首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An axolemma-enriched membrane fraction prepared by an improved procedure from bovine white matter catalyzes the enzymatic transfer of [14C]mannose and N-acetyl[14C]glucosamine from their nucleotide derivatives into a mannolipid and an N-acetylglucosaminyl lipid in the presence of exogenous dolichyl monophosphate. The labeled glycolipid products have the chemical and chromatographic characteristics of mannosylphosphoryldolichol and N-acetylglucosaminylpyrophosphoryldolichol. The initial rates of synthesis of the glycolipids by the axolemma-enriched membrane fraction have been compared with the initial rates of glycolipid formation catalyzed by a microsomal preparation and myelin in the presence or absence of dolichyl monophosphate. Essentially no glycolipid synthesis was observed when either GDP-[14C]mannose or UDP-N-acetyl[14C]glucosamine were incubated with myelin in the presence or absence of exogenous dolichyl monophosphate. A comparison of the initial rates of synthesis of the glycolipids using endogenous acceptor lipid revealed that the rate of formation of mannolipid was 7 times faster for the microsomal membranes than the axolemma-enriched membranes. In the presence of an amount of dolichyl monophosphate approaching saturation the initial rate of glycolipid synthesis was markedly enhanced for both membrane preparations. However, due to a more dramatic enhancement in the axolemma-enriched membranes the initial rate of mannolipid synthesis was only approx. 2.5 times greater in the microsomal membranes. A similar observation was made when the initial rates of N-acetylglucosaminyl lipid synthesis were compared for axolemma-enriched and microsomal preparations in the presence and absence of exogenous dolichyl monophosphate. These studies indicate that the axolemma-enriched membranes have a relatively lower content of dolichyl monophosphate than the microsomal membranes although the difference in the amount of mannosyltransferase is only two to three-fold lower. The presence of a sugar nucleotide pyrophosphatase activity capable of degrading GDP-mannose and UDP-N-acetylglucosamine has also been demonstrated in the axolemma-enriched membrane fraction.  相似文献   

2.
Axolemma-enriched fractions were isolated from the white matter of bovine corpus callosum via a purified preparation of myelinated axons which were osmotically shocked and fractionated on a discontinuous density gradient. Two membrane fractions of differing density were obtained; both were somewhat enriched over white matter whole homogenate in specific activity of acetylcholinesterase and 5-nucleotidase and maximal binding capacity for saxitoxin. Both membrane fractions contained appreciable amounts of 2, 3-cyclic nucleotide 3-phospho-hydrolase; the specific activity of antimycin-sensitive NAPH-cytochromec reductase and cytochromec oxidase indicated low levels of contamination by microsomal and mitochondrial membrane. The myelin which is concomitantly isolated with the axolemma-enriched fractions has a lipid and protein composition comparable to that of myelin isolated by other procedures. Both axolemma-enriched fractions contain about one half of their dry weight as lipid comprised of approximately 25% cholesterol, 25% galactolipid (cerebrosides and sulfatides in a molar ratio of about 4:1) and 50% phospholipid, mostly choline phosphatides and ethanolamine phospholes in an equimolar ratio. The axolemma fractions are also enriched in ganglioside content relative to the myelin fraction. The polypeptides of the axolemma-enriched fractions range from 20,000 to over 200,000 in molecular weight; the predominant proteins are in the range from 50,000 to 69,000. The most dense axolemma-enriched fraction is over fourfold enriched in glyco-protein content compared with myelin, with at least 10 different molecular-weight classes of glycoproteins as identified by Schiff stain of polyacrylamide gel protein profiles. The differences and similarities in the molecular composition of axolemma-enriched preparations which have been characterized to date are discussed.  相似文献   

