首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ascorbic acid is essential for the formation of bone by osteoblasts, but the mechanism by which osteoblasts transport ascorbate has not been investigated previously. We examined the uptake ofl-[14C]ascorbate by a rat osteoblast-like cell line (ROS 17/2.8) and by primary cultures of rat calvaria cells. In both systems, cells accumulatedl-[14C]ascorbate during incubations of 1–30 min at 37°C. Unlike propionic acid, which diffuses across membranes in protonated form, ascorbic acid did not markedly alter cytosolic pH. Initial ascorbate uptake rate saturated with increasing substrate concentration, reflecting a high-affinity interaction that could be described by Michaelis-Menten kinetics (apparentK m =30±2 m andV max=1460±140 nmol ascorbate/g protein/min in ROS 17/2.8 cells incubated with 138mm extracellular Na+). Consistent with a stereoselective carrier-mediated mechanism, unlabeledl-ascorbate was a more potent inhibitor (IC50=30±5 m) ofl-[14C]ascorbate transport than wasd-isoascorbate (IC50=380±55 m). Uptake was dependent on both temperature and Na+, since it was inhibited by cooling to 4°C and by substitution of K+, Li+ or N-methyl-d-glucamine for extracellular Na+. Decreasing the external Na+ concentration lowered both the affinity of the transporter for ascorbate and the apparent maximum velocity of transport. We conclude that osteoblasts possess a stereoselective, high-affinity, Na+-dependent transport system for ascorbate. This system may play a role in the regulation of bone formation.  相似文献   

2.
The uptake ofl-[3H]glutamate,l-[3H]aspartate, -[3H]aminobutric acid (GABA), [3H]dopamine,dl-[3H]norepinephrine and [3H]5-hydroxytryptamine (5-HT) was studied in astrocytes cultured from the cerebral cortex, striatum and brain stem of newborn rat and grown for 2 weeks in primary cultures. The astrocytes exhibited a high-affinityl-glutamate uptake withK m values ranging from 11 to 110 M.V max values were 4.5 in cerebral cortex, 39.1 in striatum, and 0.4 in brain stem, nmol per mg cell protein per min. There was a less prominent high-affinity uptake ofl-aspartate withK m values from 88 to 187 M.V max values were 7.4 in cerebral cortex, 37.1 in striatum, and 3.1 in brain stem, nmol per mg cell protein per min. The high-affinity GABA uptake exhibitedK m values ranging from 5 to 17 M andV max values were 0.01 for cerebral cortex, 0.04 for striatum, and 0.1 for brain stem, nmol per mg cell protein per min. No high-affinity, high-capacity uptake was found for the monoamines. The results demonstrate a heterogeneity among the astroglial cells cultivated from the different brain regions concerning the uptake capacity of amino acid neurotransmitters. Furthermore, amino acid transmitters and monoamines are taken up by the cells in different ways.  相似文献   

3.
An inherited amino acid transport deficiency results in low concentrations of glutathione (GSH) in the erythrocytes of certain sheep. Earlier studies based on phenotyping according to GSH concentrations indicated that the gene Tr H, which controls normal levels of GSH, behaves as if dominant or incompletely dominant to the allele Tr h, which controls the GSH deficiency. The present paper shows that when sheep are classified according to amino acid transport activity, the Tr H gene behaves as if codominant to Tr h. Erythrocytes from sheep homozygous for the Tr H gene exhibit rapid saturable l-alanine influx (apparent K m ,21.6mm; V max, 22.4 mmol/liter cells/hr). Cells from sheep homozygous for the Tr h gene exhibit slow nonsaturable l-alanine uptake (0.55 mmol/liter cells/hr at 50mm extracellular l-alanine). Cells from heterozygous sheep show saturable l-alanine uptake with a diminished V max (apparent K m, 19.1mm; V max, 12.7 mmol/liter cells/hr). These erythrocytes have a significantly lower GSH concentration than cells from Tr H, TrH sheep but similar intracellular levels of dibasic amino acids.The authors are grateful to the M.R.C. for a Project Grant.  相似文献   

