首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Spontaneously hypertensive rats (SHR) and its counterpart, the Wistar-Kyoto rats (WKY), are probably the most often used animal model of ADHD. However, SHR as model of ADHD have also been criticised partly because of not differing to outbred rat strains. In the present study, adolescent SHR, WKY and Wistar rats from Charles River were tested in open-field, elevated plus maze and novel object recognition and on gastrointestinal transport to more intensively evaluate the strain characteristics. Non-habituated SHR and Wistar rats were more active than WKY rats but contrary to Wistar rats SHR stay hyperactive in a familiar environment. SHR were more sensitive to the alpha2-adrenoceptor agonist guanfacine and the dopamine D1 agonist A-68930 than WKY and Wistar rats, whereas amphetamine, the D1/D5 agonist ABT431 and the D2 agonist quinpirole, similarly affected open-field activity in all strains. In the elevated plus maze, SHR and Wistar rats showed less anxiety-related behaviour than WKY rats. Guanfacine and amphetamine induced an anxiolytic-like activity in SHR but not in WKY and Wistar rats. SHR showed the highest long-term memory in the novel object recognition. Gastrointestinal transport was similar and comparably affected by guanfacine in all rat strains. The present study shows clear differences in the behaviour of SHR and Wistar rats but also of WKY and Wistar rats. The use of SHR as animal model of ADHD is supported.  相似文献   

2.
3.
Dopamine is believed to play an important role in the etiology of attention-deficit/hyperactivity disorder (ADHD). In our previous study, we showed that gene expression of dopamine D4 receptor decreased in the spontaneously hypertensive rat (SHR) in the prefrontal cortex (PFC). In the present study, we explored the potential causes of dysfunction in the dopamine system in ADHD. It is the first time that neuronal activities in both juvenile SHR and WKY rats have been measured by functional MRI (fMRI). Our results showed that in PFC the Blood Oxygenation Level Dependent (BOLD) signal response in SHR was much higher than WKY under stressful situations. We tested the effects of acute and repeated administration of amphetamine on behavioral changes in SHR combined with the expression of the neuronal activity marker, c-fos, in the PFC. Meanwhile dopamine-related gene expression was measured in the PFC after repeated administration of amphetamine. We found that potential neuronal damage occurred through deficit of D2-like receptor protective functions in the PFC of the SHR. We also measured the expression of synaptosomal-associated protein 25 (SNAP-25) in SHR in PFC. The results showed decreased expression of SNAP-25 mRNA in the PFC of SHR; this defect disappeared after repeated injection of D-AMP.  相似文献   

4.
Spontaneously hypertensive rats (SHR) are considered to represent a genetic animal model for attention-deficit hyperactivity disorder (ADHD). In the present studies, we compared the locomotor activity, learning and memory functions of juvenile male SHR, with age- and gender-matched genetic control Wistar-Kyoto rats (WKY). In addition, we investigated potential differences in brain morphology by magnetic resonance imaging (MRI). In other complimentary studies of the central nervous system, we used real-time PCR to examine the levels of several dopaminergic-related genes, including those coding for the five major subtypes of dopamine receptor (D1, D2, D3, D4 and D5), those coding for enzymes responsible for synthesizing tyrosine hydroxylase and dopamine-beta-hydroxylase, and those coding for the dopamine transporter. Our data revealed that SHR were more active than WKY in the open field (OF) test. Also, SHR appeared less attentive, exhibiting inhibition deficit, but in the absence of memory deficits relative to spatial learning. The MRI studies revealed that SHR had a significantly smaller vermis cerebelli and caudate-putamen (CPu), and there was also a significantly lower level of dopamine D4 receptor gene expression and protein synthesis in the prefrontal cortex (PFC) of SHR. However, there were no significant differences between the expression of other dopaminergic-related genes in the midbrain, prefrontal cortex, temporal cortex, striatum, or amygdala of SHR and WKY. The data are similar to the situation seen in ADHD patients, relative to normal volunteers, and it is possible that the hypo-dopaminergic state involves a down regulation of dopamine D4 receptors, rather than a general down-regulation of catecholamine synthesis. In conclusion, the molecular and behavioural data that we obtained provide new information that may be relevant to understanding ADHD in man.  相似文献   

