首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosystem II (PSII) of oxygen-evolving cyanobacteria, algae, and land plants mediates electron transfer from the Mn4Ca cluster to the plastoquinone pool. It is a dimeric supramolecular complex comprising more than 30 subunits per monomer, of which 16 are bitopic or peripheral, low-molecular-weight components. Directed inactivation of the plastid gene encoding the low-molecular-weight peptide PsbTc in tobacco (Nicotiana tabacum) does not prevent photoautotrophic growth. Mutant plants appear normal green, and levels of PSII proteins are not affected. Yet, PSII-dependent electron transport, stability of PSII dimers, and assembly of PSII light-harvesting complexes (LHCII) are significantly impaired. PSII light sensitivity is moderately increased and recovery from photoinhibition is delayed, leading to faster D1 degradation in ΔpsbTc under high light. Thermoluminescence emission measurements revealed alterations of midpoint potentials of primary/secondary electron-accepting plastoquinone of PSII interaction. Only traces of CP43 and no D1/D2 proteins are phosphorylated, presumably due to structural changes of PSII in ΔpsbTc. In striking contrast to the wild type, LHCII in the mutant is phosphorylated in darkness, consistent with its association with PSI, indicating an increased pool of reduced plastoquinone in the dark. Finally, our data suggest that the secondary electron-accepting plastoquinone of PSII site, the properties of which are altered in ΔpsbTc, is required for oxidation of reduced plastoquinone in darkness in an oxygen-dependent manner. These data present novel aspects of plastoquinone redox regulation, chlororespiration, and redox control of LHCII phosphorylation.  相似文献   

2.
Peng L  Ma J  Chi W  Guo J  Zhu S  Lu Q  Lu C  Zhang L 《The Plant cell》2006,18(4):955-969
To gain insight into the processes involved in photosystem II (PSII) biogenesis and maintenance, we characterized the low psii accumulation1 (lpa1) mutant of Arabidopsis thaliana, which generally accumulates lower than wild-type levels of the PSII complex. In vivo protein labeling experiments showed that synthesis of the D1 and D2 proteins was greatly reduced in the lpa1 mutant, while other plastid-encoded proteins were translated at rates similar to the wild type. In addition, turnover rates of the PSII core proteins CP47, CP43, D1, and D2 were higher in lpa1 than in wild-type plants. The newly synthesized PSII proteins were assembled into functional protein complexes, but the assembly was less efficient in the mutant. LPA1 encodes a chloroplast protein that contains two tetratricopeptide repeat domains and is an intrinsic membrane protein but not an integral subunit of PSII. Yeast two-hybrid studies revealed that LPA1 interacts with D1 but not with D2, cytochrome b6, or Alb3. Thus, LPA1 appears to be an integral membrane chaperone that is required for efficient PSII assembly, probably through direct interaction with the PSII reaction center protein D1.  相似文献   

3.
4.
Zhang D  Zhou G  Liu B  Kong Y  Chen N  Qiu Q  Yin H  An J  Zhang F  Chen F 《Plant physiology》2011,157(2):608-619
Numerous auxiliary nuclear factors have been identified to be involved in the dynamics of the photosystem II (PSII) complex. In this study, we characterized the high chlorophyll fluorescence243 (hcf243) mutant of Arabidopsis (Arabidopsis thaliana), which shows higher chlorophyll fluorescence and is severely deficient in the accumulation of PSII supercomplexes compared with the wild type. The amount of core subunits was greatly decreased, while the outer antenna subunits and other subunits were hardly affected in hcf243. In vivo protein-labeling experiments indicated that the synthesis rate of both D1 and D2 proteins decreased severely in hcf243, whereas no change was found in the rate of other plastid-encoded proteins. Furthermore, the degradation rate of the PSII core subunit D1 protein is higher in hcf243 than in the wild type, and the assembly of PSII is retarded significantly in the hcf243 mutant. HCF243, a nuclear gene, encodes a chloroplast protein that interacts with the D1 protein. HCF243 homologs were identified in angiosperms with one or two copies but were not found in lower plants and prokaryotes. These results suggest that HCF243, which arose after the origin of the higher plants, may act as a cofactor to maintain the stability of D1 protein and to promote the subsequent assembly of the PSII complex.  相似文献   

