首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhu XM  Liu XH  Cai LR  Xu FF 《生理学报》2006,58(5):463-470
钙网蛋白(calreticulin,CRT)和caspase-12是重要的内质网(endoplasmic reticulum,ER)应激分子,本实验在心肌细胞低氧/复氧(hypoxia/reoxygenation,H/R)模型上观察低氧预处理(hypoxic preconditioning,HPC)对CRT和caspase-12表达及活化的影响,探讨内质网应激(endoplasmic reticulum stress,ERS)在HPC保护机制中的意义及其细胞信号转导机制。原代培养的Sprague-Dawley乳鼠心肌细胞随机分为6组:H/R组、HPC+H/R组、SB203580+HPC+H/R组、SP600125+HPC+H/R组、HPC组和对照组。以细胞存活率、乳酸脱氢酶(lactate dehydrogenase,LDH)活性及流式细胞术检测细胞损伤情况:Western blot方法检测CRT和caspase-12表达、活化及p38丝裂素活化蛋白激酶(mitogen—activated protein kinases,MAPK)、cJun N-terminal kinase(JNK)磷酸化水平。结果表明:(1)HPC具有细胞保护作用,与H/R组比较,HPC+H/R组细胞凋亡率和LDH漏出分别降低6.6%和70.0%,存活率增高6.4%:HPC前以特异性p38MAPK抑制剂SB203580预孵育消除HPC的保护作用,与HPC+H/R组相比,细胞凋亡率和LDH漏出分别增高5.4%和2.1倍,存活率降低5.4%,JNK特异性抑制剂SP600125预孵育对HPC的保护作用无明显影响。(2)H/R明显上调CRT表达(较对照组高8.1倍)和caspase-12活性(较对照组高33.2倍);单独HPC可诱导CRT表达增多(较对照组高2.6倍),但上调程度较H/R组低60%。H/R前进行HPC降低CRT过表达程度(降低72.4%)及caspase-12活化水平(降低59.6%)。(3)HPC前应用p38MAPK抑制剂,抑制CRT表达上调(分别较HPC+H/R组和HPC组低63.9%和71.9%),并消除HPC减轻H/R上调caspase-12活性的作用(较HPC+H/R组高7.1倍);HPC前抑制JNK活性对CRT、caspase-12表达和活化均无明显影响。上述结果提示:HPC可激发适当的ERS,抑制H/R诱导的过度ERS,减少ER凋亡信号介导的细胞凋亡。p38MAPK信号途径在HPC诱导的ER应激分子表达、抑制ER凋亡信号分子活化等机制中发挥重要作用。  相似文献   

2.
目的:研究前体蛋白转化酶枯草溶菌素(PACE4)对异丙肾上腺素(ISO)诱导的心肌细胞凋亡的作用及其可能的作用机制。方法:构建pFLAG-PACE4重组表达载体并转染H9c2心肌细胞。将心肌细胞分为四组:正常对照组(无任何干预因素)、ISO组(10μmol/L ISO)、ISO+pFLAG组(空载质粒pFLAG转染+10μmol/LISO)、ISO+pFLAG-PACE4组(pFLAG-PACE4重组表达质粒转染+10μmol/LISO)。采用AnnexinV-FITC/PI双染法测定心肌细胞凋亡率;蛋白免疫印迹法检测活性半胱氨酸蛋白酶(caspase)-3、caspase-12、钙网蛋白、葡萄糖调节蛋白78(GRP78)、CCAAT/增强子结合蛋白同源蛋白(CHOP)、活化转录因子4(ATF4)和PERK的表达以及真核起始因子2α(eIF2α)的磷酸化水平。结果:与正常对照组相比,ISO组中PACE4表达水平明显降低,而转染pFLAG-PACE4质粒后,其表达水平显著增加。PACE4过表达可以显著抑制ISO诱导的细胞凋亡和caspase-3以及caspase-12的蛋白表达。ISO处理显著增加内质网应激分子钙网蛋白、GRP78和CHOP的表达,而PACE4过表达则可以抑制这些蛋白的表达。ISO诱导的PERK、eIF2α和ATF4的表达可以显著被PACE4过表达抑制。结论:PACE4过表达可以抑制ISO诱导的H9c2心肌细胞凋亡,其机制可能与PERK信号通路介导的内质网应激反应有关。  相似文献   

