首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The choreography of restriction endonuclease catalysis is a long-standing paradigm in molecular biology. Bivalent metal ions are required almost for all PD..D/ExK type enzymes, but the number of cofactors essential for the DNA backbone scission remained ambiguous. On the basis of crystal structures and biochemical data for various restriction enzymes, three models have been developed that assign critical roles for one, two, or three metal ions during the phosphodiester hydrolysis. To resolve this apparent controversy, we investigated the mechanism of BamHI catalysis using quantum mechanical/molecular mechanical simulation techniques and determined the activation barriers of three possible pathways that involve a Glu-113 or a neighboring water molecule as a general base or an external nucleophile that penetrated from bulk solution. The extrinsic mechanism was found to be the most favorable with an activation free energy of 23.4 kcal/mol, in reasonable agreement with the experimental data. On the basis of the effect of the individual metal ions on the activation barrier, metal ion A was concluded to be pivotal for the reaction, while the enzyme lacking metal ion B still has moderate efficiency. Thus, we propose that the catalytic scheme of BamHI does not involve a general base for nucleophile generation and requires one obligatory metal ion for catalysis that stabilizes the attacking nucleophile and coordinates it throughout the nucleophilic attack. Such a model may also explain the variation in the number of metal ions in the crystal structures and thus could serve as a framework for a unified catalytic scheme of type II restriction endonucleases.  相似文献   

2.
The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.  相似文献   

3.
M D Sam  J J Perona 《Biochemistry》1999,38(20):6576-6586
The rate constant for the phosphoryl transfer step in site-specific DNA cleavage by EcoRV endonuclease has been determined as a function of pH and identity of the required divalent metal ion cofactor, for both wild-type and T93A mutant enzymes. These measurements show bell-shaped pH-rate curves for each enzyme in the presence of Mg2+ as a cofactor, indicating general base catalysis for the nucleophilic attack of hydroxide ion on the scissile phosphate, and general acid catalysis for protonation of the leaving 3'-O anion. The kinetic data support a model for phosphoryl transfer based on wild-type and T93A cocrystal structures, in which the ionizations of two distinct metal-ligated waters respectively generate the attacking hydroxide ion and the proton for donation to the leaving group. The model concurs with recent observations of two metal ions bound in the active sites of the type II restriction endonucleases BamHI and BglI, suggesting the possibility of a similar catalytic mechanism functioning in many or all members of this enzyme family.  相似文献   

4.
EcoO109I is a type II restriction endonuclease that recognizes the DNA sequence of RGGNCCY. Here we describe the crystal structures of EcoO109I and its complex with DNA. A comparison of the two structures shows that the catalytic domain moves drastically to capture the DNA. One metal ion and two water molecules are observed near the active site of the DNA complex. The metal ion is a Lewis acid that stabilizes the pentavalent phosphorus atom in the transition state. One water molecule, activated by Lys-126, attacks the phosphorus atom in an S(N)2 mechanism, whereas the other water interacts with the 3'-leaving oxygen to donate a proton to the oxygen. EcoO109I is similar to EcoRI family enzymes in terms of its DNA cleavage pattern and folding topology of the common motif in the catalytic domain, but it differs in the manner of DNA recognition. Our findings propose a novel classification of the type II restriction endonucleases and lead to the suggestion that EcoO109I represents a new subclass of the EcoRI family.  相似文献   

5.
Flap endonucleases (FENs) have essential roles in DNA processing. They catalyze exonucleolytic and structure-specific endonucleolytic DNA cleavage reactions. Divalent metal ions are essential cofactors in both reactions. The crystal structure of FEN shows that the protein has two conserved metal-binding sites. Mutations in site I caused complete loss of catalytic activity. Mutation of crucial aspartates in site II abolished exonuclease action, but caused enzymes to retain structure-specific (flap endonuclease) activity. Isothermal titration calorimetry revealed that site I has a 30-fold higher affinity for cofactor than site II. Structure-specific endonuclease activity requires binding of a single metal ion in the high-affinity site, whereas exonuclease activity requires that both the high- and low-affinity sites be occupied by divalent cofactor. The data suggest that a novel two-metal mechanism operates in the FEN-catalyzed exonucleolytic reaction. These results raise the possibility that local concentrations of free cofactor could influence the endo- or exonucleolytic pathway in vivo.  相似文献   

