首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therian mammals (marsupials and eutherians) rely on a placenta for embryo survival. All mammals have a yolk sac, but while both chorio-allantoic and chorio-vitelline (yolk sac) placentation can occur, most marsupials only develop a yolk sac placenta. Insulin (INS) is unusual in that it is the only gene that is imprinted exclusively in the yolk sac placenta. Marsupials, therefore, provide a unique opportunity to examine the conservation of INS imprinting in mammalian yolk sac placentation. Marsupial INS was cloned and its imprint status in the yolk sac placenta of the tammar wallaby, Macropus eugenii, examined. In two informative individuals of the eight that showed imprinting, INS was paternally expressed. INS protein was restricted to the yolk sac endoderm, while insulin receptor, IR, protein was additionally expressed in the trophoblast. INS protein increased during late gestation up to 2 days before birth, but was low the day before and on the day of birth. The conservation of imprinted expression of insulin in the yolk sac placenta of divergent mammalian species suggests that it is of critical importance in the yolk sac placenta. The restriction of imprinting to the yolk sac suggests that imprinting of INS evolved in the chorio-vitelline placenta independently of other tissues in the therian ancestor of marsupials and eutherians.  相似文献   

2.
Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells.  相似文献   

3.
Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5′ region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.  相似文献   

4.
Earlier workers suggest that marsupial embryonic growth rates are slower than those of many eutherians and that there is little correlation between marsupial gestation lengths and their weight at birth. Previously, this latter observation has been explained as being due to the considerable variability in duration of the initial slow phase of marsupial embryonic growth. The latter phase of pregnancy has always been regarded as rapid and highly uniform in all marsupials. However, this review shows that there can be considerable variation in growth rate during this 'fast' phase and also that marsupials have similar rates of embryonic growth to most eutherians. Development within the monotreme egg may proceed at a similar rate to intra-uterine growth in therian mammals.  相似文献   

5.
6.
7.
Of birds and mice: hematopoietic stem cell development   总被引:2,自引:0,他引:2  
For many years it has been assumed that the ontogeny of the mammalian hematopoietic system involves sequential transfers of hematopoietic stem cells (HSCs) generated in the yolk sac blood islands, to successive hematopoietic organs as these become active in the embryo (fetal liver, thymus, spleen and eventually bone marrow). Very little was known about early events related to hematopoiesis that could take place during the 4.5 day gap separating the appearance of the yolk sac blood islands and the stage of a fully active fetal liver. Experiments performed in birds documented that the yolk sac only produce erythro-myeloid precursors that become extinct after the emergence of a second wave of intra-embryonic HSCs from the region neighbouring the dorsal aorta. The experimental approaches undertaken over the last ten years in the murine model, which are reviewed here, led to the conclusion that the rules governing avian hematopoietic development basically apply to higher vertebrates.  相似文献   

8.
Mouse placenta is a major hematopoietic organ   总被引:6,自引:0,他引:6  
Placenta and yolk sac from 8- to 17-day-old (E8-E17) mouse embryos/fetuses were investigated for the presence of in vitro clonogenic progenitors. At E8-E9, the embryonic body from the umbilicus caudalwards was also analysed. Fetal liver was analysed beginning on E10. At E8, between five and nine somite pairs (sp), placenta, yolk sac and embryonic body yielded no progenitors. The first progenitors appeared at E8.5 at the stage of 15 sp in the yolk sac, 18 sp in the embryonic body, 20 sp in the placenta and only at E12 in the fetal liver (absent at E10, at E11 not determined). Progenitors with a high proliferation potential that could be replated for two months, as well as the whole range of myeloid progenitors, were found at all stages in all organs. However, the earliest of these progenitors (these yielding large, multilineage colonies) were 2-4 times more frequent in the placenta than in the yolk sac or fetal liver. In the fetal liver, late progenitors were more frequent and the cellularity increased steeply with developmental age. Thus, the fetal liver, which is a recognized site for amplification and commitment, has a very different hematopoietic developmental profile from placenta or yolk sac. Placentas were obtained from GFP transgenic embryos in which only the embryonic contribution expressed the transgene. 80% of the colonies derived from these placental cells were GFP+, and so originated from the fetal component of the placenta. These data point to the placenta as a major hematopoietic organ that is active during most of pregnancy.  相似文献   

