首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urbanisation is increasing globally, degrading terrestrial and freshwater habitats and reducing faunal and floral richness. Whilst the potential for garden ponds to serve as important biodiversity resources in urban areas has been documented in a limited number of studies, quantifying the contribution of garden ponds to urban freshwater diversity has been largely neglected. This study aims to quantify the taxonomic richness, community composition and conservation value of aquatic macroinvertebrates in domestic garden and non-urban ponds. Taxonomic richness was significantly lower in garden ponds than non-urban ponds at an alpha and gamma scale. A greater richness of Odonata, Coleoptera, Gastropoda and Hemiptera were recorded in non-urban ponds. Garden ponds were found to support compositionally different macroinvertebrate communities compared to non-urban ponds, influenced by variation in water depth and conductivity. A total of 23 taxa were recorded from garden ponds only. Non-urban ponds had a significantly higher conservation value compared to garden ponds (87% of garden ponds were of low or moderate conservation value, while only 35% of non-urban ponds were in these categories). Although garden ponds currently support limited macroinvertebrate diversity and have lower conservation value, they contribute to the regional species pool and their potential to limit future urban biodiversity loss is significant. Given their high abundance and popularity within the urban landscape, clear guidance is required for pond-owners on how to best manage garden ponds to support and sustain biodiversity. For this to be achieved, research is required to increase fundamental understanding of urban pond ecology, and the development of evidence led garden pond management practices.  相似文献   

2.
Ponds (lentic water bodies <2 ha) constitute a considerable biodiversity resource. Understanding the environmental factors that underlie this diversity is important in protecting and managing the habitat. We surveyed 425 ponds for biological and physical characteristics with 78 of those also surveyed for chemical characteristics. A total of 277 invertebrate species and 265 plant species were found. Species richness varied between 2 and 99 (mean 27.2 ± 0.6 SE) for invertebrates and 1 and 58 (mean 20.8 ± 0.4 SE) for plants. Generalised additive models were used to investigate variables that correlate with the species richness of plants and invertebrates, with additional models to investigate insect, Coleoptera, Odonata, Hemiptera, Trichoptera and Mollusca species richness. Models performed reasonably well for invertebrates in general (R 2 = 30.3%) but varied between lower-order invertebrate taxa (12.7–34.7%). Ponds with lower levels of shading and no history of drying contained higher numbers of species of plants and all invertebrate groups. Aquatic plant coverage positively correlated with species richness in all invertebrate groups apart from Trichoptera and the presence of fish was associated with high invertebrate species richness in all groups apart from Coleoptera. The addition of chemistry variables suggested non-linear relationships between oxygen demand and phosphate concentration and higher-order richness. We demonstrate that the composition of biological communities varies along with their species richness and that less diverse ponds are more variable compared to more diverse ponds. Variables positively correlated with richness of one taxon may be negatively correlated with that of another, making comprehensive management recommendations difficult. Promoting a high landscape-level pond biodiversity will involve the management of a high diversity of pond types within that landscape.  相似文献   

3.
Habitat loss and degradation are considered major threats to freshwater biodiversity and to invertebrates in particular. These often irreversible processes may lead to local and regional extinctions of species, most notably of stenotopic taxa. In spite of this, a number of studies have shown that small habitat patches can sustain rich and abundant communities. The present work assesses the relevance of a group of four small man-made (secondary) wildlife ponds to Odonata species diversity and abundance. Results obtained on pond recruiting capacity, species richness, abundance and habitat use by means of exuviae collection and monitoring of adults using a capture–mark–recapture (CMR) method indicate the potential suitability of these small aquatic biotopes and the surrounding landscape as habitat providers and stepping stone connectors in the Vallès lowlands (Catalonia, Spain). This region, close to the metropolitan area of Barcelona, has severely degraded natural habitats and high landscape fragmentation due to infrastructure, urban and industrial expansion. A comparison among a greater number of sites (ponds and sections of streams and rivers) distributed across the region showed that adequately managed small waterbodies harbour richer Odonata communities than others that are unmanaged or managed specifically for other types of fauna or uses. Appropriate care of these small biotopes avoids disturbance and keeps them free from vertebrates like fish and waterfowl which, under certain conditions, may have a strong influence on the invertebrate communities because, apart from feeding on larvae, they may have a negative impact on macrophyte development and water quality. While rivers and streams, the only natural aquatic habitats in the area, may be both expensive and technically challenging to restore and manage successfully, the creation and/or restoration of small ponds and short river sections in suitable locations can be a cost-effective method for enhancing freshwater vegetation and invertebrate diversity in this impacted landscape.  相似文献   