5.
To study the interaction of the nuclear and chloroplast genomes in the biogenesis of the photosynthetic apparatus, nuclear mutants of Chlamydomonas reinhardtii deficient in photosystem II (PSII) activity were analyzed. Two independently-isolated, allelic nuclear mutants show a pleiotropic reduction in a set of functionally related PSII polypeptides. Immunoblot analysis reveals that the two mutants, nac-1-18 and nac-1-11, accumulate reduced amounts of the chloroplast-encoded polypeptides P5 and P6 and are completely deficient in polypeptides D1 and D2. Polypeptides of the oxygen-evolving and light-harvesting complexes associated with PSII, however, are present at wild-type levels. Analysis of mRNAs encoding PSII polypeptides from these mutants indicates that all messages are present, although some species, including the D2 message, are significantly elevated. When mutant cells are pulse-labeled for 10 min with [14C]acetate, a greatly reduced amount of labeled D2 protein is observed, while all other PSII polypeptides are synthesized normally. These data indicate that the mutations present in nac-1-18 and nac-1-11 affect a nuclear gene whose product specifically controls the translation and/or degradation of the chloroplast-encoded D2 polypeptide.  相似文献   

6.
Pure plasma membrane and thylakoid membrane fractions from Synechocystis 6803 were isolated to study the localisation and processing of the precursor form of the D1 protein (pD1) of photosystem II (PSII). PSII core proteins (D1, D2 and cytb559) were localised both to plasma and thylakoid membrane fractions, the majority in thylakoids. pD1 was found only in the thylakoid membrane where active PSII is known to function. Membrane fatty acid unsaturation was shown to be critical in processing of pD1 into mature D1 protein. This was concluded from pulse-labelling experiments at low temperature using wild type and a mutant Synechocystis 6803 with a low level of membrane fatty acid unsaturation. Further, pD1 was identified as two distinct bands, an indication of two cleavage sites in the precursor peptide or, alternatively, two different conformations of pD1. Our results provide evidence for thylakoid membranes being a primary synthesis site for D1 protein during its light-activated turnover. The existence of the PSII core proteins in the plasma membrane, on the other hand, may be related to the biosynthesis of new PSII complexes in these membranes.  相似文献   

7.
A mutant strain of the cyanobacterium Synechocystis sp. PCC (Pasteur Culture Collection) 6803 has been developed in which psbB, the gene coding for the chlorophyl a-binding protein CP47 in Photosystem II (PSII), has been deleted. This deletion mutant can be used for the reintroduction of modified psbB into the cyanobacterium. To study the role of a large hydrophilic region in CP47, presumably located on the lumenal side of the thylakoid membrane between the fifth and sixth membrane-spanning regions, specific deletions have been introduced in psbB coding for regions within this domain. One psbB mutation leads to deletion of Gly-351 to Thr-365 in CP47, another psbB mutation was targeted towards deletion of Arg-384 to Val-392 in this protein. The deletion from Gly-351 to Thr-365 results in a loss of PSII activity and of photoautotrophic growth of the mutant, but the deletion between Arg-384 and Val-392 retains PSII activity and the ability to grow photoautotrophically. The mutant strain with the deletion from Gly-351 to Thr-365 does not assemble a stable PSII reaction center complex in its thylakoid membranes, and exhibits diminished levels of CP47 and of the reaction center proteins D1 and D2. In contrast to the Arg-384 to Val-392 portion of this domain, the region between Gly-351 and Thr-365 appears essential for the normal structure and function of photosystem II.  相似文献   

8.
DegP proteases have been shown to possess both chaperone and protease activities. The proteolytic activities of chloroplast DegP‐like proteases have been well documented. However, whether chloroplast Deg proteases also have chaperone activities has remained unknown. Here we show that chloroplast Deg1 also has chaperone activities, like its Escherichia coli ortholog DegP. Transgenic plants with reduced levels of Deg1 accumulated normal levels of different subunits of the major photosynthetic protein complexes, but their levels of photosystem‐II (PSII) dimers and supercomplexes were reduced. In vivo pulse‐chase protein labeling experiments showed that the assembly of newly synthesized proteins into PSII dimers and supercomplexes was impaired, although the synthesis rate of chloroplast proteins was unaffected in the transgenic lines. Protein overlay assays provided direct evidence that Deg1 interacts with the PSII reaction center protein D2. These results suggest that Deg1 assists the assembly of the PSII complex, probably through interaction with the PSII reaction center D2 protein.  相似文献   