9.
Mature T cells are derived from prethymic stem cells, which arise at one or more extrathymic sites and enter and differentiate in the thymus. The nature of these prethymic stem cells is a critical factor for the formation of the T-cell repertoire. Although the bone marrow of adult mice can provide such stem cells, their origin during murine embryogenesis is still undetermined. Among potential sites for these progenitor cells are the fetal liver and the embryonic yolk sac. Our studies focus on the yolk sac, both because the yolk sac appears earlier than any other proposed site, and because the mammalian yolk sac is the first site of hematopoiesis. Although it has been shown that the yolk sac in midgestation contains stem cells that can enter the thymic rudiment and differentiate toward T-cell lineage, our aim was to analyze the developmental potential of cells in the yolk sac from earlier stages, prior to the formation of the liver and any other internal organ. We show here that the yolk sac from 8- and 9-day embryos (2-9 and 13-19 somites, respectively) can reconstitute alymphoid congenic fetal thymuses and acquire mature T-cell-specific characteristics. Specifically, thymocytes derived from the early embryonic yolk sac can progress to the expression of mature T lymphocyte markers including CD3/T-cell receptor (TCR), CD4 and CD8. In contrast, we have been unable to document the presence of stem cells within the embryo itself at these early stages. These results support the hypothesis that the stem cells capable of populating the thymic rudiment originate in the yolk sac, and that their presence as early as at the 2- to 9-somite stage may indicate that prethymic stem cells found elsewhere in the embryo at later times may have been derived by migration from this extra-embryonic site. Our experimental design does not exclude the possibility of multiple origins of prethymic stem cells of which the yolk sac may provide the first wave of stem cells in addition to other later waves of cells.  相似文献   

10.
This investigation was carried out to determine whether heterologous antisera to alpha fetoprotein (AFP) are embryotoxic to developing rat embryos. Homogeneous rat AFP was isolated and antisera directed against this glycoprotein were produced in rabbits, horse and goat. The effect of the antisera on embryonic development was examined by injecting the antisera intraperitoneally into pregnant rats on the ninth, eleventh and thirteenth days of gestation. The results demonstrated that there was no evidence of increased incidence of fetal abnormalities in 472 surviving fetuses of 42 injected rats. There was no evidence of increase embryonic death or retardation of intrauterine growth following administration of the antisera on the ninth, eleventh and thirteenth days of gestation. The localization of the injected antisera was examined by the indirect immunofluorescent method. The results showed that the heterologous AFP antibodies localized specifically in the visceral yolk sac placenta. No antibody localization was observed in the embryo proper or the chorioallantoic placenta. It is speculated that the localization of AFP antibodies in the visceral yolk sac does not interfere with the embryotrophic function of the visceral yolk sac placenta.  相似文献   

11.
In mice, the yolk sac appears to play a crucial role in nourishing the developing embryo, especially during embryonic days (E) 7;-10. Lipoprotein synthesis and secretion may be essential for this function: embryos lacking apolipoprotein (apo) B or microsomal triglyceride transfer protein (MTP), both of which participate in the assembly of triglyceride-rich lipoproteins, are apparently defective in their ability to export lipoproteins from yolk sac endoderm cells and die during mid-gestation. We therefore analyzed the embryonic expression of apoB, MTP, and alpha-tocopherol transfer protein (alpha-TTP), which have been associated with the assembly and secretion of apoB-containing lipoproteins in the adult liver, at different developmental time points. MTP expression or activity was found in the yolk sac and fetal liver, and low levels of activity were detected in E18.5 placentas. alpha-TTP mRNA and protein were detectable in the fetal liver, but not in the yolk sac or placenta. Ultrastructural analysis of yolk sac visceral endoderm cells demonstrated nascent VLDL within the luminal spaces of the rough endoplasmic reticulum and Golgi apparatus at E7.5 and E8.5. The particles were reduced in diameter at E13.5 and reduced in number at E18.5;-19.The data support the hypothesis that the yolk sac plays a vital role in providing lipids and lipid-soluble nutrients to embryos during the early phases (E7;-10) of mouse development. secretion in mouse yolk sac during embryonic development.  相似文献   