4.
To evaluate the hypothesis that glutamic acid may be the neurotransmitter of descending, excitatory supraspinal pathways, the uptake and release ofl-[3H] glutamate and the levels of endogenous glutamate were measured in preparations from rat lumbar spinal cord following complete mid-thoracic transection. Following transection, the activity of the synaptosomal high-affinty glutamate uptake process was increased in both dorsal and ventral halves of lumbar cord between 1 and 14 days after transection and returned to control levels by 21 days posttransection. At 7 days, the increased activity of the uptake process forl-[3H] glutamate resulted in elevation ofV max with no significant alteration inK t as compared to age-matched controls. Depolarization-induced release ofl-[3H]glutamate from prelabeled slices did not differ significantly from control in the lesioned rat except at 21 days after lesion when the amount of tritium release was significantly greater in the transected preparations than in control. Amino acid analysis of the lumbar cord from control and transected rats indicated only a 10% decrease in the level of endogenous glutamate and no alterations in the concentration of GABA and glycine 7 days after lesion. These findings do not support the hypothesis that glutamate serves as a major excitatory neurotransmitter in supraspinal pathways innervating the lumbar cord of the rat.  相似文献   

5.
Summary Transport of alanine was studied in isolated plasma membrane vesicles from cat pancreas using a rapid filtration technique. The uptake is osmotically sensitive and the kinetics ofl-alanine transport are biphasic showing a saturable and a nonsaturable component. The saturable component is seen only when a sodium gradient directed from the medium to the vesicular space is present. Under this condition an overshooting uptake ofl-but not ofd-alanine occurs. The Na+ gradient stimulated uptake ofl-alanine is inhibited byl-serine andl-leucine and stimulated when the membrane vesicles had been preloaded withl-alanine,l-serine orl-leucine.The ionophore monensin inhibits stimulation of uptake caused by a sodium gradient. In the presence of valinomycin or carbonyl cyanidep-trifluoromethoxyphenylhydrazone (CFCCP), the sodium-dependent transport is augmented in vesicles preloaded with K2SO4 or H+ ions (intravesicular pH 5.5), respectively. In the presence of different anions, the Na+-dependent transport is stimulated according to increasing anionic penetration through membranes (lipid solubility). We conclude that a sodium dependent electrogenic amino acid transport system is present in pancreatic plasma membranes.  相似文献   

6.
The metabolism ofl-proline toN-acetyl-d-glucosamine (GlcNAc) during germ tube formation ofCandida albicans (C. albicans) ATCC 1002 was studied. In uptake experiments, 6.9 nmol ofl-[14C]proline were taken up by 1×106 cells during 3 h of incubation at 37°C. The percentage of germ tube formation was 94 under the same condition. The presence of GlcNAc reduced the uptake ofl-proline to 3.0 nmol. The percentage of germ tube formation was 95 in the presence and absence of GlcNAc. The [3H]GlcNAc uptake was 3.0 nmol and was constant whetherl-proline was present or not. After the preparation of a chitin fraction from germ tubes that were labeled withl-[14C]proline, the radioactivity froml-proline was detected in the glucosamine (GlcN) fraction by thin-layer chromatography (TLC). The metabolism ofl-proline to GlcNAc in chitin during germ tube formation was confirmed in this experiment.  相似文献   

7.
Summary The transport ofl-histidine has been characterized in skin derived diploid human fibroblasts, cultured under strictly controlled conditions. The transport measurements were made on cells grown to subconfluency after 60 to 90 min timed preincubation. The data, at substrate concentrations ranging from 0.050 to 10 mmol/l, were analyzed by a computer program. A saturable transport system (K m =0.25 mmol/l, V max =17 nmol/mg protein per min) and a nonsaturable component of influx (K d =1.6±0.4 nmol/mg protein/min per mmol) were found.l-Histidine displayed no Na+ requirement at either low or high concentrations. Inhibition analysis demonstrated thatl-histidine uptake at low concentration was poorly inhibited by amino acids known to be effective inhibitors of system A. The largest fraction ofl-histidine uptake was inhibited by 2-amino-bicyclo (2,2,1)-heptane-2-carboxylic acid (BCH), leucine, and tryptophan. These results indicated thatl-histidine is transported in human fibroblasts, mainly by the Na+ independent system L. The differences between this cell type and others studied previously are discussed. This work was supported in part by Grant 773 from UER de Médecine, Université Paris XI (France).  相似文献   