9.
The chloroplast psbA gene from the green unicellular alga Chlamydomonas reinhardii has been localized, cloned and sequenced. This gene codes for the rapidly-labeled 32-kd protein of photosystem II, also identified as as herbicide-binding protein. Unlike psbA in higher plants which is found in the large single copy region of the chloroplast genome and is uninterrupted, psbA in C. reinhardii is located entirely within the inverted repeat, hence present in two identical copies per circular chloroplast genome, and contains four large introns. These introns range from 1.1 to 1.8 kb in size and fall into the category of Group I introns. Two of the introns contain open reading frames which are in-frame with the preceding exon sequences. We present the nucleotide sequence for the C. reinhardii psbA 5'-and 3' -flanking sequences, the coding region contained in five exons and the deduced amino acid sequence. The algal gene codes for a protein of 352 amino acid residues which is 95% homologous, excluding the last eight amino acid residues, with the higher plant protein.  相似文献   

10.
The FtsH2 protease, encoded by the slr0228 gene, plays a key role in the selective degradation of photodamaged D1 protein during the repair of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. To test whether additional proteases might be involved in D1 degradation during high rates of photodamage, we have studied the synthesis and degradation of the D1 protein in ΔPsbO and ΔPsbV mutants, in which the CaMn4 cluster catalyzing oxygen evolution is less stable, and in the D1 processing mutants, D1-S345P and ΔCtpA, which are unable to assemble a functional cluster. All four mutants exhibited a dramatically increased rate of D1 degradation in high light compared to the wild-type. Additional inactivation of the ftsH2 gene slowed the rate of D1 degradation dramatically and increased the level of PSII complexes. We conclude that FtsH2 plays a major role in the degradation of both precursor and mature forms of D1 following donor-side photoinhibition. However, this conclusion concerned only D1 assembled into larger complexes containing at least D2 and CP47. In the ΔpsbEFLJ deletion mutant blocked at an early stage in PSII assembly, unassembled D1 protein was efficiently degraded in the absence of FtsH2 pointing to the involvement of other protease(s). Significantly, the ΔPsbO mutant displayed unusually low levels of cellular chlorophyll at extremely low-light intensities. The possibilities that PSII repair may limit the availability of chlorophyll for the biogenesis of other chlorophyll-binding proteins and that PsbO might have a regulatory role in PSII repair are discussed.  相似文献   

11.
12.
13.
Shunichi Takahashi 《BBA》2005,1708(3):352-361
In photosynthetic organisms, impairment of the activities of enzymes in the Calvin cycle enhances the extent of photoinactivation of Photosystem II (PSII). We investigated the molecular mechanism responsible for this phenomenon in the unicellular green alga Chlamydomonas reinhardtii. When the Calvin cycle was interrupted by glycolaldehyde, which is known to inhibit phosphoribulokinase, the extent of photoinactivation of PSII was enhanced. The effect of glycolaldehyde was very similar to that of chloramphenicol, which inhibits protein synthesis de novo in chloroplasts. The interruption of the Calvin cycle by the introduction of a missense mutation into the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) also enhanced the extent of photoinactivation of PSII. In such mutant 10-6C cells, neither glycolaldehyde nor chloramphenicol has any additional effect on photoinactivation. When wild-type cells were incubated under weak light after photodamage to PSII, the activity of PSII recovered gradually and reached a level close to the initial level. However, recovery was inhibited in wild-type cells by glycolaldehyde and was also inhibited in 10-6C cells. Radioactive labelling and Northern blotting demonstrated that the interruption of the Calvin cycle suppressed the synthesis de novo of chloroplast proteins, such as the D1 and D2 proteins, but did not affect the levels of psbA and psbD mRNAs. Our results suggest that the photoinactivation of PSII that is associated with the interruption of the Calvin cycle is attributable primarily to the inhibition of the protein synthesis-dependent repair of PSII at the level of translation in chloroplasts.  相似文献   