4.
The increasing urbanization process is hypothesized to drastically alter (semi‐)natural environments with a concomitant major decline in species abundance and diversity. Yet, studies on this effect of urbanization, and the spatial scale at which it acts, are at present inconclusive due to the large heterogeneity in taxonomic groups and spatial scales at which this relationship has been investigated among studies. Comprehensive studies analysing this relationship across multiple animal groups and at multiple spatial scales are rare, hampering the assessment of how biodiversity generally responds to urbanization. We studied aquatic (cladocerans), limno‐terrestrial (bdelloid rotifers) and terrestrial (butterflies, ground beetles, ground‐ and web spiders, macro‐moths, orthopterans and snails) invertebrate groups using a hierarchical spatial design, wherein three local‐scale (200 m × 200 m) urbanization levels were repeatedly sampled across three landscape‐scale (3 km × 3 km) urbanization levels. We tested for local and landscape urbanization effects on abundance and species richness of each group, whereby total richness was partitioned into the average richness of local communities and the richness due to variation among local communities. Abundances of the terrestrial active dispersers declined in response to local urbanization, with reductions up to 85% for butterflies, while passive dispersers did not show any clear trend. Species richness also declined with increasing levels of urbanization, but responses were highly heterogeneous among the different groups with respect to the richness component and the spatial scale at which urbanization impacts richness. Depending on the group, species richness declined due to biotic homogenization and/or local species loss. This resulted in an overall decrease in total richness across groups in urban areas. These results provide strong support to the general negative impact of urbanization on abundance and species richness within habitat patches and highlight the importance of considering multiple spatial scales and taxa to assess the impacts of urbanization on biodiversity.  相似文献   

5.
Conservation through the protection of particular habitats is predicated on the assumption that the conservation value of those habitats is stable. We test this assumption for ponds by investigating temporal variation in macroinvertebrate and macrophyte communities over a 10-year period in northwest England. We surveyed 51 ponds in northern England in 1995/6 and again in 2006, identifying all macrophytes (167 species) and all macroinvertebrates (221 species, excluding Diptera) to species. The alpha-diversity, beta-diversity and conservation value of these ponds were compared between surveys. We find that invertebrate species richness increased from an average of 29.5 species to 39.8 species between surveys. Invertebrate gamma-diversity also increased between the two surveys from 181 species to 201 species. However, this increase in diversity was accompanied by a decrease in beta-diversity. Plant alpha-, beta- and gamma-diversity remained approximately constant between the two periods. However, increased proportions of grass species and a complete loss of charophytes suggests that the communities are undergoing succession. Conservation value was not correlated between sampling periods in either plants or invertebrates. This was confirmed by comparing ponds that had been disturbed with those that had no history of disturbance to demonstrate that levels of correlation between surveys were approximately equal in each group of ponds. This study has three important conservation implications: (i) a pond with high diversity or high conservation value may not remain that way and so it is unwise to base pond conservation measures upon protecting currently-speciose habitats; (ii) maximising pond gamma-diversity requires a combination of late and early succession ponds, especially for invertebrates; and (iii) invertebrate and plant communities in ponds may require different management strategies if succession occurs at varying rates in the two groups.  相似文献   