8.
The effect of ammonia onl-glutamate (L-GLU) uptake was examined in cultured astrocytes. Acute ammonia treatment (5–10 mM) enhanced L-[3H]GLU uptake by 20–42% by increasing the Vmax; this persisted for 2 days and then started to decline. Ammonia, however, did not affect the uptake ofd-[3H]aspartate (D-ASP), a non-metabolizable analog of L-GLU, that uses the same transport carrier as L-GLU. Also, L-GLU uptake was not affected during the first 2 min of the assay. Thus, ammonia did not have an acute effect on L-GLU transport (translocation); rather, ammonia enhanced the accumulation or “trapping” of L-GLU or its by-products. Chronic ammonia treatment, on the other hand, inhibited L-GLU transport in astrocytes by ∼30–45% and this was due to a decrease in Vmax, suggesting that the number of L-GLU transporters was decreased. This inhibitory effect was observed after 1 day of treatment and persisted for at least 7 days. The inhibition of L-GLU transport was partially reversible following removal of ammonia. The effects of ammonia on L-GLU transport and uptake may explain the abnormal L-GLU neurotransmission observed in hyperammonemia/hepatic encephalopathy, and the brain swelling associated with fulminant hepatic failure.  相似文献   

9.
Although smooth muscle and endothelial cells in pig coronary artery are morphologically and functionally distinct, ascorbate uptake has been characterized only in smooth muscle cells. Ascorbate transporters in kidney and intestinal epithelial cells differ from those in smooth muscle. We examined ascorbate transport and mRNA expression of sodium-dependent vitamin C transporters (SVCT) by RT-PCR in the pig coronary artery endothelial cell cultures. When 14C-ascorbate uptake in endothelial cells was examined as 14C or by HPLC, the two values did not differ from each other. 14C-ascorbate uptake was Na+-dependent, stereoselective for l-ascorbate and inhibited by sulfinpyrazone. The kinetic characteristics of the uptake were: Km = 27± 3 M (Hill coefficient = 1) for ascorbate and Km = 73± 14 mM (Hill coefficient = 2) for Na+. Surprisingly, endothelial cells had similar kinetic parameters as smooth muscle cells, except for a slightly lower uptake velocity in endothelial cells. Comparison with the smooth muscle showed that both tissue types expressed mRNA for SVCT2. Endothelial cells differ from epithelial cells which express mainly SVCT1 but resemble smooth muscle cells in this respect. (Mol Cell Biochem 271: 43–49, 2005)  相似文献   

10.
The lipophilic yeastsMalassezia furfur andM. pachydermatis show an initial rapid uptake ofl-leucine followed by slower steady-state rates. At least two independent transport systems forl-leucine were present in both species. The high-affinity system forM. furfur had a KT of 0.047 µM with a Jmax of 222 fM/min/106 cells (65 pM/min/mg dry weight), whereas forM. pachydermatis the KT was 0.067 µM with a Jmax of 709 fM/min/106 cells (89 pM/min/dry weight). The low-affinity system forM. furfur had a KT of 646 µM with a Jmax of 1.62 pM/min/106 cells (0.5 nM/min/mg dry weight) and that ofM. pachydermatis had a KT of 3.3 µM with a Jmax of 9.97 pM/min/106 cells (1.3 nM/min/mg dry weight). Both transport systems were energy-dependent. Cells incubated with Tween 80 showedl-leucine uptake via both transport systems. Cells incubated with a combination of glucose (1%) and Tween 80 (0.01%) showed decreased transport rates for the high-affinity system for both species as compared with cells incubated only with glucose. The low-affinity transport system of both species in the presence of glucose plus Tween 80 showed an initial rapid uptake followed by greater efflux than influx ofl-leucine.l-Leucine demonstrated binding to Tween 80, but the major effect of Tween 80 on membrane transport inMalassezia appears to be on the efflux of transported molecules.  相似文献   

11.
Analysis in mouse brain slices of the uptake of acetyl-l-[N-methyl-14C]carnitine with time showed it to be concentrative, and kinetic analysis gave aK m of 1.92 mM and aV max of 1.96 mol/min per ml, indicating the presence of a low-affinity carrier system. The uptake was energy-requiring and sodium-dependent, being inhibited in the presence of nitrogen (absence of O2), sodium cyanide, low temperature (4°C), and ouabain, and in the absence of Na+. The uptake of acetyl-l-carnitine was not strictly substrate-specific; -butyrobetaine,l-carnitine,l-DABA, and GABA were potent inhibitors, hypotaurine andl-glutamate were moderate inhibitors, and glycine and -alanine were only weakly inhibitory. In vivo, acetyl-l-carnitine transport across the blood-brain barrier had a brain uptake index of 2.4±0.2, which was similar to that of GABA. These results indicate an affinity of acetyl-l-carnitine to the GABA transport system.  相似文献   