3.
Abstract— —The contribution of axonal transport to the production of myelin proteins and glycoproteins was investigated using the double labelling technique of combined intraocular and intracerebral injections in the same animal. Myelin and an axolemma-enriched fraction were isolated from pooled optic nerves, chiasma and optic tracts. Separation by gel electrophoresis showed that typical myelin proteins and glycoproteins were only significantly labelled by intracerebral injection. Intraocular injection labelled high molecular weight proteins other than the major Wolfgram protein and the major myelin glycoprotein. Fifteen days after intraocular injection the label was concentrated in a high molecular weight protein which migrated slightly more slowly than the major Wolfgram protein. The pattern of proteins and glycoproteins in myelin labelled by intraocular injection was very similar to that obtained in the axolemma-enriched fraction by the same route. These results indicate that neuronal metabolism and axonal transport do not contribute significantly to the synthesis of specific myelin proteins and glycoproteins, but suggest that the components of myelin fractions which are labelled by intraocular injection are contaminants of axolemmal origin. One of these glycoproteins may prove a useful marker of axolemma membranes.  相似文献   

4.
Axolemma-enriched fractions were isolated from bovine spinal accessory nerves, bovine intradural dorsal roots, and rabbit sciatic nerve by differential centrifugation and separation on a linear 10–40% sucrose (w/w) gradient. The fractions were enriched 4 to 10 fold in acetylcholinesterase, a biochemical marker for axolemma. Axolemma-enriched fractions isolated from uniformly well-myelinated fibers (bovine spinal accessory nerve) contained lower CNPase activity and higher acetylcholinesterase activity than comparable fractions isolated from variably myelinated fibers (rabbit sciatic nerve and bovine intradural roots). Separation by polyacrylamide electrophoresis showed that the molecular weight distribution of all peripheral nerve axolemma-enriched fractions was similar and ranged from 20 to over 150 kilodaltons. All axolemma-enriched fractions appeared to contain a small but variable amount of myelin-specific proteins. Based on biochemical properties, peripheral nerves containing uniformly well-myelinated fibers yield an axolemma-enriched fraction which is least contaminated with myelin-related membranes.  相似文献   

5.
Cyclic GMP phosphodiesterases from 100 00 × g rat liver supernatant were partially resolved by chromatography on DEAE-cellulose. Multiple forms of cyclic GMP phosphodiesterase(s) that were activated to different degrees by calcium plus a low molecular weight protein from rat liver and bovine brain supernantants, or by limited exposure to chymotrypsin, were identified. The cyclic GMP phosphodiesterase in some column fractions was activated over 10-fold by calcium plus activator or chymotrypsin. Activation by chymotrypsin was dependent both on the time of incubation with protease and its concentration. Prolonged exposure to chymotrypsin resulted in a decrease in s20,w by sucrose density gradient centrifugation. The chymotrypsin-treated enzyme was no longer activated by exposure to calcium plus activator. The calcium- and protein activator-stimulated enzyme was inactivated by ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid (EGTA). Exposure of this activated enzyme to chymotrypsin did not result in further activation, but the chymotrypsin-treated enzyme was no longer inhibited by EGTA. The apparently irreversible effects of chymotrypsin and the reversible effects of calcium plus activator on cyclic GMP hydrolysis by the phosphodiesterase over a wide range of cyclic GMP concentrations appeared to be identical.  相似文献   

6.
Activities of choline- and ethanolaminephosphotransferase (CPT and EPT) were reproducibly high in microsomes from imbibed seeds of cotton (Gossypium hirsutum, L.). Initial studies showed that both activities dramatically declined during postgerminative growth when demand for phosphatidylcholine (PC) and phosphatidylethanolamine (PE) synthesis was high. Addition of CaCl2 (0.1 millimolar) or aliquots of supernatant fractions (150,000g, 60 minutes) from cotyledons of 48-hour-old seedlings to imbibed-seed microsomes reduced the CPT and EPT activities to levels approximating those found in 48-hour microsomes. Inhibition by supernatants was completely reversed by adding EGTA (1.0 millimolar), but not by boiling the supernatants. EGTA (1.0 or 5.0 millimolar) relieved inhibition in cellular fractions whether it was added to the homogenization media or the assay reaction mixtures. A time course of CPT and EPT activities in cellular fractions prepared with 1.0 millimolar EGTA showed that activities were well developed in imbibed seeds, doubled coincidentally to a peak at 36 hours, then declined during the next 12 hours to levels approximating those in imbibed seeds. Greater than 90% of the CPT and EPT activities were pelletable (150,000g, 60 minutes) at all ages examined. Calcium apparently was artificially released upon homogenization, to a progressively greater extent in older cotyledons, and severely inhibited CPT and EPT activities. This is the only time course of CPT and EPT activities reported for cotyledons of any oilseed; it is substantially different from that in oil-storing endosperm.  相似文献   