5.
The spontaneously hypertensive rat (SHR) is a good model to study several diseases such as the attention-deficit hyperactivity disorder, cardiopulmonary impairment, nephropathy, as well as hypertension, which is a multifactor disease that possibly involves alterations in gene expression in hypertensive relative to normotensive subjects. In this study, we used high-density oligoarrays to compare gene expression profiles in cultured neurons and glia from brainstem of newborn normotensive Wistar Kyoto (WKY) and SHR rats. We found 376 genes differentially expressed between SHR and WKY brainstem cells that preferentially map to 17 metabolic/signaling pathways. Some of the pathways and regulated genes identified herein are obviously related to cardiovascular regulation; in addition there are several genes differentially expressed in SHR not yet associated to hypertension, which may be attributed to other differences between SHR and WKY strains. This constitute a rich resource for the identification and characterization of novel genes associated to phenotypic differences observed in SHR relative to WKY, including hypertension. In conclusion, this study describes for the first time the gene profiling pattern of brainstem cells from SHR and WKY rats, which opens up new possibilities and strategies of investigation and possible therapeutics to hypertension, as well as for the understanding of the brain contribution to phenotypic differences between SHR and WKY rats.  相似文献   

6.
Aortic stiffening is an independent risk factor that underlies cardiovascular morbidity in the elderly. We have previously shown that intrinsic mechanical properties of vascular smooth muscle cells (VSMCs) play a key role in aortic stiffening in both aging and hypertension. Here, we test the hypothesis that VSMCs also contribute to aortic stiffening through their extracellular effects. Aortic stiffening was confirmed in spontaneously hypertensive rats (SHRs) vs. Wistar‐Kyoto (WKY) rats in vivo by echocardiography and ex vivo by isometric force measurements in isolated de‐endothelized aortic vessel segments. Vascular smooth muscle cells were isolated from thoracic aorta and embedded in a collagen I matrix in an in vitro 3D model to form reconstituted vessels. Reconstituted vessel segments made with SHR VSMCs were significantly stiffer than vessels made with WKY VSMCs. SHR VSMCs in the reconstituted vessels exhibited different morphologies and diminished adaptability to stretch compared to WKY VSMCs, implying dual effects on both static and dynamic stiffness. SHR VSMCs increased the synthesis of collagen and induced collagen fibril disorganization in reconstituted vessels. Mechanistically, compared to WKY VSMCs, SHR VSMCs exhibited an increase in the levels of active integrin β1‐ and bone morphogenetic protein 1 (BMP1)‐mediated proteolytic cleavage of lysyl oxidase (LOX). These VSMC‐induced alterations in the SHR were attenuated by an inhibitor of serum response factor (SRF)/myocardin. Therefore, SHR VSMCs exhibit extracellular dysregulation through modulating integrin β1 and BMP1/LOX via SRF/myocardin signaling in aortic stiffening.  相似文献   

7.
8.
Attention-deficit/hyperactivity disorder (ADHD) is characterized by attention deficit, hyperactivity, impulsivity, and learning and memory impairment. Although the pathogenesis of learning and memory impairment is still unknown, some studies have suggested an association with hippocampus dysfunction. We aimed to explore the role of miRNAs in the learning and memory impairments observed in ADHD. Differentially expressed hippocampal micro-ribonucleic acids (miRNAs) in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were detected on an Illumina HiSeq. 2000 genome analyzer. A total of 25 differentially expressed miRNAs (fold-change ≥ 2 and P-value < 0.05) were identified. The target genes of these differentially expressed miRNAs were predicted using online tools (TargetScan and miRDB). Gene ontology and pathway analysis of the predicted target genes were carried out to assess their putative biological functions. Meanwhile, quantitative real-time PCR was used to validate the HiSeq results, revealing that three miRNAs (miR-1-b, miR-741-3p, and miR-206-3p) were upregulated and four (miR-182, miR-471-5p, miR-183-5p, and miR-211-5p) were downregulated in the SHR group compared with the WKY group. In addition, we confirmed that Dyrk1a is regulated by miR-211-5p. These results help us understand the contribution of miRNAs in the hippocampus to ADHD and provide new insights into the pathogenesis of this condition.  相似文献   

9.