6.
7.
Type II restriction enzymes generally recognize continuous sequences of 4-8 consecutive base pairs on DNA, but some recognize discontinuous sites where the specified sequence is interrupted by a defined length of nonspecific DNA. To date, a mechanism has been established for only one type II endonuclease with a discontinuous site, SfiI at GGCCNNNNNGGCC (where N is any base). In contrast to orthodox enzymes such as EcoRV, dimeric proteins that act at a single site, SfiI is a tetramer that interacts with two sites before cleaving DNA. BglI has a similar recognition sequence (GCCNNNNNGGC) to SfiI but a crystal structure like EcoRV. BglI and several other endonucleases with discontinuous sites were examined to see if they need two sites for their DNA cleavage reactions. The enzymes included some with sites containing lengthy segments of nonspecific DNA, such as XcmI (CCANNNNNNNNNTGG). In all cases, they acted at individual sites. Elongated recognition sites do not necessitate unusual reaction mechanisms. Other experiments on BglI showed that it bound to and cleaved DNA in the same manner as EcoRV, thus further delineating a distinct group of restriction enzymes with similar structures and a common reaction mechanism.  相似文献   

8.
Homing endonucleases, like restriction enzymes, cleave double-stranded DNA at specific target sites. The cleavage mechanism(s) utilized by LAGLIDADG endonucleases have been difficult to elucidate; their active sites are divergent, and only one low resolution cocrystal structure has been determined. Here we report two high resolution structures of the dimeric I-CreI homing endonuclease bound to DNA: a substrate complex with calcium and a product complex with magnesium. The bound metals in both complexes are verified by manganese anomalous difference maps. The active sites are positioned close together to facilitate cleavage across the DNA minor groove; each contains one metal ion bound between a conserved aspartate (Asp 20) and a single scissile phosphate. A third metal ion bridges the two active sites. This divalent cation is bound between aspartate residues from the active site of each subunit and is in simultaneous contact with the scissile phosphates of both DNA strands. A metal-bound water molecule acts as the nucleophile and is part of an extensive network of ordered water molecules that are positioned by enzyme side chains. These structures illustrate a unique variant of a two-metal endonuclease mechanism is employed by the highly divergent LAGLIDADG enzyme family.  相似文献   

9.
More than 3000 type II restriction endonucleases have been discovered. They recognize short, usually palindromic, sequences of 4-8 bp and, in the presence of Mg(2+), cleave the DNA within or in close proximity to the recognition sequence. The orthodox type II enzymes are homodimers which recognize palindromic sites. Depending on particular features subtypes are classified. All structures of restriction enzymes show a common structural core comprising four beta-strands and one alpha-helix. Furthermore, two families of enzymes can be distinguished which are structurally very similar (EcoRI-like enzymes and EcoRV-like enzymes). Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone. In contrast, specific binding is characterized by an intimate interplay between direct (interaction with the bases) and indirect (interaction with the backbone) readout. Typically approximately 15-20 hydrogen bonds are formed between a dimeric restriction enzyme and the bases of the recognition sequence, in addition to numerous van der Waals contacts to the bases and hydrogen bonds to the backbone, which may also be water mediated. The recognition process triggers large conformational changes of the enzyme and the DNA, which lead to the activation of the catalytic centers. In many restriction enzymes the catalytic centers, one in each subunit, are represented by the PD. D/EXK motif, in which the two carboxylates are responsible for Mg(2+) binding, the essential cofactor for the great majority of enzymes. The precise mechanism of cleavage has not yet been established for any enzyme, the main uncertainty concerns the number of Mg(2+) ions directly involved in cleavage. Cleavage in the two strands usually occurs in a concerted fashion and leads to inversion of configuration at the phosphorus. The products of the reaction are DNA fragments with a 3'-OH and a 5'-phosphate.  相似文献   