7.
Total particulate material from control and myelin deficient (mld) brains was subjected to density centrifugation on a continuous sucrose gradient. Particles from control brains distributed in a bell-shaped mode with a peak density near 0.64 M-sucrose. In mld material only a slight elevation of optical density was observed near 0.8 M-sucrose. The highest specific activities of 2′,3′-cyclic nucleotide 3′-phosphodiesterase were observed at densities of 0.63 and 0.71 M-sucrose for mld and control brains, respectively. The peak of myelin basic protein in control fractions was near 0.60 M-sucrose. In mld fractions no peak was observed. Proteolipid and Wolfgram proteins had a maximum near 0.65 and 0.73 M-sucrose in control and mld fractions, respectively. The absence of myelin basic proteins in all the fractions makes it unlikely that, in mld mice, myelin basic proteins are synthesized but not incorporated into myelin.  相似文献   

8.
Mannose-rich glycopeptides derived from brain glycoproteins were obtained by proteolysis of bovine brain tissue or subcellular fractions derived from rat brain tissue. The dialyzable mannose-rich glycopeptides were isolated by colum electrophoresis and gel flitration. These glycopeptides contained, on the average, six mannose and two N-acetylglucosamine residues with variable amounts of fucose and galactose. Over 50% of the mannose-rich glycopeptides of rat brain were localized in the microsomal and synaptosomal fractions; myelin and the soluble fraction contained lesser amounts. None was recovered from the mitochondria. The amount, per mg protein, of mannose-rich oligosaccharide chains in the myelin exceeded the concentration found in the microsomal and synaptosomal fractions. The concentration of mannose-rich glycopeptides derived from glycoproteins was 50% higher in white matter than in gray. On the other hand, the non-dialyzable and acidic sialoglycopeptides showed a three-fold enrichment in gray matter compared to white. The relatively lower ratio of sialoglycopeptides to mannose-rich glycopeptides observed in white matter (2.5) compared to gray matter (6.9) is reflected in the lower value for the ratio in myelin (1.1) compared to synpatosomes (2.1). Although glycoproteins that contain mannose-rich oligosaccharide chains are present in the nerve cell and its terminals, these glycoproteins appear to be relatively enriched in myelin and/or glial membranes.  相似文献   

9.
T.J. Lea  C.C. Ashley 《BBA》1982,681(1):130-137
CO2-induced acidosis in barnacle muscle fibres prolongs the relaxation phase of the electrically stimulated contraction (Ashley, C.C., Franciolini, F., Lea, T.J. and Lignon, J. (1979) J. Physiol. 296, 71P). In order to test if this effect is due to a direct action of H+ on the relaxation kinetics of the myofilaments, isolated myofibrillar bundles were contracted and relaxed in Ca2+ buffer solutions at pH 6.0 and 7.1, in the presence of 20 mM caffeine to inactivate the sarcoplasmic reticulum. At pH 7.1, the relaxation half-time was reduced from 1.5 to 0.3 s as the EGTA concentration in the relaxing solution was progressively increased from 0.3 to 50 mM. The resulting curve was shifted in the direction of increasing EGTA concentration by lowering the pH to 6.0. This effect could be explained by the reduction in affinity of Ca2+ for EGTA at pH 6.0, since relaxation half-times for a given relaxing pCa (calculated from the contaminating Ca2+ concentrations in the relaxing solutions) were shorter (by about 40%) at pH 6.0 compared with 7.1. However, similar experiments using the new Ca2+-chelating agent 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), which is much less pH sensitive than EGTA, indicated that there was no significant difference between relaxation half-times at pH 6.0 and 7.1 for a given relaxing pCa. It is concluded that because no prolongation of relaxation of the myofibrils was observed on lowering the pH from 7.1 to 6.0, the effect of CO2 on the relaxation of intact muscle fibres is probably due to a modification of sarcoplasmic reticulum activity.  相似文献   

