged) plays a key role in maintaining the network topology while allowing the protein amino acid sequence to evolve.  相似文献   

10.
Hub proteins are proteins that maintain promiscuous molecular recognition. Because they are reported to play essential roles in cellular control, there has been a special interest in the study of their structural and functional properties, yet the mechanisms by which they evolve to maintain functional interactions are poorly understood. By combining biophysical simulations of coarse-grained proteins and analysis of proteins-complex crystallographic structures, we seek to elucidate those mechanisms. We focus on two types of hub proteins: Multi hubs, which interact with their partners through different interfaces, and Singlish hubs, which do so through a single interface. We show that loss of structural stability is required for the evolution of protein-protein-interaction (PPI) networks, and it is more profound in Singlish hub systems. In addition, different ratios of hydrophobic to electrostatic interfacial amino acids are shown to support distinct network topologies (i.e., Singlish and Multi systems), and therefore underlie a fundamental design principle of PPI in a crowded environment. We argue that the physical nature of hydrophobic and electrostatic interactions, in particular, their favoring of either same-type interactions (hydrophobic-hydrophobic), or opposite-type interactions (negatively-positively charged) plays a key role in maintaining the network topology while allowing the protein amino acid sequence to evolve.  相似文献   

11.
Duplications of genes encoding highly connected and essential proteins are selected against in several species but not in human, where duplicated genes encode highly connected proteins. To understand when and how gene duplicability changed in evolution, we compare gene and network properties in four species (Escherichia coli, yeast, fly, and human) that are representative of the increase in evolutionary complexity, defined as progressive growth in the number of genes, cells, and cell types. We find that the origin and conservation of a gene significantly correlates with the properties of the encoded protein in the protein-protein interaction network. All four species preserve a core of singleton and central hubs that originated early in evolution, are highly conserved, and accomplish basic biological functions. Another group of hubs appeared in metazoans and duplicated in vertebrates, mostly through vertebrate-specific whole genome duplication. Such recent and duplicated hubs are frequently targets of microRNAs and show tissue-selective expression, suggesting that these are alternative mechanisms to control their dosage. Our study shows how networks modified during evolution and contributes to explaining the occurrence of somatic genetic diseases, such as cancer, in terms of network perturbations.  相似文献   

12.
The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.  相似文献   

13.
14.
Why do hubs tend to be essential in protein networks?   总被引:1,自引:0,他引:1       下载免费PDF全文
He X  Zhang J 《PLoS genetics》2006,2(6):e88
The protein–protein interaction (PPI) network has a small number of highly connected protein nodes (known as hubs) and many poorly connected nodes. Genome-wide studies show that deletion of a hub protein is more likely to be lethal than deletion of a non-hub protein, a phenomenon known as the centrality-lethality rule. This rule is widely believed to reflect the special importance of hubs in organizing the network, which in turn suggests the biological significance of network architectures, a key notion of systems biology. Despite the popularity of this explanation, the underlying cause of the centrality-lethality rule has never been critically examined. We here propose the concept of essential PPIs, which are PPIs that are indispensable for the survival or reproduction of an organism. Our network analysis suggests that the centrality-lethality rule is unrelated to the network architecture, but is explained by the simple fact that hubs have large numbers of PPIs, therefore high probabilities of engaging in essential PPIs. We estimate that ~ 3% of PPIs are essential in the yeast, accounting for ~ 43% of essential genes. As expected, essential PPIs are evolutionarily more conserved than nonessential PPIs. Considering the role of essential PPIs in determining gene essentiality, we find the yeast PPI network functionally more robust than random networks, yet far less robust than the potential optimum. These and other findings provide new perspectives on the biological relevance of network structure and robustness.  相似文献   

15.
Although there is increasing evidence that eukaryotic gene order is not always random, there is no evidence that putatively favourable gene arrangements are preserved by selection more than expected by chance. In yeast (Saccharomyces cerevisiae), for example, co-expressed genes tend to be linked, but whether such gene pairs tend to remain linked more often than expected under null neutral expectations is not known. We show using gene pairs in the S. cerevisiaeCandida albicans comparison that highly co-expressed gene pairs are conserved as pairs at about twice the average rate. However, co-expressed genes also tend to be in close physical proximity and, as expected from a null neutral model, genes (be they co-expressed or not) that are physically close together tend to be retained more often. This physical proximity, however, only accounts for a small proportion of the enhanced degree of conservation of co-expressed gene pairs. These results demonstrate that purely neutralist models of gene order evolution are not realistic.  相似文献   

16.
Jin G  Zhang S  Zhang XS  Chen L 《PloS one》2007,2(11):e1207

Background

It has been recognized that modular organization pervades biological complexity. Based on network analysis, ‘party hubs’ and ‘date hubs’ were proposed to understand the basic principle of module organization of biomolecular networks. However, recent study on hubs has suggested that there is no clear evidence for coexistence of ‘party hubs’ and ‘date hubs’. Thus, an open question has been raised as to whether or not ‘party hubs’ and ‘date hubs’ truly exist in yeast interactome.