10.
Divalent cations can provide an effective means of modulating the behavior of nucleic acid binding proteins. As a result, there is strong interest in understanding the role of metal ions in the function of both nucleic acid binding proteins and their enzymes. We have applied complementary fluorescence spectroscopic and nitrocellulose filter binding assays to quantitate the role of metal ions in mediating DNA binding and sequence specificity by the representative PvuII endonuclease. At pH 7.5 in the presence of the catalytically nonsupportive Ca(II), this enzyme binds the PvuII target sequence with a K(d) of 50 pM. Under strict metal-free conditions, the enzyme exhibits a K(d) of only 300 nM for the cognate sequence, an affinity which is weak relative to those measured for other systems in the absence of metal ions. This represents a 6000-fold increase in PvuII affinity for cognate DNA upon the addition of Ca(II). The pH dependences of both metal ion-dependent and metal ion-independent DNA binding are remarkably shallow throughout the physiological range; other characterized restriction enzymes exhibit more pronounced pH dependences of DNA binding even in the absence of metal ions. Similar measurements with noncognate sequences indicate that divalent metal ions are not important to nonspecific DNA binding; K(d) values are approximately equal to 200 nM throughout the physiological pH range, a behavior shared with other endonucleases. While some of these results extend somewhat the range of expected behavior for restriction enzymes, these results indicate that PvuII endonuclease shares with other characterized systems a mechanism by which cognate affinity and sequence discrimination are most effectively achieved in the presence of divalent metal ions.  相似文献   

11.
We have determined the crystal structure of the PvuII endonuclease in the presence of Mg(2+). According to the structural data, divalent metal ion binding in the PvuII subunits is highly asymmetric. The PvuII-Mg(2+) complex has two distinct metal ion binding sites, one in each monomer. One site is formed by the catalytic residues Asp58 and Glu68, and has extensive similarities to a catalytically important site found in all structurally examined restriction endonucleases. The other binding site is located in the other monomer, in the immediate vicinity of the hydroxyl group of Tyr94; it has no analogy to metal ion binding sites found so far in restriction endonucleases. To assign the number of metal ions involved and to better understand the role of Mg(2+) binding to Tyr94 for the function of PvuII, we have exchanged Tyr94 by Phe and characterized the metal ion dependence of DNA cleavage of wild-type PvuII and the Y94F variant. Wild-type PvuII cleaves both strands of the DNA in a concerted reaction. Mg(2+) binding, as measured by the Mg(2+) dependence of DNA cleavage, occurs with a Hill coefficient of 4, meaning that at least two metal ions are bound to each subunit in a cooperative fashion upon formation of the active complex. Quenched-flow experiments show that DNA cleavage occurs about tenfold faster if Mg(2+) is pre-incubated with enzyme or DNA than if preformed enzyme-DNA complexes are mixed with Mg(2+). These results show that Mg(2+) cannot easily enter the active center of the preformed enzyme-DNA complex, but that for fast cleavage the metal ions must already be bound to the apoenzyme and carried with the enzyme into the enzyme-DNA complex. The Y94F variant, in contrast to wild-type PvuII, does not cleave DNA in a concerted manner and metal ion binding occurs with a Hill coefficient of 1. These results indicate that removal of the Mg(2+) binding site at Tyr94 completely disrupts the cooperativity in DNA cleavage. Moreover, in quenched-flow experiments Y94F cleaves DNA about ten times more slowly than wild-type PvuII, regardless of the order of mixing. From these results we conclude that wild-type PvuII cleaves DNA in a fast and concerted reaction, because the Mg(2+) required for catalysis are already bound at the enzyme, one of them at Tyr94. We suggest that this Mg(2+) is shifted to the active center during binding of a specific DNA substrate. These results, for the first time, shed light on the pathway by which metal ions as essential cofactors enter the catalytic center of restriction endonucleases.  相似文献   

12.
Controversy surrounds the metal-dependent mechanism of H-N-H endonucleases, enzymes involved in a variety of biological functions, including intron homing and DNA repair. To address this issue we determined the crystal structures for complexes of the H-N-H motif containing bacterial toxin colicin E9 with Zn(2+), Zn(2+).DNA, and Mg(2+).DNA. The structures show that the rigid V-shaped architecture of the active site does not undergo any major conformational changes on binding to the minor groove of DNA and that the same interactions are made to the nucleic acid regardless of which metal ion is bound to the enzyme. The scissile phosphate contacts the single metal ion of the motif through distortion of the DNA brought about by the insertion of the Arg-96-Glu-100 salt bridge into the minor groove and a network of contacts to the DNA phosphate backbone that straddle the metal site. The Mg(2+)-bound structure reveals an unusual coordination scheme involving two H-N-H histidine residues, His-102 and His-127. The mechanism of DNA cleavage is likely related to that of other single metal ion-dependent endonucleases, such as I-PpoI and Vvn, although in these enzymes the single alkaline earth metal ion is coordinated by oxygen-bearing amino acids. The structures also provide a rationale as to why H-N-H endonucleases are inactive in the presence of Zn(2+) but active with other transition metal ions such as Ni(2+). This is because of coordination of the Zn(2+) ion through a third histidine, His-131. "Active" transition metal ions are those that bind more weakly to the H-N-H motif because of the disengagement of His-131, which we suggest allows a water molecule to complete the catalytic cycle.  相似文献   