6.
Biodiversity patterns in cladoceran communities were investigated in urban waterbodies in relation with residential land use, pond management, and waterbody environments. We evaluated species richness in the pelagic and littoral zones of eighteen waterbodies of a large Canadian city. Gamma diversity (26 species) observed at a small scale in the urban survey was important comparatively to large-scale surveys of lakes. Beta diversity ranged from 1 to 8 species among waterbodies. We tested if littoral species greatly contributed to regional diversity in urban waterbodies. Littoral species (Chydoridae, Ilyocryptidae, Macrothricidae, Polyphemidae) accounted for 58% of the total species pool. We distinguished five cladoceran assemblages associated to different waterbodies (temporary ponds, permanent lakes, and wetlands). Cladoceran communities were more diverse and variable in permanent lakes than in temporary ponds. Changes in cladoceran species assemblages among waterbodies were driven by variations in waterbody size and phosphorus enrichment, macrophyte and algal biomass, urban density, pond management practices, and the presence of potential predators as fish and macroinvertebrates. Our study indicates that both artificial ponds and lakes and natural wetlands are valuable habitats for the conservation of cladoceran biodiversity and rare endemic species in urban regions. Further research on pond management strategies promoting urban aquatic biodiversity should be undertaken.  相似文献   

7.
We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes.  相似文献   

8.
9.
Ponds support a rich biodiversity because the heterogeneity of individual ponds creates, at the landscape scale, a diversity of habitats for wildlife. The distribution of pond animals and plants will be influenced by both the local conditions within a pond and the spatial distribution of ponds across the landscape. Separating out the local from the spatial is difficult because the two are often linked. Pond snails are likely to be affected by both local conditions, e.g. water hardness, and spatial patterns, e.g. distance between ponds, but studies of snail communities struggle distinguishing between the two. In this study, communities of snails were recorded from 52 ponds in a biogeographically coherent landscape in north-east England. The distribution of snail communities was compared to local environments characterised by the macrophyte communities within each pond and to the spatial pattern of ponds throughout the landscape. Mantel tests were used to partial out the local versus the landscape respective influences. Snail communities became more similar in ponds that were closer together and in ponds with similar macrophyte communities as both the local and the landscape scale were important for this group of animals. Data were collected from several types of ponds, including those created on nature reserves specifically for wildlife, old field ponds (at least 150 years old) primarily created for watering livestock and subsidence ponds outside protected areas or amongst coastal dunes. No one pond type supported all the species. Larger, deeper ponds on nature reserves had the highest numbers of species within individual ponds but shallow, temporary sites on farm land supported a distinct temporary water fauna. The conservation of pond snails in this region requires a diversity of pond types rather than one idealised type and ponds scattered throughout the area at a variety of sites, not just concentrated on nature reserves. Handling editor: B. Oertli  相似文献   

10.
Urbanization, one of the most important anthropogenic impacts on Earth, is rapidly expanding worldwide. This expansion of urban land‐covered areas is known to significantly reduce different components of biodiversity. However, the global evidence for this effect is mainly focused on a single diversity measure (species richness) with a few local or regional studies also supporting reductions in functional diversity. We have used birds, an important ecological group that has been used as surrogate for other animals, to investigate the hypothesis that urbanization reduces the global taxonomical and/or evolutionary diversity. We have also explored whether there is evidence supporting that urban bird communities are evolutionarily homogenized worldwide in comparison with nonurban ones by means of using evolutionary distinctiveness (how unique are the species) of bird communities. To our knowledge, this is the first attempt to quantify the effect of urbanization in more than one single diversity measure as well as the first time to look for associations between urbanization and phylogenetic diversity at a large spatial scale. Our findings show a strong and globally consistent reduction in taxonomic diversity in urban areas, which is also synchronized with the evolutionary homogenization of urban bird communities. Despite our general patterns, we found some regional differences in the intensity of the effect of cities on bird species richness or evolutionary distinctiveness, suggesting that conservation efforts should be adapted locally. Our findings might be useful for conservationists and policymakers to minimize the impact of urban development on Earth's biodiversity and help design more realistic conservation strategies.  相似文献   