14.
The goal of this research is elucidation of the molecular mechanism for the unique photosystem II (PSII) damage and repair cycle in chloroplasts. A frequently occurring, irreversible photooxidative damage inhibits the PSII charge separation reaction and stops photosynthesis. The chloroplast PSII repair process rectifies this adverse effect by selectively removing and replacing the photoinactivated D1/32-kD reaction center protein (the chloroplast-encoded psbA gene product) from the massive (>1,000 kD) water-oxidizing and O2-evolving PSII holocomplex. DNA insertional mutagenesis in the model organism Chlamydomonas reinhardtii was applied for the isolation and characterization of rep27, a repair-aberrant mutant. Gene cloning and biochemical analyses in this mutant resulted in the identification of REP27, a nuclear gene encoding a putative chloroplast-targeted protein, which is specifically required for the completion of the D1 turnover process but is not essential for the de novo biogenesis and assembly of the PSII holocomplex in this model green alga. The REP27 protein contains two highly conserved tetratricopeptide repeats, postulated to facilitate the psbA mRNA cotranslational insertion of the nascent D1 protein in the existing PSII core template. Elucidation of the PSII repair mechanism may reveal the occurrence of hitherto unknown regulatory and catalytic reactions for the selective in situ replacement of specific proteins from within multiprotein complexes.  相似文献   

15.
The primary target of photoinhibition is the photosystem II reaction center. The process involves a reversible damage, followed by an irreversible inhibition of photosystem II activity. During cell exposition to high light intensity, the D1 protein is specially degraded. An atrazine-resistant mutant of Synechocystis 6714, AzV, reaches the irreversible step of photoinhibition faster than wild-type cells. Two point mutations present in the psbA gene of AzV (coding for D1) lead to the modification of Phe 211 to Ser and Ala 251 to Val in D1. Transformation of wild-type cells with the AzV psbA gene shows that these two mutations are sufficient to induce a faster photodamage of PSII. Other DCMU-and/or atrazine-resistant mutants do not differ from the wild type when photoinhibited. We conclude that the QB pocket is involved in PSII photodamage and we propose that the mutation of Ala 251 might be related to a lower rate of proteolysis of the D1 protein than in the wild type.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PSII photosystem II - RCII reaction center II  相似文献   

16.
The synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein (HSP) in the chloroplast membranes was studied in pea plants and Chlamydomonas reinhardi. HSPs were detected in both systems by in vivo labeling and in vitro translation of poly(A)+RNA, using the wheat-germ and reticulocyte lysate systems. Heat-shock treatment of pea plants for 2 h at 42-45°C induces the expression of ˜10 nuclear coded proteins, among which several (18 kd, 19 kd, 22 kd) are predominant. A 22-kd protein is synthesized as a 26-kd precursor protein and is localized in a chloroplast membrane fraction in vivo. Following post-translational transport into intact chloroplasts in vitro of the 26-kd precursor, the protein is processed but the resulting 22-kd mature protein is localized in the chloroplast stroma. If, however, the in vitro transport is carried out with chloroplasts from heat-shocked plants, the 22-kd protein is preferentially transported to the chloroplast membrane fraction. In C. reinhardi the synthesis of poly(A)+RNAs coding for several HSPs is progressively and sequentially induced when raising the temperature for 1.5 h from 36°C to 42°C, while that of several preexisting RNAs is reduced. Various pre-existing poly(A)+RNAs endure in the cells at 42°C up to 5 h but are no longer translated in vivo, whereas some poly(A)RNAs persist and are translated. As in pea, a poly(A)+RNA coded 22-kd HSP is localized in the chloroplast membranes in vivo, although it is translated as a 22-kd protein in vitro. The in vitro translated protein is not transported in isolated pea chloroplast which, however, processes and transports other nuclear coded chloroplast proteins of Chlamydomonas. The poly(A)+RNA coding for the 22-kd HSP appears after 1 h at 36°C. Its synthesis increases with the temperature of incubation up to 42°C, although it decreases after ˜2 h of heat treatment and the already synthesized RNA is rapidly degraded. The degradation is faster upon return of the cells to 26°C. None of the heat-induced proteins is identical to the light-inducible proteins of the chloroplast membranes.  相似文献   

