首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major proteoglycans from L6J1 rat myoblast culture were identified. The proteoglycans were isolated from different constituents of cell culture: culture medium, extracellular matrix (ECM), and myoblasts. To identify their core proteins, the proteoglycans were treated with enzymes specifically digesting chondroitin/dermatan sulfates or chondroitin sulfates. Subsequent electrophoresis and mass spectrometry revealed versican, collagen XII, and inter-α-trypsin inhibitor classified as chondroitin sulfate proteoglycans and biglycan known to be chondroitin/dermatan sulfate proteoglycan. Versican was identified in ECM and the other proteoglycans in the culture medium. Such difference in localization is likely to be a consequence of different biological functions. Versican, collagen XII, and biglycan are synthesized by myoblasts and inter-α-trypsin inhibitor originates from fetal bovine serum (a culture medium component).  相似文献   

2.
Proteoglycans were isolated from the extracellular matrix (ECM) of L6J1 rat myoblasts; their influence on myoblast adhesion has been studied. Proteoglycan digestion with chondroitinase AC and heparinase III, which degrade polysaccharide moieties, has revealed that chondroitin sulfate proteoglycans are a major class of myoblast extracellular matrix proteoglycans. Electrophoresis of enzymatically processed proteoglycans was used to examine their core proteins. Myoblast adhesion was suppressed by proteoglycans or a mixture of proteoglycans and a fibronectin-extracellular matrix. Myoblast adhesion to a substrate composed of fibronectin and proteoglycans is restored after the substrate was treated with chondroitinase AC. In conclusion, proteoglycans of L6J1 rat myoblast ECMs were isolated and purified. Chondroitin sulfate proteoglycans are a major class of proteoglycans. Isolated proteoglycans suppressed myoblast adhesion; the effect was mediated by polysaccharide moieties of proteoglycans.  相似文献   

3.
35SO42- - and [3H]-leucine-labelled proteoglycans were isolated from the medium of a fibroblast culture, from an EDTA extract of the monolayer, and from consecutive dithiothreitol and guanidine hydrochloride extracts of the cells. Proteoglycans of different sizes were isolated from the extracts by gel chromatography on Sepharose 4B. In the medium and the EDTA extract the largest proteoglycans contained only 35S-labelled galactosaminoglycan, whereas all other fractions contained in addition heparan [35S-labelled galactosaminoglycan, whereas all other fractions contained in addition heparin [35S]sulphate. The galactosaminoglycan-containing proteoglycans of the various extracts were separated into a larger component, containing chondroitin sulphate-like side chains, and a smaller component, containing dermatan sulphate. The larger proteoglycan of the medium showed reversible association-dissociation behaviour when chromatographed on Sepharose CL2B in phosphate-buffered saline and 4M-guanidine hydrochloride respectively. This property remained after removal of extraneous proteins by CsCl-density-gradient centrifugation in guanidine hydrochloride. The association was markedly increased by the addition of high-molecular-weight hyaluronic acid.  相似文献   

4.
Chick lens epithelial cells were cultured on plastic and type IV collagen substrata, and the confluent cultures were labeled continuously with [35S]sulfate for 20 h. Intact lenses were also labeled in the same way. 35S-Proteoglycans isolated from those cultures were compared for their molecular sizes and glycosaminoglycan compositions. The results have shown that: 1) Proteoglycans synthesized by cells on type IV collagen were significantly smaller than those by cells on plastic. 2) Proteoglycans of intact lens showed a broad distribution of molecular size and contained a high proportion of chondroitin sulfate in the medium fraction compared to those of the two cell cultures. In order to explain such differences between proteoglycans from cultures, label-chase experiments with [35S]sulfate were done for proteoglycans synthesized. 35S-Proteoglycans isolated at each chase time 0, 2.5, and 17 h) were compared and the following results were found: 1) The cell layers of both "plastic" and "type IV collagen" cultures contained glycosaminoglycan species predominantly at each chase time rather than proteoglycans. 2) Changes in the glycosaminoglycan compositions of medium fractions of cell cultures were observed during the chase period; in medium of the "plastic" culture, proteoheparan sulfate increased with chase time, whereas in medium of the "type IV collagen" culture, chondroitin sulfate glycosaminoglycan (not proteoglycan) increased with chase time. 3) In intact lens culture, lens capsule fraction at every chase time contained a proteoglycan unique in molecular size, which was not found in cell culture fractions. 4) All fractions from intact lens cultures contained a higher content of chondroitin sulfate at every chase time than the respective fractions from cell cultures. These results suggest that adhesion of the cells to type IV collagen or lens capsule influences the degradation and secretion of proteoglycans. In addition, they can account partially for the above-described differences in molecular sizes and glycosaminoglycan compositions between 35S-proteoglycans from various cultures continuously labeled with [35S]sulfate.  相似文献   