Background

Hyperactivity related behaviors as well as inattention and impulsivity are regarded as the nuclear symptoms of attention-deficit/hyperactivity disorder (ADHD).

Purpose

To investigate the therapeutic effects of atomoxetine on the motor activity in relation to the expression of the dopamine (DA) D2 receptor based on the hypothesis that DA system hypofunction causes ADHD symptoms, which would correlate with extensive D2 receptor overproduction and a lack of DA synthesis in specific brain regions: prefrontal cortex (PFC), striatum, and hypothalamus.

Methods

Young male spontaneously hypertensive rats (SHR), animal models of ADHD, were randomly divided into four groups according to the daily dosage of atomoxetine and treated for 21 consecutive days. The animals were assessed using an open-field test, and the DA D2 receptor expression was examined.

Results

The motor activity improved continuously in the group treated with atomoxetine at a dose of 1 mg/Kg/day than in the groups treated with atomoxetine at a dose of 0.25 mg/Kg/day or 0.5 mg/Kg/day. With respect to DA D2 receptor immunohistochemistry, we observed significantly increased DA D2 receptor expression in the PFC, striatum, and hypothalamus of the SHRs as compared to the WKY rats. Treatment with atomoxetine significantly decreased DA D2 expression in the PFC, striatum, and hypothalamus of the SHRs, in a dose-dependent manner.

Conclusion

Hyperactivity in young SHRs can be improved by treatment with atomoxetine via the DA D2 pathway.  相似文献   

10.
In our studies with spontaneously hypertensive (SHR), Wistar-Kyoto (WKY), and Wistar rats, we observed normotensive WKY rats with cardiac hypertrophy determined by a greater left ventricular (LV) mass (LVM)-to-body weight (BW) ratio (LVM/BW) than that of normotensive Wistar rats. Thus we compared the following parameters in SHR, WKY, and Wistar rats: LVM/BW, cell capacitance as index of total surface area of the myocytes, length, width, and cross-sectional area of cardiac myocytes, LV collagen volume fraction, and myocardial stiffness. The LVM/BW of WKY (2.41 +/- 0.03 mg/g, n = 41) was intermediate between SHR (2.82 +/- 0.04 mg/g, n = 47) and Wistar rats (1.98 +/- 0.04 mg/g, n = 28). A positive correlation between blood pressure and LVM was found in SHR, whereas no such relationship was observed in WKY or Wistar rats. Cell capacitance and cross-sectional area were not significantly different in SHR and WKY rats; these values were significantly higher than those of Wistar rats. The cell length was smaller but the width was similar in WKY compared with SHR. Papillary muscles isolated from the LV of WKY and SHR were stiffer than those from Wistar rats. Consistently, a greater level of myocardial fibrosis was detected in WKY and SHR compared with Wistar rats. These findings demonstrate blood pressure-independent cardiac hypertrophy in normotensive WKY rats.  相似文献   

11.
Children with attention‐deficit/hyperactivity disorder (ADHD) usually display deficits in executive function (EF), which are primarily mediated by prefrontal cortex (PFC). The functional polymorphism of catechol‐O‐methyltransferase (COMT), Val158Met (rs4680), leads to observed polymorphic differences in the degradation of dopamine within PFC. This study aimed to explore the effect of rs4680 on EF using case–control design. In addition, considering the dynamic development of EF, we also attempted to investigate whether this genetic influence changes during development or not. A total of 597 ADHD children and 154 unaffected controls were recruited. The EF was evaluated using Rey–Osterrieth complex figure test (RCFT), trail making test (TMT) and Stroop color and word test for working memory, shifting and inhibition. Association between genotype and EF was analyzed using analysis of covariance (ancova ). The results showed significant interaction effect of genotype and ADHD diagnosis on RCFT performance (P < 0.001). However, the associated genotypes between ADHD and controls were divergent. In ADHD, the Met carriers performed better than the Val homozygotes on detail immediate [(10.38 ± 6.90) vs. (9.33 ± 6.92), P = 0.007] and detail delay [(9.96 ± 6.86) vs. (8.86 ± 6.89), P = 0.004], while Val homozygotes showed better performance compared with Met carrier controls [for detail immediate (14.55 ± 6.18) vs. (11.10 ± 6.45), P<0.001; for detail delay (14.31 ± 5.96) vs. (11.31 ± 6.96), P = 0.001]. We did not find significant interaction between genetic variant and development. COMT Val158Met (rs4680) may have divergent effect on working memory in ADHD children compared with healthy controls.  相似文献   