3.
4.
5.
6.
Evidence suggests that the autoimmune cardiomyopathy produced by a peptide corresponding to the sequence of the second extracellular loop of the beta(1)-adrenergic receptor (beta(1)-EC(II)) is mediated via a biologically active anti-beta(1)-EC(II) antibody, but the mechanism linking the antibody to myocyte apoptosis and cardiac dysfunction has not been well elucidated. Since the beta(1)-EC(II) autoantibody is a partial beta(1)-agonist, we speculate that the cardiomyopathy is produced by the beta(1)-receptor-mediated stimulation of the CaMKII-p38 MAPK-ATF6 signaling pathway and endoplasmic reticulum (ER) stress, and that excess norepinephrine (NE) exaggerates the cardiomyopathy. Rabbits were randomized to receive beta(1)-EC(II) immunization, sham immunization, NE pellet, or beta(1)-EC(II) immunization plus NE pellet for 6 mo. Heart function was measured by echocardiography and catheterization. Myocyte apoptosis was determined by terminal deoxytransferase-mediated dUTP nick-end labeling and caspase-3 activity, whereas CaMKII, MAPK family (JNK, p38, ERK), and ER stress signals (ATF6, GRP78, CHOP, caspase-12) were measured by Western blot, immunohistochemistry, and kinase activity assay. beta(1)-EC(II) immunization produced progressive LV dilation, systolic dysfunction, and myocyte apoptosis. These changes were associated with activation of GRP78 and CHOP and increased cleavage of caspase-12, as well as increased CaMKII activity, increased phosphorylation of p38 MAPK, and nucleus translocation of cleaved ATF6. NE pellet produced additive effects. In addition, KN-93 and SB 203580 abolished the induction of ER stress and cell apoptosis produced by the beta(1)-EC(II) antibody in cultured neonatal cardiomyocytes. Thus ER stress occurs in autoimmune cardiomyopathy induced by beta(1)-EC(II) peptide, and this is enhanced by increased NE and caused by activation of the beta(1)-adrenergic receptor-coupled CaMKII, p38 MAPK, and ATF6 pathway.  相似文献   

7.
8.
Neuritin is an extracellular glycophosphatidylinositol-linked protein that promotes neuronal survival, differentiation, function, and repair, but the exact mechanism of this neuroprotective effect remains unclear. Meanwhile, endoplasmic reticulum stress (ERS) induced apoptosis is attracting increased attention. In this work, we hypothesized that neuritin inhibited ERS to protect cortical neurons. To check this hypothesis, we exposed primary cultured cortical neurons to oxygen and glucose deprivation (OGD) for 45 min followed by reperfusion (R) to activate ERS. We then performed resuscitation for 6, 12, 24, and 48 h. ERS-related factors such as glucose-regulated protein 78 (GRP78), caspase-12 and CHOP were detected by Western blotting and quantitative real-time polymerase chain reaction assay. Apoptosis was assessed by Annexin V binding and propidium iodide staining. Ultrastructural changes of endoplasmic reticulum were observed under a transmission electron microscope. Results showed that GRP78 expression significantly increased at 12, 24, and 48 h and peaked at 24 h. Caspase-12 and CHOP expression significantly increased in a time-dependent manner at 12, 24, and 48 h. GRP78, caspase-12 and CHOP expression as well as apoptosis rate of primary cultured neurons and the ultrastructural changes of endoplasmic reticulum in the OGD/R?+?neuritin group significantly improved compared with the OGD/R group. In conclusion, the neuroprotection function of neuritin may be involved in ERS pathways.  相似文献   