13.
The LAGLIDADG homing endonucleases include free-standing homodimers, pseudosymmetric monomers, and related enzyme domains embedded within inteins. DNA-bound structures of homodimeric I-CreI and monomeric I-SceI indicate that three catalytic divalent metal ions are distributed across a pair of overlapping active sites, with one shared metal participating in both strand cleavage reactions. These structures differ in the precise position and binding interactions of the metals. We have studied the metal dependence for the I-CreI homodimer using site-directed mutagenesis of active site residues and assays of binding affinity and cleavage activity. We have also reassessed the binding of a nonactivating metal ion (calcium) in the wild-type enzyme-substrate complex, and determined the DNA-bound structure of two inactive enzyme mutants. The conclusion of these studies is that the catalytic mechanism of symmetric LAGLIDADG homing endonucleases, and probably many of their monomeric cousins, involves a canonical two-metal mechanism in each of two active sites, which are chemically and structurally tethered to one another by a shared metal ion. Failure to occupy the shared metal site, as observed in the presence of calcium or when the metal-binding side chain from the LAGLIDADG motif (Asp 20) is mutated to asparagine, prevents cleavage by the enzyme.  相似文献   

14.
Escherichia coli Exonuclease IX (ExoIX), encoded by the xni gene, was the first identified member of a novel subfamily of ubiquitous flap endonucleases (FENs), which possess only one of the two catalytic metal-binding sites characteristic of other FENs. We have solved the first structure of one of these enzymes, that of ExoIX itself, at high resolution in DNA-bound and DNA-free forms. In the enzyme–DNA cocrystal, the single catalytic site binds two magnesium ions. The structures also reveal a binding site in the C-terminal domain where a potassium ion is directly coordinated by five main chain carbonyl groups, and we show this site is essential for DNA binding. This site resembles structurally and functionally the potassium sites in the human FEN1 and exonuclease 1 enzymes. Fluorescence anisotropy measurements and the crystal structures of the ExoIX:DNA complexes show that this potassium ion interacts directly with a phosphate diester in the substrate DNA.  相似文献   

15.
We present here the first detailed biochemical analysis of an archaeal restriction enzyme. PspGI shows sequence similarity to SsoII, EcoRII, NgoMIV and Cfr10I, which recognize related DNA sequences. We demonstrate here that PspGI, like SsoII and unlike EcoRII or NgoMIV and Cfr10I, interacts with and cleaves DNA as a homodimer and is not stimulated by simultaneous binding to two recognition sites. PspGI and SsoII differ in their basic biochemical properties, viz. stability against chemical denaturation and proteolytic digestion, DNA binding and the pH, MgCl(2) and salt-dependence of their DNA cleavage activity. In contrast, the results of mutational analyses and cross-link experiments show that PspGI and SsoII have a very similar DNA binding site and catalytic center as NgoMIV and Cfr10I (whose crystal structures are known), and presumably also as EcoRII, in spite of the fact that these enzymes, which all recognize variants of the sequence -/CC-GG- (/ denotes the site of cleavage), are representatives of different subgroups of type II restriction endonucleases. A sequence comparison of all known restriction endonuclease sequences, furthermore, suggests that several enzymes recognizing other DNA sequences also share amino acid sequence similarities with PspGI, SsoII and EcoRII in the region of the presumptive active site. These results are discussed in an evolutionary context.  相似文献   

16.
T7 endonuclease I is a nuclease that is selective for the structure of the four-way DNA junction. The active site is similar to those of a number of restriction enzymes. We have solved the crystal structure of endonuclease I with a wild-type active site. Diffusion of manganese ions into the crystal revealed two peaks of electron density per active site, defining two metal ion-binding sites. Site 1 is fully occupied, and the manganese ion is coordinated by the carboxylate groups of Asp55 and Glu65, and the main chain carbonyl of Thr66. Site 2 is partially occupied, and the metal ion has a single protein ligand, the remaining carboxylate oxygen atom of Asp55. Isothermal titration calorimetry showed the sequential exothermic binding of two manganese ions in solution, with dissociation constants of 0.58 +/- 0.019 and 14 +/- 1.5 mM. These results are consistent with a two metal ion mechanism for the cleavage reaction, in which the hydrolytic water molecule is contained in the first coordination sphere of the site 1-bound metal ion.  相似文献   