17.
《BBA》2020,1861(1):148086
The Mn4CaO5 cluster, the catalytic center of water oxidation in photosystem II (PSII), is coordinated by six carboxylate and one imidazole ligands. The roles of these ligands in the water oxidation mechanism remain largely unknown. In this study, we constructed a D1-D170H mutant, in which the Asp ligand bridging Mn and Ca ions was replaced with His, in the cyanobacterium Synechocystis sp. PCC 6803, and analyzed isolated PSII core complexes using Fourier transform infrared (FTIR) difference spectroscopy and mass spectrometry (MS). The S2-minus-S1 FTIR difference spectrum of the PSII complexes of the D1-D170H mutant showed features virtually identical to those of the wild-type PSII. MS analysis further showed that ~70% of D1 proteins from the PSII complexes of D1-D170H possessed the wild-type amino acid sequence, although only the mutated sequence was detected in genomic DNA in the same batch of cells for PSII preparations. In contrast, a D1-S169A mutant as a control showed a modified FTIR spectrum and only a mutated D1 protein. It is thus concluded that the FTIR spectrum of the D1-D170H mutant actually reflects that of wild-type PSII, whereas the Mn4CaO5 cluster is not formed in PSII with D1-D170H mutation. Although the mechanism of production of the wild-type D1 protein in the D1-D170H mutant is unknown at present, a caution is necessary in the analysis of site-directed mutants of crucial residues in the D1 protein, and mutation has to be confirmed not only at the DNA level but also at the amino acid level.  相似文献   

18.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 °C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing “activity gels”. Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being “self-digested”, also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 °C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg2+, and inhibited by Zn2+, Cd2+, EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing “activity gels” or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

19.
The senescence of leaves is characterized by yellowing as chlorophyll pigments are degraded. Proteins of the chloroplasts also decline during this phase of development. There exists a non-yellowing mutant genotype of Festuca pratensis Huds. which does not suffer a loss of chlorophyll during senescence. The fate of chloroplast membrane proteins was studied in mutant and wild-type plants by immune blotting and immuno-electron microscopy. Intrinsic proteins of photosystem II, exemplified by the light-harvesting chlorophyll a/b-binding protein (LHCP-2) and D1, were shown to be unusually stable in the mutant during senescence, whereas the extrinsic 33-kilodalton protein of the oxygen-evolving complex was equally lable in both genotypes. An ultrastructural study revealed that while the intrinsic proteins remained in the internal membranes of the chloroplasts, they ceased to display the heterogenous lateral distribution within the lamellae which was characteristic of nonsenescent chloroplasts. These observations are discussed in the light of possible mechanisms of protein turnover in chloroplasts.Abbreviations kDa kilodalton - LHCP-2 light-harvesting chlorophyll a/b-binding protein - Mr relative molecular mass - PSII photosystem II - SDS sodium dodecyl sulphate  相似文献   