9.
Huang HL  Wu JL  Chen MH  Hong JR 《PloS one》2011,6(8):e22935
Aquatic birnavirus induces mitochondria-mediated cell death, but whether connects to endoplasmic reticulum (ER) stress is still unknown. In this present, we characterized that IPNV infection triggers ER stress-mediated cell death via PKR/eIF2α phosphorylation signaling for regulating the Bcl-2 family protein expression in fish cells. The IPNV infection can induce ER stress as follows: (1) ER stress sensor ATF6 cleavaged; (2) ER stress marker GRP78 upregulation, and (3) PERK/eIF2α phosphorylation. Then, the IPNV-induced ER stress signals can induce the CHOP expression at early (6 h p.i.) and middle replication (12 h p.i.) stages. Moreover, IPNV-induced CHOP upregulation dramatically correlates to apparently downregulate the Bcl-2 family proteins, Bcl-2, Mcl-1 and Bcl-xL at middle replication stage (12 h p.i.) and produces mitochondria membrane potential (MMP) loss and cell death. Furthermore, with GRP78 synthesis inhibitor momitoxin (VT) and PKR inhibitor 2-aminopurine (2-AP) treatment for blocking GRP78 expression and eIF2α phosphorylation, PKR/PERK may involve in eIF2α phosphorylation/CHOP upregulation pathway that enhances the downstream regulators Bcl-2 family proteins expression and increased cell survival. Taken together, our results suggest that IPNV infection activates PKR/PERK/eIF2α ER stress signals for regulating downstream molecules CHOP upregulation and Bcl-2 family downregulation that led to induce mitochondria-mediated cell death in fish cells, which may provide new insight into RNA virus pathogenesis and disease.  相似文献   

10.
Postconditioning has regenerated interest as a mechanical intervention against cerebral ischemia/reperfusion injury, but its molecular mechanisms remain unknown. We previously reported that hypoxic postconditioning (HPC) ameliorated neuronal death induced by transient global cerebral ischemia (tGCI) in hippocampal CA1 subregion of adult rats. This study tested the hypothesis that p38-mitogen-activated protein kinase (p38 MAPK)/mitogen- and stress-response kinase 1 (MSK1) signaling pathway plays a role in the HPC-induced neuroprotection. Male Wistar rats were subjected to 10 min ischemia induced by applying the four-vessel occlusion method. HPC with 120 min was applied at 24 h after reperfusion. Immunohistochemistry and Western blot were used to detect the expression of phosphorylation of p38 MAPK and MSK1, as well as cleaved caspase-3. We found that HPC induced a significant increase of phosphorylated p38 MAPK and MSK1 in neurons of hippocampal CA1 region and a significant decrease in glial cells after tGCI as well. Furthermore, HPC attenuated caspase-3 cleavation triggered by tGCI in CA1 region. Moreover, p38 MAPK inhibition by SB203580 significantly decreased the phosphorylation of MSK1, increased cleaved caspase-3 expression, and abolished the neuroprotection of HPC. These findings suggested that p38 MAPK/MSK1 signaling axis contributed to HPC-mediated neuroprotection against tGCI, at least in part, by regulating the activation of caspase-3.  相似文献   

11.
This study is the first to investigate the anticancer effects of the new phloroglucinol derivative (3,6-bis(3-chlorophenylacetyl)phloroglucinol; MCPP) in human colon cancer cells. MCPP induced cell death and antiproliferation in three human colon cancer, HCT-116, SW480, and Caco-2 cells, but not in primary human dermal fibroblast cells. MCPP-induced concentration-dependent apoptotic cell death in colon cancer cells was measured by fluorescence-activated cell sorter (FACS) analysis. Treatment of HCT-116 human colon cancer cells with MCPP was found to induce a number of signature endoplasmic reticulum (ER) stress markers; and up-regulation of CCAAT/enhancer-binding protein homologous protein (CHOP) and glucose-regulated protein (GRP)-78, phosphorylation of eukaryotic initiation factor-2α (eIF-2α), suggesting the induction of ER stress. MCPP also increased GSK3α/β(Tyr270/216) phosphorylation and reduced GSK3α/β(Ser21/9) phosphorylation time-dependently. Transfection of cells with GRP78 or CHOP siRNA, or treatment of GSK3 inhibitor SB216163 reduced MCPP-mediated cell apoptosis. Treatment of MCPP also increased caspase-7, caspase-9, and caspase-3 activity. The inhibition of caspase activity by z-DEVE-FMK or z-VAD-FMK significantly reduced MCPP-induced apoptosis. Furthermore, treatment of GSK3 inhibitor SB216763 also dramatically reversed MCPP-induced GRP and CHOP up-regulation, and pro-caspase-3 and pro-caspase-9 degradation. Taken together, the present study provides evidences to support that GRP78 and CHOP expression, and GSK3α/β activation in mediating the MCPP-induced human colon cancer cell apoptosis.  相似文献   