11.
Biological plant invasions pose a serious threat to native biodiversity and have received much attention, especially in terrestrial habitats. In freshwater ecosystems impacts of invasive plant species are less studied. We hypothesized an impact on organisms from the water column and from the sediment. We then assessed the impact of three aquatic invasive species on the plants and macroinvertebrates: Hydrocotyle ranunculoides, Ludwigia grandiflora and Myriophyllum aquaticum. Our research on 32 ponds in Belgium indicated that the reduction in the native plant species richness was a common pattern to invasion. However, the magnitude of impacts were species specific. A strong negative relationship to invasive species cover was found, with submerged vegetation the most vulnerable to the invasion. Invertebrate richness, diversity and abundance were measured in sediments of invaded and uninvaded ponds along a gradient of H. ranunculoides, L. grandiflora, and M. aquaticum species cover. We found a strong negative relationship between invasive species cover and invertebrate abundance, probably due to unsuitable conditions of the detritus for invertebrate colonization. Taxonomic compositions of aquatic invertebrate assemblages in invaded ponds differed from uninvaded ponds. Sensitive benthos, such as mayflies were completely absent in invaded ponds. The introduction of H. ranunculoides, L. grandiflora, and M. aquaticum in Belgian ponds has caused significant ecological alterations in the aquatic vegetation and the detritus community of ponds.  相似文献   

12.
Ponds support a rich biodiversity. This arises in part because of the number and heterogeneity of ponds spatially throughout the landscape. Studies of ponds suggest that distinct communities develop within individual ponds but most examples are based on short-term 1- or 2-year surveys which cannot identify the effects of historic events upon contemporary communities. This study reports the development and turnover of the early summer macroinvertebrate communities in thirty small temporary ponds from their creation in 1994 over 10 years to 2004. Distinct pioneer communities established in the first year of the ponds’ creation, the first 3 years dominated by a fauna associated with long summer dry phases. Then a sustained period of inundation lasting 27 months from summer 1997–1999 resulted in establishment of many taxa associated with permanent ponds and loss of some temporary pond species. The re-establishment of summer dry phases in 1999 was associated with the loss of some but not all of the permanent water taxa and re-colonisation by some temporary water species creating new communities combining these different elements. The communities were not a linear successional sequence; the communities that re-assembled following resumption of dry phases reflected the contingent history of each pond and the effects of historic events. The longer term nature of the study showed that the characteristic heterogeneity of pond invertebrate communities occurs through time as well as spatially and that the richness and variety of contemporary communities, which is often hard to explain from snap-shot studies, is partly the result of historic events.  相似文献   

13.
14.
Relating fish kills to upwellings and wind patterns in the Salton Sea   总被引:1,自引:0,他引:1  
Awareness of pond conservation value is growing all over Europe. Ponds are recognized as important ecosystems supporting large numbers of species and several rare and threatened aquatic plants, macroinvertebrates and amphibians. Notwithstanding ponds, particularly temporary ones, are still neglected in Italy. There are some gaps in our understanding of the macrophyte ecology and the conservation value of Mediterranean small still waters. Therefore, this study investigated the macrophyte communities and physico-chemical characteristics of 8 permanent and 13 temporary ponds along the Tyrrhenian coast near Rome, with the aim to relate the distribution of aquatic plants to environmental variables, and to define the botanical conservation value of ponds. Throughout the study period (Spring 2002), Principal Component Analysis performed on abiotic variables clearly discriminated temporary ponds, smaller and more eutrophic, from permanent ponds, larger and with higher pH and oxygen concentration. A total of 73 macrophyte taxa were collected in the study ponds. Temporary waters hosted a smaller number of plant species than permanent ones. Besides hydroperiod length, the environmental factors related to plant richness were maximum depth, surface area, dissolved oxygen and nitrogen concentration in the water. Moreover, the Non-metric Multidimensional Scaling showed a high dissimilarity in the taxonomic composition of aquatic plants between temporary and permanent ponds. The former contained more annual fast-growing species (Callitriche sp. pl. and Ranunculus sp. pl.), while in the latter species with long life-cycles (i.e. Potamogeton sp. pl.) were more abundant. Our results highlighted that temporary and permanent ponds in central Italy have different macrophyte assemblages, with aquatic species (including some of conservation interest at regional scale) exclusively found in each pond type. This suggested that both type of ponds could give an irreplaceable contribution to the conservation of aquatic plant diversity of these freshwater ecosystems. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: R. Céréghino, J. Biggs, B. Oertli & S. Declerck The ecology of European ponds: defining the characteristics of a neglected freshwater habitat  相似文献   