12.
Genomic imprinting is widespread amongst mammals, but has not yet been found in birds. To gain a broader understanding of the origin and significance of imprinting, we have characterized three genes, from three separate imprinted clusters in eutherian mammals in the developing fetus and placenta of an Australian marsupial, the tammar wallaby Macropus eugenii. Imprinted gene orthologues of human and mouse p57(KIP2), IGF2 and PEG1/MEST genes were isolated. p57(KIP2) did not show stable monoallelic expression suggesting that it is not imprinted in marsupials. In contrast, there was paternal-specific expression of IGF2 in almost all tissues, but the biased paternal expression of IGF2 in the fetal head and placenta, demonstrates the occurrence of tissue-specific imprinting, as occurs in mice and humans. There was also paternal-biased expression of PEG1/MESTalpha. The differentially methylated region (DMR) of the human and mouse PEG1/MEST promoter is absent in the wallaby. These data confirm the existence of common imprinted regions in eutherians and marsupials during development, but suggest that the regulatory mechanisms that control imprinted gene expression differ between these two groups of mammals.  相似文献   

13.
The platelet glycoprotein IIb (alpha(IIb); CD41) constitutes the alpha subunit of a highly expressed platelet surface integrin protein. We demonstrate that CD41 serves as the earliest marker of primitive erythroid progenitor cells in the embryonic day 7 (E7.0) yolk sac and high-level expression identifies essentially all E8.25 yolk sac definitive hematopoietic progenitors. Some definitive hematopoietic progenitor cells in the fetal liver and bone marrow also express CD41. Hematopoietic stem cell competitive repopulating ability is present in CD41(dim) and CD41(lo/-) cells isolated from bone marrow and fetal liver cells, however, activity is enriched in the CD41(lo/-) cells. CD41(bright) yolk sac definitive progenitor cells co-express CD61 and bind fibrinogen, demonstrating receptor function. Thus, CD41 expression marks the onset of primitive and definitive hematopoiesis in the murine embryo and persists as a marker of some stem and progenitor cell populations in the fetal liver and adult marrow, suggesting novel roles for this integrin.  相似文献   

14.
Although the guinea pig is an important animal model for human placentation, aspects of fetal nutrition are not fully understood, especially in regard to the yolk sac that is regarded to be essential for early development of the embryo. We investigated differentiation by means of histology, histochemistry, immunohistochemistry, and transmission electron microscopy. Data suggest that the guinea pig's yolk sac was not sufficiently developed to facilitate substantial fetal nutrition in early pregnancy. On Day 12, it was a flat, inverted, but avascular structure. This was followed by differentiation to form the typical, highly villous and vascularized condition of advanced gestation. Finally, the yolk sac degenerated toward term. We suggest that the guinea pig and other caviomorphs rely predominantly on hemotrophic nutrition via the placenta even in very early pregnancy. In contrast to the general pattern of mammals, histiotrophic nutrition via yolk sac routes seems to be most essential during mid-gestation.  相似文献   

15.
In this study, we have mapped the onset of hematopoietic development in the mouse embryo using colony-forming progenitor assays and PCR-based gene expression analysis. With this approach, we demonstrate that commitment of embryonic cells to hematopoietic fates begins in proximal regions of the egg cylinder at the mid-primitive streak stage (E7.0) with the simultaneous appearance of primitive erythroid and macrophage progenitors. Development of these progenitors was associated with the expression of SCL/tal-1 and GATA-1, genes known to be involved in the development and maturation of the hematopoietic system. Kinetic analysis revealed the transient nature of the primitive erythroid lineage, as progenitors increased in number in the developing yolk sac until early somite-pair stages of development (E8.25) and then declined sharply to undetectable levels by 20 somite pairs (E9.0). Primitive erythroid progenitors were not detected in any other tissue at any stage of embryonic development. The early wave of primitive erythropoiesis was followed by the appearance of definitive erythroid progenitors (BFU-E) that were first detectable at 1-7 somite pairs (E8.25) exclusively within the yolk sac. The appearance of BFU-E was followed by the development of later stage definitive erythroid (CFU-E), mast cell and bipotential granulocyte/macrophage progenitors in the yolk sac. C-myb, a gene essential for definitive hematopoiesis, was expressed at low levels in the yolk sac just prior to and during the early development of these definitive erythroid progenitors. All hematopoietic activity was localized to the yolk sac until circulation was established (E8.5) at which time progenitors from all lineages were detected in the bloodstream and subsequently in the fetal liver following its development. This pattern of development suggests that definitive hematopoietic progenitors arise in the yolk sac, migrate through the bloodstream and seed the fetal liver to rapidly initiate the first phase of intraembryonic hematopoiesis. Together, these findings demonstrate that commitment to hematopoietic fates begins in early gastrulation, that the yolk sac is the only site of primitive erythropoiesis and that the yolk sac serves as the first source of definitive hematopoietic progenitors during embryonic development.  相似文献   