Methodology

In contrast to previous studies focusing on the partners of a hub or the individual proteins around the hub, our work aims to study the network motifs of a hub or interactions among individual proteins including the hub and its neighbors. Depending on the relationship between a hub''s network motifs and protein complexes, we define two new types of hubs, ‘motif party hubs’ and ‘motif date hubs’, which have the same characteristics as the original ‘party hubs’ and ‘date hubs’ respectively. The network motifs of these two types of hubs display significantly different features in spatial distribution (or cellular localizations), co-expression in microarray data, controlling topological structure of network, and organizing modularity.

Conclusion

By virtue of network motifs, we basically solved the open question about ‘party hubs’ and ‘date hubs’ which was raised by previous studies. Specifically, at the level of network motifs instead of individual proteins, we found two types of hubs, motif party hubs (mPHs) and motif date hubs (mDHs), whose network motifs display distinct characteristics on biological functions. In addition, in this paper we studied network motifs from a different viewpoint. That is, we show that a network motif should not be merely considered as an interaction pattern but be considered as an essential function unit in organizing modules of networks.  相似文献   

17.
Date hub proteins have 1 or 2 interaction interfaces but many interaction partners. This raises the question of whether all partner proteins compete for the interaction interface of the hub or if the cell carefully regulates aspects of this process? Here, we have used real-time rendering of protein interaction networks to analyse the interactions of all the 1 or 2 interface hubs of Saccharomyces cerevisiae during the cell cycle. By integrating previously determined structural and gene expression data, and visually hiding the nodes (proteins) and their edges (interactions) during their troughs of expression, we predict when interactions of hubs and their partners are likely to exist. This revealed that 20 out of all 36 one- or two- interface hubs in the yeast interactome fell within two main groups. The first was dynamic hubs with static partners, which can be considered as ‘competitive hubs’. Their interaction partners will compete for the interaction interface of the hub and the success of any interaction will be dictated by the kinetics of interaction (abundance and affinity) and subcellular localisation. The second was static hubs with dynamic partners, which we term ‘non-competitive hubs’. Regulatory mechanisms are finely tuned to lessen the presence and/or effects of competition between the interaction partners of the hub. It is possible that these regulatory processes may also be used by the cell for the regulation of other, non-cell cycle processes.  相似文献   

18.

Background

Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH) with one or two binding sites, or multiple-interface hubs (MIH) with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations) or party hubs (i.e., simultaneously interact with multiple partners).

Methodology

Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB) protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.

Conclusions

Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.

Availability

We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.  相似文献   

19.
Integrating gene expression into protein-protein interaction network (PPIN) leads to the construction of tissue-specific (TS) and housekeeping (HK) sub-networks, with distinctive TS- and HK-hubs. All such hub proteins are divided into multi-interface (MI) hubs and single-interface (SI) hubs, where MI hubs evolve slower than SI hubs. Here we explored the evolutionary rate difference between MI and SI proteins within TS- and HK-PPIN and observed that this difference is present only in TS, but not in HK-class. Next, we explored whether proteins' own properties or its partners' properties are more influential in such evolutionary discrepancy. Statistical analyses revealed that this evolutionary rate correlates negatively with protein's own properties like expression level, miRNA count, conformational diversity and functional properties and with its partners' properties like protein disorder and tissue expression similarity. Moreover, partial correlation and regression analysis revealed that both proteins' and its partners' properties have independent effects on protein evolutionary rate.  相似文献   

20.
The centrality-lethality rule, which notes that high-degree nodes in a protein interaction network tend to correspond to proteins that are essential, suggests that the topological prominence of a protein in a protein interaction network may be a good predictor of its biological importance. Even though the correlation between degree and essentiality was confirmed by many independent studies, the reason for this correlation remains illusive. Several hypotheses about putative connections between essentiality of hubs and the topology of protein-protein interaction networks have been proposed, but as we demonstrate, these explanations are not supported by the properties of protein interaction networks. To identify the main topological determinant of essentiality and to provide a biological explanation for the connection between the network topology and essentiality, we performed a rigorous analysis of six variants of the genomewide protein interaction network for Saccharomyces cerevisiae obtained using different techniques. We demonstrated that the majority of hubs are essential due to their involvement in Essential Complex Biological Modules, a group of densely connected proteins with shared biological function that are enriched in essential proteins. Moreover, we rejected two previously proposed explanations for the centrality-lethality rule, one relating the essentiality of hubs to their role in the overall network connectivity and another relying on the recently published essential protein interactions model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号