15.
The Yukon Delta, a low alluvial tundra in western Alaska, has more than 105 thaw-basin ponds within its 70000 km2 area. In 1984 and 1985, 68 ponds in three interior areas of the Delta were surveyed to determine limnological features, macroinvertebrate fauna, and trophic character. Ponds ranged up to 90 ha in area, 2 m in depth, and 17 m in elevation, and occurred in various temporal stages of growth and senescence. Among the 18 major invertebrate taxa collected, in order of decreasing frequency of occurrence, Trichoptera, Hemiptera, Diptera, Pelecypoda, Isopoda, Coleoptera, Gastropoda, and Oligochaeta were found in over 50% of the ponds. Trichoptera, the only taxon occurring in all ponds, was represented by 22 species of 6 families. The average Delta pond had 6.6 of the nine more common taxa. This measure of faunal richness was similar among study areas but was higher in low-tundra (sea level) ponds and in older ponds on raised tundra. In comparison, lentic invertebrate communities in five other areas of Alaskan and Canadian tundra had fewer taxa and also lower average richness based on occurrence of the same nine taxa.  相似文献   

16.
 The objective of this study was to determine if pond permanence and vertebrate predation (by fish and waterfowl) affect invertebrate community structure in the mudflat habitat of floodplain ponds. Invertebrate communities were studied for 1 year in four Mississippi River floodplain ponds with different hydroperiods. Pond 1 experienced five dry periods, pond 2 experienced four, pond 3 dried once, and standing water remained in pond 4 for the entire year. Vertebrate predator exclusion treatments (all access, no access, small-fish access and cage controls) were placed in all ponds. As pond duration increased, predatory invertebrate richness and abundance increased while overall invertebrate richness and abundance decreased. With the exception of the cladoceran Diaphanosoma, all commonly encountered taxa were strongly affected by pond permanence in terms of abundance, biomass and, generally, individual biomass. Taxa were nearly early divided between those that were more abundant in less permanent ponds and those that were more abundant in longer-duration ponds. Invertebrate taxa richness, abundance, and total biomass were lower in the all-access treatment than in the treatments that restricted predator access, and these effects were stronger in the more permanent ponds. In general, there were no significant differences in responses to the treatments with small-fish access and no access. These results support models that predict relatively weak effects of predation in frequently disturbed habitats. Received: 30 May 1995 / Accepted: 21 June 1996  相似文献   