10.
Polyunsaturated fatty acids (PUFAs) occur in phospholipids of synapses of central nervous system (CNS). PUFAs may thus determine the fluidity of synaptosomal membranes and regulate neuronal transmission. It was therefore tempting to suggest an oxidative system in CNS protecting the membrane function, e.g., glutathione peroxidase (GSH-Px). In order to trace GSH-Px Wistar rats were loaded with 4800 kBq of75Se sodium selenite. By means of gradient ultracentrifugation, particulate fractions of CNS were isolated and radioactivity as well as selenium dependent GSH-Px were estimated. The following data were obtained:
  1. All fractions (myelin, synaptic vesicles, synaptosomes, mitochondria, and microsomes) contained75Se.
  2. After acetone precipitation of GSH-Px activity, fractionation on Sephadex G-150 revealed in all particulate fractions at least two peaks of radioactivity with GSH-Px activity.
  3. The two GSH-Px peaks from the Sephadex filtration were freeze dried and applied on a hydrophobic T-gel column and eluted with decreasing molarity of ammonium sulfate from 1.5 to 0.05M. The first Sephadex peak with GSH-Px activity from myelin and the second peak with GSH-Px activity from synaptic vesicles could now be resolved into two different fractions of radioactivity on the T-gel. The remaining Sephadex G-150 peaks could only be resolved into one peak of radioactivity.
  4. SDS-polyacrylamide gel electrophoresis of the T-gel peaks from all fractions showed a protein band with a mobility identical with that of human erythrocyte GSH-Px. The T-gel elution of myelin, synaptic vesicles and mitochondria gave rise to nearly pure CNS GSH-Px activity.
. The data presented support the idea that CNS fractions have membrane bound GSH-Px activity that may function as protecting enzymes towards oxidative stress in the brain.  相似文献   

11.
Plasmolipin is a plasma membrane proteolipid is a major myelin membrane component (Cochary et al., 1990). In this study we report the phylogenic expression of plasmolipin in the vertebrate nervous system. Using Western blot analysis with polyclonal antibodies, we have analyzed membrane fractions, including myelin, from elasmobranchs, teleosts, amphibians, reptiles, birds and mammals. On the basis of immune detection, plasmolipin appears to be restricted to the mammalian nervous system. Comparison of the central and peripheral nervous systems of mammals showed only minor differences in the level of plasmolipin in these two regions. Within mammals, little quantitative differences were observed when rat, human and bovine membrane fractions were compared. The late evolutionary expression of plasmolipin which results in its restriction to mammals makes it unique among the (major) myelin proteins. The potential physiologic significance of these data are discussed.Abbreviations EDTA Ethylene diamine N.,NN tetracetic acid - EGTA Ethylene glycol bis-(B-Aminoethyl Ether) N,,NN tetracetic acid - MES ([N-Morpholino] ethane sulfonic acid) DCCD, N, Dicyclohexyl carbodiimide  相似文献   

12.
13.
beta-Glucosidase activator protein from bovine spleen ("coglucosidase")   总被引:4,自引:0,他引:4  
β-Glucosidase-stimulating proteins (“co-β-glucosidase”) have been isolated from bovine spleen by acidification of homogenized spleen, heat denaturation, and chromatography with DEAE-Sephacel, Sephadex G-75, hydroxyapatite, and decyl agarose columns. Gel electrophoresis of the product revealed a trace of inert protein and two fast-moving bands, a major diffuse band and a minor, faster-moving band. The latter two bands could be eluted from the gel and shown to stimulate a glucosidase preparation from bovine spleen. They both stained with Stains All and fast green, but poorly with Coomassie blue. The bands could also be visualized by ultraviolet scanning. Periodate-Schiff stain was positive for the major band. The Mr of the coglucosidase was about 20,400 as measured with the gel permeation column, but 4900 as measured with a Sephacryl S-200 column containing guanidine hydrochloride and roughly 6200 as measured by gel electrophoresis with Na dodecyl sulfate. A pI of 4.3–4.4 was indicated by isoelectric focusing. Neutral sugar was found to be present, but no sialic acid. It was destroyed by Pronase, but not by lyophilization, N-ethylmaleimide, or alkaline phosphatase. Stimulation of the basal activity (1 nmol/h assayed with methylumbelliferyl glucoside) was 50% when 0.15 μg/ml of coglucosidase was included in the incubation. The activating protein raised the V values and lowered the Km values when both glucosyl ceramide and the artificial substrate were used. In contrast, phosphatidyl serine raised both the V, and the Km for cerebroside hydrolysis. The activator protein was found to occur in the soluble part of spleen as well as in the mitochondrial and lysosomal fractions.  相似文献   