20.
The role of the Psb28 protein in the structure and function of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. The protein was localized in the membrane fraction and, whereas most of the protein was detected as an unassembled protein, a small portion was found in the PSII core complex lacking the CP43 antenna (RC47). The association of Psb28 with RC47 was further confirmed by preferential isolation of RC47 from the strain containing a histidine-tagged derivative of Psb28 using nickel-affinity chromatography. However, the affinity-purified fraction also contained a small amount of the unassembled PSII inner antenna CP47 bound to Psb28-histidine, indicating a structural relationship between Psb28 and CP47. A psb28 deletion mutant exhibited slower autotrophic growth than wild type, although the absence of Psb28 did not affect the functional properties of PSII. The mutant showed accelerated turnover of the D1 protein, faster PSII repair, and a decrease in the cellular content of PSI. Radioactive labeling revealed a limitation in the synthesis of both CP47 and the PSI subunits PsaA/PsaB in the absence of Psb28. The mutant cells contained a high level of magnesium protoporphyrin IX methylester, a decreased level of protochlorophyllide, and released large quantities of protoporphyrin IX into the medium, indicating inhibition of chlorophyll (Chl) biosynthesis at the cyclization step yielding the isocyclic ring E. Overall, our results show the importance of Psb28 for synthesis of Chls and/or apoproteins of Chl-binding proteins CP47 and PsaA/PsaB.PSII is a multisubunit pigment-protein complex of plants, algae, and cyanobacteria, which is responsible for oxidation of water and reduction of plastoquinone during oxygenic photosynthesis (Barber, 2006). In the heart of the complex, there are two similar membrane-spanning proteins, D1 and D2, that bind the cofactors involved in primary charge separation (Nanba and Satoh, 1987) and subsequent electron transfer within PSII (for review, see Barber, 2006). Peripherally to the D1-D2 heterodimer, there are two chlorophyll (Chl)-binding inner antenna proteins, CP47 and CP43, that deliver energy to the reaction center (RC), driving electron transfer. In addition, CP43 also provides important ligands to the Mn4Ca cluster, the site of water oxidation (Ferreira et al., 2004; Loll et al., 2005). These four large proteins are surrounded by a number of smaller membrane polypeptides (for review, see Shi and Schröder, 2004). One of them, the so-called PsbW, was originally detected in the isolated RC complex from spinach (Spinacia oleracea; Irrgang et al., 1995; Lorković et al., 1995). The mature protein with a predicted one-transmembrane α-helix in the central hydrophobic region seems to have (unlike most of PSII membrane proteins) the N terminus oriented into the lumen in close vicinity to the extrinsic, nuclear-encoded 33-kD PsbO protein. Cross-linking experiments also indicated a close association of PsbW with D1, D2, and the α-subunit of cytochrome (cyt) b-559 in the isolated RC complex (Irrgang et al., 1995; Lorković et al., 1995). At variance with these results, Rokka et al. (2005) located PsbW predominantly in PSII-light-harvesting complex II (LHCII) supercomplexes and only minor amounts were found in PSII core dimers and monomers. In transgenic plants of Arabidopsis (Arabidopsis thaliana) lacking the PsbW protein, the stability of the dimeric PSII was diminished and the PSII-LHCII supercomplexes could not be detected. It has been suggested that PsbW functions as a linker for LHCII binding to the PSII complex (Shi et al., 2000). Because LHCII is absent in cyanobacteria, it was intelligible that the PsbW was not detected in these oxygenic autotrophs. Nevertheless, N-terminal sequencing and mass spectrometric analyses of protein subunits in the purified His-tagged PSII from Synechocystis sp. PCC 6803 (Synechocystis 6803) revealed the presence of an unknown protein with 16% sequence identity to PsbW from Arabidopsis (Kashino et al., 2002). This protein was designated as Psb28 (also Psb13 or ycf79). Its amino acid sequence suggests that it is a rather hydrophilic protein without a transmembrane helix and is larger than PsbW (about 13 kD). In the recent crystal structures of the cyanobacterial PSII (Ferreira et al., 2004; Loll et al., 2005), this protein was not identified and it remains an issue of contention whether the protein is a true PSII subunit, a transiently associated assembly factor, or just an impurity of the preparation. The relatively low content of this protein in the isolated preparation suggested that the two latter possibilities are more probable. Very recently, the protein has been detected as a component of PSII complexes in Synechocystis depleted of phosphatidylglycerol (Sakurai et al., 2007). It has been proposed that the protein may play a regulatory role during the assembly of PSII. A gene encoding a similar soluble protein has also been found in the genome of Arabidopsis and the protein was designated PsbW-like.Here, we present a detailed analysis of the role of Psb28 in the structure and function of PSII in Synechocystis 6803. The results showed that Psb28 is not a component of the fully assembled dimeric PSII core complex, but it is preferentially bound to PSII assembly intermediates containing the inner antenna CP47. The results support the role of the protein in biogenesis of certain Chl-binding proteins via regulating synthesis of their apoproteins or Chls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号