12.
Attention‐deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders in children and adolescents with high heritability. Evidence is accumulating that SLC1A3 may play a role in ADHD etiology. Therefore, a two‐stage case‐control study was conducted on 752 cases and 774 controls to explore the role of SLC1A3 in ADHD. Bioinformatic annotations and functional experiments were applied to reveal the potential biological mechanisms. Finally, SLC1A3 rs1049522 showed significant association with ADHD risk in two stages with CA genotype vs AA genotype, odds ratio (OR) = 0.694 (95% confidence interval, CI = 0.570‐0.844) and dominant model, OR = 0.749 (95% CI = 0.621‐0.904) in the combined stage. Besides, rs1049522 was found to be related to ADHD hyperactive/impulsive symptom, and rs1049522‐C showed increased SLC1A3 mRNA expression in the cerebellar cortex. Dual‐luciferase reporter assay further indicated that rs1049522‐C allele enhanced SLC1A3 expression by disrupting the hsa‐miR‐3171 binding site. In conclusion, SLC1A3 variant rs1049522 was implicated in ADHD susceptibility in a Chinese Han population probably by enhancing the SLC1A3 expression in a miRNA‐mediated manner.  相似文献   

13.
Spontaneously hypertensive rats (SHR) are one of the most common animal models used to study essential hypertension in humans. Because SHR and normotensive Wistar Kyoto (WKY) rats were both established from the same parental, normotensive Wistar stock, WKY animals have been used almost exclusively as control animals in studies of SHR. Recently, the suitability of WKY rats as normotensive controls for SHR has been challenged. To establish whether or not SHR and WKY rats share the same immunologic backgrounds, we initially performed a series of skin grafting experiments on these animals. In all cases, grafts of SHR donor skin to WKY recipients and of WKY donor skin to SHR recipients resulted in complete rejection within 7 to 10 days. In addition, grafts of WKY donor skin to other WKY recipients resulted in graft rejection. By contrast, skin grafts between SHRs were always accepted. To further characterize the genetic distinctions between SHR and WKY rats, allelic profiles based on a series of immunologic and biochemical markers were established for each strain. These findings clearly establish that SHR and WKY rats differ at the major histocompatibility complex, in specific blood group antigens, and in a panel of isozymic markers. Moreover, whereas SHRs have the same genetic profiles irrespective of source, some colonies of WKY rats are outbred, as judged by their variant allelic profiles.  相似文献   

14.
Abstract: The type 1 angiotensin II (All) receptor (AT1-R) has been implicated in the physiological actions mediated by All in the brain. In view of the reported hyperactivity of the brain All system in the spontaneously hypertensive rat (SHR), we compared the expression of AT,-R mRNAs in the brains of normotensive [Wistar Kyoto (WKY)] and SHR animals. Northern blot analysis showed about three- and ∼20-fold increases in the levels of AT1-R mRNAs from the hypothalamus and brainstem areas, respectively, of the SHR compared with the WKY rat brain. This was attributable to greater levels of both AT,1A- and AT,1B-R mRNA subtypes in these areas from the SHR. These observations suggest that increased All receptor levels in SHR brain may, in part, be a result of increased expression of the AT1-R gene.  相似文献   