14.
Axonal loss is well correlated with functional deficits in Multiple Sclerosis (MS); however, the molecular mechanisms that underlie this axonal loss are not understood. In this review we summarize evidence that antibodies to axolemma-enriched fractions (AEF) isolated from CNS myelinated axons may play a role in axonal destruction. AEF contains potent antigens that elicit high-titer antisera, which destroy neuritesin vitro, prevent neurite outgrowth, cause reactive changes in the neuronal cell bodies of origin and prevent myelination. We propose that these AEF antigens are cryptic because they are shielded from immune surveillance in vivo via the tightly sealed paranodal loops of myelin. Antibodies to AEF are found in cerebrospinal fluid (CSF) and sera of MS patients at higher levels compared with CSF or sera derived from patients with other neurological diseases. The potential identity of these cryptic antigens and their role in the axonal destruction characteristic of MS is discussed.Special issue dedicated to Lawrence F. Eng.  相似文献   

15.
A nucleotide phosphohydrolase-resistant analog of GTP, guanyl-5′-yl imidodiphosphate [GMP-P(NH)P], caused stimulation of basal adenylate cyclase activity of cardiac sarcolemma when ethylene glycol bis(β-aminoethyl ether)- N,N′-tetraacetic acid (EGTA) was absent in the assay mixture, whereas the nucleotide, in the presence of EGTA, inhibited basal cyclase activity. GTP, GDP, GMP, and guanosine failed to show such an inhibition of basal enzyme activity. The degree of both stimulatory and inhibitory effects of GMP-P(NH)P depended on the concentration of magnesium ions. The apparent affinities toward magnesium ions of the metal binding site and toward MgATP2? of the catalytic site of control and ?GMP-P(NH)P-inhibited” enzyme were similar. Isoproterenol reversed the inhibitory effect, whereas calcium ions failed to revert it. Both in the presence and absence of EGTA, GMP-P(NH)P plus isoproterenol caused a synergistic stimulation of the enzyme activity, the degree of stimulation being lower with EGTA present. Exposure of sarcolemma to GMP-P(NH)P (with and without isoproterenol and in the absence and presence of EGTA) caused an activation of adenylate cyclase, the degree of activation being higher with isoproterenol present. The activated enzyme displayed increased affinity toward Mg2+ at the metal binding site. When activated enzyme preparations were assayed in the presence of EGTA, reversal of the activated state was observed in the case of the GMP-P(NH)P-activated enzyme but not in the case of the GMP-P(NH)P + isoproterenol-activated enzyme.  相似文献   

16.
《The Journal of cell biology》1984,99(6):2309-2313
Cultured rat Schwann cells were treated for 72 h with axolemma- and myelin-enriched fractions prepared from rat brainstem. [3H]Thymidine was added to the cultures 48 h before the termination of the experiment. Although, both fractions produced a dose-dependent uptake of label into Schwann cells, the shape of the dose response curves and rates at which [3H]thymidine was incorporated were different. The axolemma-enriched fraction produced a sigmoid dose response curve with a Hill coefficient of 2.05. The dose response curve for myelin rose sharply and saturated at a level that was approximately 50% of the maximal response observed with axolemma. Schwann cells that had been treated with axolemma exhibited little change in the rate of [3H]thymidine incorporation from 36-72 h after the addition of the membranes. In contrast, Schwann cells accumulated label three times faster during the 48-72-h period following the addition of myelin to the cultures when compared with the rate during the preceding 12-h interval. Furthermore, the mitogenic activity of the myelin-enriched fraction was decreased by the addition of ammonium chloride, a lysosomal inhibitor, whereas the activity of the axolemmal fraction was not impaired.  相似文献   