12.
13.
在低氧预处理延迟心肌保护中钙网蛋白表达升高   总被引:2,自引:2,他引:0  
Xu FF  Fu Y  Liu FY  Zhu XM  Liu XH 《生理学报》2006,58(6):536-546
本文分别在整体实验和细胞培养条件下研究钙网蛋白(calreticulin,CRT)在低氧预处理(hypoxic preconditioning,HPC)延迟心肌保护中的表达及其信号转导机制。(1)整体实验时Wistar大鼠随机分为3组:假手术(sham)组、仅结扎冠状动脉的心肌缺血(myocardial infarction,MI)组和HPC后再结扎冠状动脉的HPC+MI组,分别于术后24h、14d和28d观察HPC对缺血后心功能和梗死区、危险区面积的影响;采用Western blot检测CRT表达以及p38丝裂素活化蛋白激酶(p38mitogenactivated protein kinase,p38MAPK)、应激活化蛋白激酶(stress-activated protein kinase,SAPK)活性。(2)原代培养Sprague—Dawley乳鼠心肌细胞,随机分为6组:低氧,复氧(hypoxia/reoxygenation,H/R)组、HPC组、HPC+H,R组、p38MAPK抑制剂SB203580+HPC+H/R(SB+HPC+H/R)组、SAPK抑制剂SP600125+HPC+H瓜(SP+HPC+H/R)组和正常对照组;采用台盼蓝排斥实验、乳酸脱氢酶(1actate dehydrogenase,LDH)活性检测及流式细胞仪检测各组细胞损伤情况;采用Western blot检测CRT表达及p38MAPK、SAPK的磷酸化水平。主要结果如下:(1)整体动物实验结果表明,HPC改善缺血对心肌左室压力最大上升,下降速度(+dp/dtmax)的抑制,限制心肌梗死面积;HPC后CRT表达呈动态变化:术后24h时HPC+MI组CRT表达增高106%(P〈0.05vsMI组),以危险区最为显著;14d至28d表达逐步降低。相关分析显示,术后24h时CRT表达量与心功能呈正相关(r=0.9867,P〈0.05),与梗死面积呈负相关(r=-0.9709,P〈0.05)。(2)细胞培养实验结果表明,HPC可减轻H/R诱导的心肌细胞LDH漏出,增加心肌细胞存活率,降低细胞凋亡;单纯HPC可诱导CRT表达轻度增加(222%,P〈0.05vs对照组),而损伤性H/R诱导CRT过表达(503%,P〈0.05vs对照组),HPC可降低H/R诱导CRT表达升高的幅度;p38MAPK活性与HPC诱导的CRT表达呈正相关(r=0.9021,P〈0.05),而SAPK活性与其呈负相关(r=-0.8211,P〈0.05)。由此得出结论:(1)整体实验中HPC可明显改善缺血后心脏的收缩与舒张功能,限制心肌梗死范围,促进危险区心肌恢复;心肌梗死早期,HPC诱导CRT表达上调,参与心肌保护;(2)细胞培养实验中HPC可诱导CRT适度表达,增强原代培养乳鼠心肌细胞对H/R损伤的抵抗力;p38MAPK可能介导HPC诱导的CRT表达,而SAPK激活可能不利于心肌保护。  相似文献   

14.
Dysfunction of β-cells is a major characteristic in the pathogenesis of type 2 diabetes mellitus (T2DM). The combination of obesity and T2DM is associated with elevated plasma free fatty acids (FFAs). However, molecular mechanisms linking FFAs to β-cell dysfunction remain poorly understood. In the present study, we identified that the major endoplasmic reticulum stress (ERS) marker, Grp78 and ERS-induced apoptotic factor, CHOP, were time-dependently increased by exposure of β-TC3 cells to FFA. The expression of ATF6 and the phosphorylation levels of PERK and IRE1, which trigger ERS signaling, markedly increased after FFA treatments. FFA treatments increased cell apoptosis by inducing ERS in β-TC3 cells. We also found that FFA-induced ERS was mediated by the store-operated Ca2+ entry through promoting the association of STIM1 and Orai1. Moreover, calpain-2 was required for FFA-induced expression of CHOP and activation of caspase-12 and caspase-3, thus promoting cell apoptosis in β-TC3 cells. Together, these results reveal pivotal roles for Ca2+/calpain-2 pathways in modulating FFA-induced β-TC3 cell ERS and apoptosis.  相似文献   