17.
Amphibian species richness across environmental gradients   总被引:3,自引:0,他引:3  
Large‐scale field patterns are a fundamental source of inferences on processes responsible for variation in species richness among habitats. We examined species richness of larval amphibian communities in 37 ponds over seven years on the Univ. of Michigan's E. S. George Reserve. Ordination of the community incidence matrix indicated a strong major axis of variation in species associations that was correlated with pond hydroperiod, surface area and forest canopy cover. Communities were significantly nested with those species found in ponds with high canopy cover, small area and short hydroperiod being nested subsets of those found in ponds with contrasting characteristics. Presence of fish had strong negative effects on species richness; relaxation of this effect also was apparent when fish were extirpated from ponds by drought. We employed a model selection analysis to identify the most appropriate statistical model for predicting the long‐term average species richness of these ponds from local abiotic and biotic (predator and competitor density) factors. A model including only the abiotic factors was overwhelmingly superior for the anurans; hierarchical partitioning indicated that area and canopy cover alone accounted for over 70% of the independent effects of predictor variables. The global model including both abiotic and biotic factors was the best supported model for the caudates, and correspondingly hierarchical partitioning suggested that area, hydroperiod, invertebrate predators and caudate biomass all accounted for 9–16% of the independent effects. Overall, biotic factors accounted for much less of the variation in species richness than abiotic factors. The patterns in larger, open‐canopy ponds provided little evidence of competitive effects on species richness, though there were patterns consistent with competitive effects in small, closed‐canopy ponds. The unusual temporal and spatial extent of these data enabled us to critically evaluate ideas regarding patterns in larval amphibian communities, and the effects of area, disturbance (hydroperiod) and productivity (canopy cover) on species richness of these communities. These results have important implications to the conservation of amphibian species richness in freshwater wetlands, which are among the most threatened ecosystems worldwide.  相似文献   

18.
Urbanisation is increasing and it is essential to integrate biodiversity into the spatial planning of urban areas. This requires deeper understanding of biodiversity patterns in cities. We investigated which habitat variables are major determinants of dragonfly diversity and species assemblage structure in the municipal area of Dortmund (Germany). We sampled dragonfly larvae in 33 ponds situated in city parks, commercial, residential and agricultural areas. We recorded 30 autochthonous dragonfly species with species richness ranging from zero to 17. Additionally, we surveyed a set of environmental variables including habitat size, water level, pond structures and vegetation as well as surrounding landscape and potential disturbances like waterfowl and fish. Multivariate methods were used to identify the major determinants of dragonfly diversity, abundance and assemblage structure. Analysis indicated that diversity of aquatic and terrestrial vegetation affected dragonfly diversity positively. City park ponds had low diversity, but Ischnura elegans was obviously promoted by the specific park pond conditions, including high waterfowl density. We found five assemblages mostly determined by generalistic species which were related to different pond types. Moderately disturbed ruderal and pioneer ponds in residential and agricultural areas also contained increased numbers of rare species. Our results indicate that urban ponds may have a great value for maintaining biodiversity, but various disturbances have negative impact. To promote urban biodiversity we suggest a natural design of well-vegetated ponds as well as a high diversity of different pond types and particularly a more-natural redesign of city park ponds.  相似文献   

19.
Ponds are common and abundant landscape features in temperate environments, particularly on floodplains where lateral connectivity with riverine systems persists. Despite their widespread occurrence and importance to regional diversity, research on the ecology and hydrology of temperate ephemeral and perennial floodplain ponds lags behind that of other shallow waterbodies. This study examines the aquatic macroinvertebrate diversity of 34 ponds (20 perennial and 14 ephemeral) on two unregulated riverine floodplain meadows in Leicestershire, UK. Perennial ponds supported nearly twice the diversity of ephemeral ponds. Despite frequent inundation of floodwater and connectivity with other floodplain waterbodies, ephemeral ponds supported distinct invertebrate communities when compared to perennial ponds. When the relative importance of physical, chemical, biological and spatial characteristics was examined, physical and chemical characteristics were found to account for more variation in community composition than biological or spatial variables. The results suggest that niche characteristics rather than neutral colonisation processes dominate the structure of invertebrate communities of floodplain ponds. The maintenance of pond networks with varying hydroperiod lengths and environmental characteristics should be encouraged as part of conservation management strategies to provide heterogeneous environmental conditions to support and enhance aquatic biodiversity at a landscape scale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号