17.
Under diurnal 16/8-h light-dark cycles, ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) at 1 mM completely blocked the appearance of rhythmic N2-fixing activity in Synechococcus RF-1. Ca2+ at 2 mM, when supplied either together with or several hours after the EGTA application, restored the nitrogenase activity, whereas, when Ca2+ was supplied several hours later, the peak of nitrogenase activity was shifted from the dark to the light period in which the activity is normally suppressed. Sr2+ also reversed the inhibition by EGTA, but only partially. When O2 in the gas phase above the culture was below 1%, the inhibition of nitrogenase activity by EGTA was reduced to less than 20% of the control value without EGTA. Thus Ca2+ appears to be required by the cell to protect its nitrogenase from inactivation by O2. In media without EGTA, a close correlation between nitrogenase activity and concentrations of Ca2+ was also observed.Abbreviation EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid  相似文献   

18.
The copper(II) complex of the acyclic EBTA ligand (H4EBTA = 1,2-bis(2-aminoethoxy)benzene-N,N,N′,N′-tetraacetic acid) has been prepared and characterized by X-ray analysis. The two copper ions of the dinuclear unit present the same distorted octahedral coordination polyhedra. The EBTA ligand is shared between two copper coordination centres, with the formation of centrosymmetric dimers, which are linked in a supramolecular tridimensional structure via additional interactions through the coordinated waters molecules with adjacent carboxylic oxygen atoms. The stability and protonation constants of EBTA with Cu(II) and Zn(II) ions indicate a higher stability of these complexes with respect to the corresponding complexes with the more flexible EGTA ligand (H4EGTA = ethyleneglycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid). On the other hand, the lower stability of [Gd(EBTA)] than [Gd(EGTA)] results in a decreased overall selectivity (lower Ksel) of EBTA towards Gd(III) and suggests that this complex may undergoes transmetallation reactions under physiological conditions.  相似文献   

19.
The thermal stability of a recombinant α-amylase from Bacillus halmapalus α-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This α-amylase is homologous to other Bacillus α-amylases where crystallographic studies have identified the existence of three calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 °C and DSC thermograms can be described using a one-step irreversible model. A 5 °C increase in Tm in the presence of 10-fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30–40-fold excess calcium chelator (ethylenediaminetetraacetic acid (EDTA) or ethylene glycol-bis[β-aminoethyl ether] N,N,N′,N′-tetraacetic acid (EGTA)) results in a large destabilization of BHA, corresponding to about 40 °C lower Tm as determined by both CD and DSC. Ten-fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which probably originate from different populations of BHA/calcium complexes. Combined interpretation of these observations and structural information on homologous α-amylases forms the basis for a suggested mechanism underlying the inactivation mechanism of BHA. The mechanism includes irreversible thermal denaturation of different BHA/calcium complexes and the calcium binding equilibria. Furthermore, the model accounts for a temperature-induced reversible structural change associated with calcium binding.  相似文献   

20.
The 105 000 × g supernatant fractions of various rat tissues catalyze the transfer of the N-acetyl group of certain carcinogenic aromatic acethydroxamic acids to the O atom of aromatic hydroxylamines. The resulting N-acetoxyhydroxylamines are strongly electrophilic and have been detected and analyzed through their reaction with N-acetylmethionine to yield methylmercaptoaminoarenes.Of the rat tissues studied the liver had the highest activity; kidney and small intestinal mucosa were about 15–20% as active. The transacetylase activities of these tissues were similar with respect to their ability to use either N-hydroxy-2-acetylaminofluorene (N-hydroxy-AAF or N-hydroxy-4-acetylaminobiphenyl (N-hydroxy-AABP) as acetyl donors, their stability on storage at 2–3°C, and their elution patterns from Sephadex G-100 columns. Low transacetylase activity was found in spleen and muscle.Mammary tissue from 16–21 day pregnant rats had 20% of the transacetylase activity of rat liver when N-hydroxy-AABP was used as acetyl donor and N-hydroxy-4-aminobiphenyl (N-hydroxy-ABP) was the acetyl acceptor. This enzyme system from mammary tissue did not utilize the fluorene derivatives as either acetyl donor or acetyl acceptor, was much more labile than the liver, kidney, or intestinal mucosa systems, and had a pH optimum at 7.5, as compared to pH 6.8 for liver. The mammary tissue system was similar to the hepatic system in being inhibited by sulfhydryl reagents; it required a source of reduced pyridine nucleotides for maximum activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号