17.
Type II restriction endonucleases recognize 4-8 base-pair-long DNA sequences and catalyze their cleavage with remarkable specificity. Crystal structures of the PD-(DE)XK superfamily revealed a common alpha/beta core motif and similar active site. In contrast, these enzymes show little sequence similarity and use different strategies to interact with their substrate DNA. The intriguing question is whether this enzyme family could have evolved from a common origin. In our present work, protein structure stability elements were analyzed and compared in three parts of PD-(DE)XK type II restriction endonucleases: (1) core motif, (2) active-site residues, and (3) residues playing role in DNA recognition. High correlation was found between the active-site residues and those stabilization factors that contribute to preventing structural decay. DNA recognition sites were also observed to participate in stabilization centers. It indicates that recognition motifs and active sites in PD-(DE)XK type II restriction endonucleases should have been evolutionary more conserved than other parts of the structure. Based on this observation it is proposed that PD-(DE)XK type II restriction endonucleases have developed from a common ancestor with divergent evolution.  相似文献   

18.
The mechanistic details of metallonuclease reactions, typically supported by Mg(II), have a long and contentious history. Two-metal ion mechanisms have enjoyed much favor, based largely in the multitude of X-ray crystal structures of these enzymes with more than one metal ion per active site. Most recently, this mechanism has come under challenge. Reviewed herein are the applications of different experimental strategies that collectively support a mechanism in which only one metal ion is necessary for nucleic acid hydrolysis. Based on global kinetic analysis, analysis of reactions in which the nonsupportive Ca(ii) is added, and a number of computational approaches, secondary sites are proposed to either be occupied by activity-modulating metal ions or occupied in turn by a single metal that changes position during the course of the reaction.  相似文献   

19.
Understanding the roles of metal ions in restriction enzymes has been complicated by both the presence of two metal ions in many active sites and their homodimeric structure. Using a single-chain form of the wild-type restriction enzyme PvuII (scWT) in which subunits are fused with a short polypeptide linker (Simoncsits et al. in J. Mol. Biol. 309:89–97, 2001), we have characterized metal ion and DNA binding behavior in one subunit and examined the effects of the linker on dimer behavior. scWT exhibits heteronuclear single quantum coherence NMR spectra similar to those of native wild-type PvuII (WT). For scWT, isothermal titration calorimetry data fit to two Ca(II) sites per subunit with low-millimolar K ds. The variant scWT|E68A, in which metal ion binding in one subunit is abolished by mutation, also binds two Ca(II) ions in the WT subunit with low-millimolar K ds. When there are no added metal ions, DNA binding affinity for scWT is tenfold stronger than that of the native WT, but tenfold weaker at saturating Ca(II) concentration. In the presence of Ca(II), scWT|E68A binds target DNA similarly to scWT, indicating that high-affinity substrate binding can be carried energetically by one metal-ion-binding subunit. Global analysis of DNA binding data for scWT|E68A suggests that the metal-ion-dependent behaviors observed for WT are reflective of independent subunit behavior. This characterization provides an understanding of subunit contributions in a homodimeric context.  相似文献   

20.
The type II restriction endonucleases are indispensible tools for molecular biology. Although enzymes recognizing nearly 300 unique sequences are known, the ability to engineer enzymes to recognize any sequence of choice would be valuable. However, previous attempts to engineer new recognition specificity have met limited success. Here we report the rational engineering of multiple new type II specificities. We recently identified a family of MmeI-like type II endonucleases that have highly similar protein sequences but different recognition specificity. We identified the amino-acid positions within these enzymes that determine position specific DNA base recognition at three positions within their recognition sequences through correlations between their aligned amino-acid residues and aligned recognition sequences. We then altered the amino acids at the identified positions to those correlated with recognition of a desired new base to create enzymes that recognize and cut at predictable new DNA sequences. The enzymes so altered have similar levels of endonuclease activity compared to the wild-type enzymes. Using simple and predictable mutagenesis in this family it is now possible to create hundreds of unique new type II restriction endonuclease specificities. The findings suggest a simple mechanism for the evolution of new DNA specificity in Nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号