15.
The spontaneously hypertensive rat (SHR) has been proposed as an animal model for attentiondeficit disorder (ADHD). The behavioural problems have been suggested to be secondary to altered reinforcement mechanisms in which nucleus accumbens dopaminergic activity plays an important role. Interaction between the noradrenergic and dopaminergic system in the nucleus accumbens has been implicated in the locomotor hyperactivity and impaire discriminative performance of SHR. The present study therefore investigated whether there was any change in the 2-adrenoceptor mediated inhibition of dopamine release from nucleus accumbens slices of SHR in comparison with their normotensive Wistar-Kyoto (WKY) controls. The electrically stimulated release of [3H]dopamine (DA) from nucleus accumbens slices was decreased to a similar extent by UK14,304, an 2-adrenoceptor agonist, in SHR and WKY. Basal norepinephrine (NE) levels were increased in locus coeruleus (LC) and A2 noradrenergic nuclei, but not in the A1 nucleus of SHR, while basal serotonin (5-HT) levels were increased in all these pons-medulla nuclei. These results suggest that a primarily dysfunctional LC and A2 nucleus does not have a secondary effect on dopaminergic transmission in the nucleus accumbens via 2-adrenoceptor mediated inhibition of DA release. Basal monoamine levels in several brain areas of SHR were significantly different from that of WKY. DA, and 5-HT turnover were decreased in SHR versus WKY suggesting hypofunctional dopaminergic and serotonergic systems in some brain areas of SHR.  相似文献   

16.
The glucocorticoid receptor plays a pivotal role in the brain's response to stress; a haplotype of functional polymorphisms in the NR3C1 gene encoding this receptor has been associated with attention‐deficit hyperactivity disorder (ADHD). The serotonin transporter (5‐HTT) gene polymorphism 5‐HTTLPR is known to influence the relation between stress exposure and ADHD severity, which may be partly because of its reported effects on glucocorticoid levels. We therefore investigated if NR3C1 moderates the relation of stress exposure with ADHD severity and brain structure, and the potential role of 5‐HTTLPR. Neuroimaging, genetic and stress exposure questionnaire data were available for 539 adolescents and young adults participating in the multicenter ADHD cohort study NeuroIMAGE (average age: 17.2 years). We estimated the effects of genetic variation in NR3C1 and 5‐HTT, stress exposure and their interactions on ADHD symptom count and gray matter volume. We found that individuals carrying the ADHD risk haplotype of NR3C1 showed significantly more positive relation between stress exposure and ADHD severity than non‐carriers. This gene–environment interaction was significantly stronger for 5‐HTTLPR L‐allele homozygotes than for S‐allele carriers. These two‐ and three‐way interactions were reflected in the gray matter volume of the cerebellum, parahippocampal gyrus, intracalcarine cortex and angular gyrus. Our findings illustrate how genetic variation in the stress response pathway may influence the effects of stress exposure on ADHD severity and brain structure. The reported interplay between NR3C1 and 5‐HTT may further explain some of the heterogeneity between studies regarding the role of these genes and hypothalamic–pituitary–adrenal axis activity in ADHD.  相似文献   

17.
Spontaneously hypertensive rats (SHRs) are used as a model for attention-deficit/hyperactivity disorder (ADHD), since SHRs are hyperactive and show defective sustained attention in behavioral tasks. The psychostimulants amphetamine and methylphenidate and the selective norepinephrine reuptake inhibitor atomoxetine are used as ADHD medications. The effects of high K+ stimulation or psychostimulants on brain norepinephrine or dopamine release in SHRs have been previously studied both in vitro and in vivo, but the effects of atomoxetine on these neurotransmitters have not. The present study examined the effects of administration of atomoxetine on extracellular norepinephrine, dopamine, and serotonin levels in the prefrontal cortex of juvenile SHRs and Wistar-Kyoto (WKY) rats. Baseline levels of prefrontal norepinephrine, dopamine, and serotonin were similar in SHRs and WKY rats. Systemic administration of atomoxetine (3 mg/kg) induced similar increases in prefrontal norepinephrine and dopamine, but not serotonin, levels in both strains. Furthermore, there was no difference in high K+-induced increases in extracellular norepinephrine, dopamine, and serotonin levels in the prefrontal cortex between SHRs and WKY rats. These findings indicate that monoamine systems in the prefrontal cortex are similar between SHRs and WKY rats.  相似文献   