16.
The dose of toxicant reaching the embryo is a critical determinant of developmental toxicity, and is likely to be a key factor responsible for interspecies variability in response to many test agents. This review compares the mechanisms regulating disposition of toxicants from the maternal circulation to the embryo during organogenesis in humans and the two species used predominantly in regulatory developmental toxicity testing, rats and rabbits. These three species utilize fundamentally different strategies for maternal-embryonic exchange during early pregnancy. Early postimplantation rat embryos rely on the inverted visceral yolk sac placenta, which is in intimate contact with the uterine epithelium and is equipped with an extensive repertoire of transport mechanisms, such as pinocytosis, endocytosis, and specific transporter proteins. Also, the rat yolk sac completely surrounds the embryo, such that the fluid-filled exocoelom survives through most of the period of organogenesis, and can concentrate compounds such as certain weak acids due to pH differences between maternal blood and exocelomic fluid. The early postimplantation rabbit conceptus differs from the rat in that the yolk sac is not closely apposed to the uterus during early organogenesis and does not completely enclose the embryo until relatively later in development (approximately GD13). This suggests that the early rabbit yolk sac might be a relatively inefficient transporter, a conclusion supported by limited data with ethylene glycol and one of its predominant metabolites, glycolic acid, given to GD9 rabbits. In humans, maternal-embryo exchange is thought to occur via the chorioallantoic placenta, although it has recently been conjectured that a supplemental route of transfer could occur via absorption into the yolk sac. Knowledge of the mechanisms underlying species-specific embryonic disposition, factored together with other pharmacokinetic characteristics of the test compound and knowledge of critical periods of susceptibility, can be used on a case-by-case basis to make more accurate extrapolations of test animal data to the human.  相似文献   

17.
18.
Two characters distinguish oogenesis and early development in marsupials and monotremes: (1) the shell coat that persists from the zygote to somite stages in marsupials or until hatching in monotremes; and (2) the numerous, apparently almost empty vesicles that appear in primary oocytes, increase during oogenesis in marsupials and monotremes before being shed into the cleavage cavity and are preferentially distributed to the trophoblast lineage in marsupials, but comprise the latebra in monotremes. Analysis of these unusual characters used Southern analysis of genomic DNA dot blots and histology and electron microscopy. The evidence suggests that the marsupial shell coat protein, CP4, was probably characteristic of the egg of the mammalian ancestor. Further, the vesicles, present in marsupials during oogensis and cleavage and in eutherian mammals during blastocyst formation are the residual elements of white yolk present in the larger yolky eggs of monotemes and sauropsids. By comparison with the function of the vesicle components in marsupials, it is suggested that one role for the white yolk in monotremes and the sauropsids is to provide extracellular matrix (ECM), especially hyaluronan containing stabilizing proteins, for epithelial construction. Thus, as oviparity was replaced by viviparity, egg size was reduced, the germinal cytoplasm was retained, and yellow yolk was markedly reduced or lost in marsupials and eutherians. The white yolk was retained in monotremes and marsupials where blastocyst epithelial construction requires ECM support, and its appearance is heterochronously shifted to after compaction, when blastocyst formation and expansion occurs, in eutherian mammals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号