12.
Summary We have investigated transport of the amino acid glutamine across the surface membranes of prophase-arrestedXenopus laevis oocytes. Glutamine accumulation was linear with time for 30 min; it was stereospecific with aK m of 0.12±0.02mm andV max of 0.92±0.17 pmol/oocyte · min forl-glutamine. Transport ofl-glutamine was Na+-dependent, the cation not being replaceable with Li+, K+, choline, tris(hydroxymethyl)-aminomethane (Tris), tetramethylammonium (TMA) or N-methyld-glucamine NMDG); external Cl appeared to be necessary for full activation of Na+-dependent glutamine transport. Two external Na+ may be required for the transport of one glutamine molecule.l-glutamine transport (at 50 m glutamine) was inhibited by the presence of other amino acids:l-alanine,d-alanine,l-leucine,l-asparagine andl-arginine (about 60% inhibition at 1mm);l-histidine,l-valine and glycine (25 to 40% inhibition at 1mm);l-serine,l-lysine,l-phenylalanine andl-glutamate (45 to 55% inhibition at 10mm). N-methylaminoisobutyric acid (meAIB) had no effect at 10mm, but 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) inhibited Na+/glutamine transport by about 50% at 10mm.l-glutamine was a competitive inhibitor of the Na+-dependent transport ofl-alanine,d-alanine andl-arginine; this evidence is consistent with the existence of a single system transporting all four amino acids. Glutamine uptake in oocytes appears to be catalyzed by a transport system distinct from the cotransport Systems A, ASC, N and Gly, although it resembles System B0,+.  相似文献   

13.
Summary Cells ofCandida shehatae repressed by growth in glucose- or D-xylose-medium produced a facilitated diffusion system that transported glucose (K s±2 mM,V max±2.3 mmoles g−1 h−1),d-xylose (K s±125 mM,V max±22.5 mmoles g−1 h−1) and D-mannose, but neither D-galactose norl-arabinose. Cells derepressed by starvation formed several sugar-proton symports. One proton symport accumulated 3-0-methylglucose about 400-fold and transported glucose (K s±0.12 mM,V max ± 3.2 mmoles g−1 h−1) andd-mannose, a second proton symport transportedd-xylose (K s± 1.0 mM,V max 1.4 mmoles g−1 h−1) andd-galactose, whilel-arabinose apparently used a third proton symport. The stoicheiometry was one proton for each molecule of glucose or D-xylose transported. Substrates of one sugar proton symport inhibited non-competitively the transport of substrates of the other symports. Starvation, while inducing the sugar-proton symports, silenced the facilitated diffusion system with respect to glucose transport but not with respect to the transport of D-xylose, facilitated diffusion functioning simultaneously with thed-xylose-proton symport.  相似文献   

14.
Influx of [3H]-l-proline into renal OK cells revealed that basal transport was mediated by the transporter SIT1. When cells were submitted for 8 h to amino acid deprivation, uptake of l-proline was now dominated by a low-affinity system with an apparent K m of 4.4 ± 0.6 mM and a V max of 10.2 ± 0.6 nmol/mg of protein/min operating in addition to the high-affinity SIT1 system with a K m of 0.12 ± 0.01 mM and a V max of 0.28 ± 0.04 nmol/mg of protein/min. The low- and high-affinity proline transporting systems were sensitive to inhibitors of JNK and PI-3 kinases, whereas a GSK-3 inhibitor affected only the upregulated transport system. Ion-replacement studies and experiments assessing substrate specificities for both systems provided strong evidence that SNAT2, that showed two- to threefold increased mRNA levels, is the responsible transporter mediating the increased proline influx under conditions of amino acid deprivation.  相似文献   

15.
The uptake of radioactive -aminobutyric acid (GABA) andd-aspartate and the effect of SKF 89976-A, a non-substrate inhibitor of the GABA transporter, on this uptake have been investigated. Neuronal cultures from eight-day-old chick embryos grown for three or six days in vitro, were used as a model. For comparison, we also used the P2-fraction from rat. Neuronal cultures grown for three and six days expressed high-affinity uptake systems for [3H]GABA and ford-[3H]aspartate with an increasing Vmax during this period. The lipophilic non-substrate GABA uptake inhibitor, SKF 89976-A, inhibited transporter mediated uptake of GABA both in cell cultures from chicken, and in P2-fractions from rat. The results also showed that SKF 89976-A was a poor inhibitor of the uptake ofd-aspartate. We found no non-saturable uptake ofd-aspartate.  相似文献   