18.
Attention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous disorder characterized by impairing levels of hyperactivity, impulsivity and inattention. Oxidative and inflammatory parameters have been recognized among its multiple predisposing pathways, and clinical studies indicate that ADHD patients have increased oxidative stress. In this study, we aimed to evaluate oxidative (DCFH oxidation, glutathione levels, glutathione peroxidase, catalase and superoxide dismutase activities) and inflammatory (TNF-α, IL-1β and IL-10) parameters in the most widely accepted animal model of ADHD, the spontaneously hypertensive rats (SHR). Prefrontal cortex, cortex (remaining regions), striatum and hippocampus of adult male SHR and Wistar Kyoto rats were studied. SHR presented increased reactive oxygen species (ROS) production in the cortex, striatum and hippocampus. In SHR, glutathione peroxidase activity was decreased in the prefrontal cortex and hippocampus. TNF-α levels were reduced in the prefrontal cortex, cortex (remaining regions), hippocampus and striatum of SHR. Besides, IL-1β and IL-10 levels were decreased in the cortex of the ADHD model. Results indicate that SHR presented an oxidative profile that is characterized by an increase in ROS production without an effective antioxidant counterbalance. In addition, this strain showed a decrease in cytokine levels, mainly TNF-α, indicating a basal deficit. These results may present a new approach to the cognitive disturbances seen in the SHR.  相似文献   

19.
The male sex chromosome disorder, 47,XYY syndrome (XYY), is associated with increased risk for social‐emotional difficulties, attention‐deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). We hypothesize that increased Y chromosome gene copy number in XYY leads to overexpression of Y‐linked genes related to brain development and function, thereby increasing risk for these phenotypes. We measured expression in blood of two Y genes NLGN4Y and RPS4Y in 26 boys with XYY and 11 male controls and evaluated whether NLGN4Y expression correlates with anxiety, ADHD, depression and autistic behaviors (from questionnaires) in boys with XYY. The XYY cohort had increased risk of ASD behaviors on the social responsiveness scale (SRS) and increased attention deficits on the Conners' DSM‐IV inattention and hyperactive scales. In contrast, there was no increase in reported symptoms of anxiety or depression by the XYY group. Peripheral expression of two Y genes in boys with XYY vs. typically developing controls was increased twofold in the XYY group. Results from the SRS total and autistic mannerisms scales, but not from the attention, anxiety or depression measures, correlated with peripheral expression of NLGN4Y in boys with XYY. Males with XYY have social phenotypes that include increased risk for autism‐related behaviors and ADHD. Expression of NLGN4Y, a gene that may be involved in synaptic function, is increased in boys with XYY, and the level of expression correlates with overall social responsiveness and autism symptoms. Thus, further investigation of NLGN4Y as a plausible ASD risk gene in XYY is warranted.  相似文献   

20.
Spontaneously hypertensive rats (SHR) are widely used as model to investigate the pathophysiological mechanisms of essential hypertension. Catecholamine plasma levels are elevated in SHR, suggesting alterations of the sympathoadrenal axis. The residual hypertension in sympathectomized SHR is reduced after demedullation, suggesting a dysfunction of the adrenal medulla. Intact adrenal glands exposed to acetylcholine or high K+ release more catecholamine in SHR than in normotensive Wistar Kyoto (WKY) rats, and adrenal chromaffin cells (CCs) from SHR secrete more catecholamines than CCs from WKY rats. Since Ca2+ entry through voltage-gated Ca2+ channels (VGCC) triggers exocytosis, alterations in the functional properties of these channels might underlie the enhanced catecholamine release in SHR. This study compares the electrophysiological properties of VGCC from CCs in acute adrenal slices from WKY rats and SHR at an early stage of hypertension. No significant differences were found in the macroscopic Ca2+ currents (current density, IV curve, voltage dependence of activation and inactivation, kinetics) between CCs of SHR and WKY rats, suggesting that Ca2+ entry through VGCC is not significantly different between these strains, at least at early stages of hypertension. Ca2+ buffering, sequestration and extrusion mechanisms, as well as Ca2+ release from intracellular stores, must now be evaluated to determine if alterations in their function can explain the enhanced catecholamine secretion reported in CCs from SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号