15.
16.
Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes.  相似文献   

17.
Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.  相似文献   

18.
Flaviviruses, such as dengue virus (DENV), depend on the host endoplasmic reticulum for translation, replication, and packaging of their genomes. Here we report that DENV-2 infection modulates the unfolded protein response in a time-dependent manner. We show that early DENV-2 infection triggers and then suppresses PERK-mediated eIF2α phosphorylation and that in mid and late DENV-2 infection, the IRE1-XBP1 and ATF6 pathways are activated, respectively. Activation of IRE1-XBP1 correlated with induction of downstream targets GRP78, CHOP, and GADD34. Furthermore, induction of CHOP did not induce apoptotic markers, such as suppression of anti-apoptotic protein Bcl-2, activation of caspase-9 or caspase-3, and cleavage of poly(ADP-ribose) polymerase. Finally, we show that DENV-2 replication is affected in PERK(-/-) and IRE1(-/-) mouse embryo fibroblasts when compared with wild-type mouse embryo fibroblasts. These results demonstrate that time-dependent activation of the unfolded protein response by DENV-2 can override inhibition of translation, prevent apoptosis, and prolong the viral life cycle.  相似文献   

19.

Background

A gasotransmitter hydrogen sulfide (H2S) plays an important physiological and pathological role in cardiovascular system. Ischemic post-conditioning (PC) provides cardioprotection in the young hearts but not in the aged hearts. Exogenous H2S restores PC-induced cardioprotection by inhibition of mitochondrial permeability transition pore opening and oxidative stress and increase of autophagy in the aged hearts. However, whether H2S contributes to the recovery of PC-induced cardioprotection via down-regulation of endoplasmic reticulum stress (ERS) in the aged hearts is unclear.

Methods

The aged H9C2 cells (the cardiomyocytes line) were induced using H2O2 and were exposed to H/R and PC protocols. Cell viability was observed by CCK-8 kit. Apoptosis was detected by Hoechst 33342 staining and flow cytometry. Related protein expressions were detected through Western blot.

Results

In the present study, we found that 30 μM H2O2 induced H9C2 cells senescence but not apoptosis. Supplementation of NaHS protected against H/R-induced apoptosis, the expression of cleaved caspase-3 and cleaved caspase-9 and the release of cytochrome c. The addition of NaHS also counteracted the reduction of cell viability caused by H/R and decreased the expression of GRP 78, CHOP, cleaved caspase-12, ATF 4, ATF 6 and XBP-1 and the phosphorylation of PERK, eIF 2α and IRE 1α. Additionally, NaHS increased Bcl-2 expression. PC alone did not provide cardioprotection in H/R-treated aged cardiomyocytes, which was significantly restored by the supplementation of NaHS. The beneficial role of NaHS was similar to the supply of 4-PBA (an inhibitor of ERS), GSK2656157 (an inhibitor of PERK), STF083010 (an inhibitor of IRE 1α), respectively, during PC.

Conclusion

Our results suggest that the recovery of myocardial protection from PC by exogenous H2S is associated with the inhibition of ERS via down-regulating PERK-eIF 2α-ATF 4, IRE 1α-XBP-1 and ATF 6 pathways in the aged cardiomyocytes.
  相似文献   

20.
Liu X  Xu F  Fu Y  Liu F  Sun S  Wu X 《Proteomics》2006,6(13):3792-3800
Hypoxic preconditioning (HPC) attenuates tissue injury caused by ischemia/reperfusion. The protective mechanisms of HPC involve up-regulation of the protective proteins and mitigation of cellular calcium overload. Calreticulin (CRT), a Ca(2+)-binding chaperone, plays an important role in regulating calcium homeostasis and folding of proteins. The role of CRT in cardioprotection of HPC and the pathways determining CRT expression during HPC are not clear. In this work, 2-DE and MALDI-MS were employed to analyze CRT differential expression in cardiomyocytes subjected to transient hypoxia. Western blotting analysis was used to detect the CRT expression and activities of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH(2)-terminal kinase (JNK) in myocardium subjected to ischemia with and without HPC and sham operation. The hearts from HPC group were more resistant to sustained ischemia and had much stronger phosphorylation of p38 MAPK, with a reduced phosphorylation of JNK, than controls. The CRT expression was positively correlated with the phosphorylation of p38 MAPK and negatively correlated with the level of JNK phosphorylation. Furthermore, inhibition of the p38 MAPK with SB202190 abolished, while inhibition of the JNK with SP600125 enhanced the CRT up-regulation in cardiomyocytes induced by HPC. The results indicate that HPC up-regulates CRT expression through the MAPK signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号