16.
Summary The kinetic parameters ford-glucose uptake were studied in human liver cell cultures under strictly defined experimental conditions. Using a wide concentration range (0.005 to 30 mmol/l), the kinetic data obtained suggested strongly thatd-glucose in human liver cell cultures can be transported by two separate systems. For the high-affinity system, the apparentK m was 0.645±0.21 mmol/l and the Vmax, 12.49±3.74 nmol/mg protein per min. For the low-affinity system, the apparentK m was 6.91±0.58 mmol/l and the Vmax, 79.90±5.27 nmol/mg protein per min. At a concentration of 2.1×10−7 mol/l, cytochalasin B preferentially inhibited the high-affinityd-glucose site or transport system. The time course ofd-glucose uptake, studied in two cell lines from patients with hereditary fructose intolerance, was significantly higher than for the control lines. This work was supported by Grant I.N.S.E.R.M. CRL 77-5-210-4.  相似文献   

17.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   

18.
When expressed in Xenopus oocytes KAAT1 increases tenfold the transport of l-leucine. Substitution of NaCl with 100 mm LiCl, RbCl or KCl allows a reduced but significant activation of l-leucine uptakes. Chloride-dependence is not strict since other pseudohalide anions such as thyocyanate are accepted. KAAT1 is highly sensitive to pH. It can transport l-leucine at pH 5.5 and 8, but the maximum uptake has been observed at pH 10, near to the physiological pH value, when amino and carboxylic groups are both deprotonated. The pH value mainly influences the V max in Na+ activation curves and l-leucine kinetics. The kinetic parameters are K mNa = 4.6 ± 2 mm, V maxNa = 14.8 ± 1.7 pmol/oocyte/5 min for pH 8.0 and K mNa = 2.8 ± 0.7 mm, V maxNa = 31.3 ± 1.9 pmol/oocyte/5 min for pH 10.0. The kinetic parameters of l-leucine uptake are: K m = 120.4 ± 24.2 μm, V max = 23.2 ± 1.4 pmol/oocyte/5 min at pH 8.0 and K m = 81.3 ± 24.2 μm, V max = 65.6 ± 3.9 pmol/oocyte/5 min at pH 10.0. On the basis of inhibition experiments, the structural features required for KAAT1 substrates are: (i) a carboxylic group, (ii) an unsubstituted α-amino group, (iii) the side chain is unnecessary, if present it should be uncharged regardless of length and ramification. Received: 27 April 1999/Revised: 10 January 2000  相似文献   

19.
Summary A membrane preparation enriched in the basolateral segment of the plasma membrane was isolated from the rat renal cortex by a procedure that included separation of particulates on a self-generating Percoll gradient. The uptake ofl-glutamate by the basolateral membrane vesicles was studied. A Na+ gradient ([Na+] o >[Na+] i ) stimulated the uptake ofl-glutamate and provided the driving force for the uphill transport of the acidic amino acid, suggesting a Na+-l-glutamate cotransport system in the basolateral membrane. A K+ gradient ([K+] i >[K+] o ) increased the uptake additionally. This effect was specific for K+ (Rb+). The action of the K+ gradient in enhancing the uptake ofl-glutamate had an absolute requirement for Na+. In the presence of Na+, but in the absence of a Na+ gradient. i.e., [Na+] o =[Na+] i , the K+ gradient also energized the concentrative uptake ofl-glutamate. This effect of the K+ gradient was not attributable to an alteration in membrane potential. The finding of a concentrative uptake system forl-glutamate energized by both Na+ ([Na+] o >[Na+] i and K+ ([K+] i >[K+] o ) gradients in the basolateral membrane, combined with previous reports of an ion gradient-dependent uphill transport system for this amino acid in the brush border membrane, suggests a mechanism by whichl-glutamate is accumulated intracellularly in the renal proximal tubule to extraordinarily high concentrations.  相似文献   

20.
Inhibitors of energy metabolism (3-ohlorophenylhydrazonomalononitrile, antimycin A, iodoacetamide, dicyclohexylcarbodiimide) but not of transport (uranyl ions) stimulate at low concentrations the uptake ofl-leucine,l-glutamic acid,l-argimne and, to a lesser degree, of 2-aminoisobutyric acid inSaccharomyces cerevisiae. The effect is apparent only after augmenting the energy reserves of cells by preincubation withd-glueose or, more strikingly, with ethanol. It is absent in a mutant (op1) lacking the translocation system for ADP-ATP in mitochondria. The presence of two different energy reserves for amino acid transport is indicated (one in energy-poor, the other in energy-rich cells). The stimulating effect appears to be caused by a retarded degradation of the transport proteins as occurs at a lowered level of mitochondria-produced ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号