5.
Proteoglycans synthesized in vitro by periovular granulomas isolated from livers of schistosome-infected mice were compared with those produced by granuloma-derived cell lines: the primary cell line GR and the permanent cell line GRX. Proteoglycans were metabolically labelled with 35S-sulfate and extracted with 4 M guanidine-HCl containing 2.0% Triton X-100, in the presence of proteinase inhibitors. The radiolabelled proteoglycans were purified and characterized by anion-exchange, gel-filtration and affinity-column chromatography. Heparan sulfate proteoglycans (HS-PGs) and chondroitin sulfate/dermatan sulfate-containing proteoglycans (CS/DS-PGs) were detected in both the culture medium and the cell-associated fractions obtained from GR cells. More than 90% of the cell-associated HS-PG from these cells contained a hydrophobic portion, as evidenced by their ability to bind to octyl-Sepharose. In contrast, among the secreted proteoglycans, it was the CS/DS-PG and not the HS-PG that bound to this resin. The major fractions of cell-associated and secreted proteoglycans from GRX cells were HS-PGs. Similar to HS-PGs from GR cells, 50% of the cell-associated HS-PG bound to octyl-Sepharose, while only 20% of secreted proteoglycans (HS-PGs) bound to this resin. The proteoglycans purified from the whole granuloma were composed mainly of DS-PG, of a size and hydrophobicity similar to the CS/DS-PG from GR cells. Possible correlations among the structure, secretion, distribution and function of proteoglycans in granulomatous reactions are discussed.  相似文献   

6.
Proteoglycans have been identified within the extracellular matrices (ECM) of bone and are known to play a role in ECM assembly, mineralization, and bone formation. Bone morphogenetic protein-2 (BMP-2) specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells. Microarray analyses of the mouse myoblast cell line C2C12 and its differentiation into osteoblastic cells in response to BMP-2 have suggested the up-regulation of several proteoglycan species, although there is a lack of biochemical evidence for this response. In this study we have biochemically analyzed and characterized the proteoglycan populations that are induced in C2C12 cells upon osteoblastic differentiation produced by BMP-2. An important and specific increase in the synthesis of secreted decorin was observed in BMP-2-treated cells, as compared to untreated myoblasts and myoblasts induced to differentiate into myotubes. Decorin was seen to contain larger glycosaminoglycan (GAG) chains in induced than in non-induced cells. BMP-2 also produced an augment in the synthesis of different heparan sulfate proteoglycans such syndecan-2, - 3, glypican, and perlecan in detergent-soluble and non-soluble cellular fractions. We also examined whether the evident changes induced by BMP-2 in secreted decorin could have a functional role. BMP-2 signaling dependent as well as induction of alkaline phosphatase (ALP) activity was diminished in decorin null myoblasts compared to wild type myoblats although cell surface level of BPM-2 receptors was unchanged. These results are the first biochemical evidence and analysis for the effect of BMP-2 on the synthesis of proteoglycan during osteogenic conversion of myoblasts and suggest a role for decorin in cell response to BMP-2.  相似文献   

7.
Proteoglycans were isolated from extracellular matrix of L6J1 rat myoblasts and their influence on myoblast adhesion was studied. Proteoglycan digestion with chondroitinase AC and heparinase III degrading the polysaccharide moieties revealed that chondroitin sulfate proteoglycans are the main class of myoblast extracellular matrix proteoglycans. Electrophoresis of enzymatically processed proteoglycans was used to examine their core proteins. Myoblast adhesion was suppressed by proteoglycans or the mixture of proteoglycans and fibronectin/extracellular matrix. When being processed with chondroitinase AC the combined substrate of fibronectin and proteoglycans lost the capability of myoblast adhesion suppression. Thus, as a result of presented work the proteoglycans of L6J1 rat myoblast extracellular matrix were isolated and purified. The main class of proteoglycans was chondroitin sulphate proteoglycans. Isolated proteoglycans suppressed myoblast adhesion and this effect was mediated by polysaccharide moieties of proteoglycans.  相似文献   

8.
Fractionation of proteoglycans from bovine corneal stroma.   总被引:4,自引:0,他引:4       下载免费PDF全文
Proteoglycans were extracted from bovine corneal stroma with 4M-guanidinum chloride, purified by DEAE-dellulose chromatography (Antonopoulos et al., 1974) and fractionated by precipitation with ethanol into three fractions of approximately equal weight. One of these fractions consisted of a proteoglycan that contained keratan sulphate as the only glycosaminoglycan. In the othertwo fractions proteoglycans that contained chondroitin sulphate, dermatan sulphate and keratan sulphate were present. Proteoglycans which had a more than tenfold excess of galactosaminoglycans over keratan sulphate could be obtianed by further subfractionation. The gel-chromatographic patterns of the glucosaminoglycans before and after digestion with chondroitinase AC differed for the fractions. The individual chondroitin sulphate chains seemed to be larger in cornea than in cartilage. Oligosaccharides, possibly covalently linked to the protein core of the proteoglycans, could be isolated from all fractions. The corneal proteoglycans were shown to have higher protein contents and to be of smaller molecular size than cartilage proteoglycans.  相似文献   

9.
The cellular distribution and nature of proteoglycans synthesised by human breast cancer cells in culture were studied. Proteoglycans were labelled with [35S] sulfate, purified, and characterised after ion-exchange chromatography followed by gel-filtration chromatography and treatment with glycosaminoglycan degrading enzymes. Proteoglycans were isolated from the culture medium and from cell layers of the hormono-dependent well-differentiated MCF-7 cell line, the hormono-independent poorly-differentiated MDA-MB-231 and the HBL-100 cell line which is derived from non malignant breast epithelium. HBL-100 and MDA-MB-231 cells produced larger amounts of proteoglycans which had a lower degree of sulfation than MCF-7 cells. Gel-filtration chromatography on Sepharose CL-6B indicated that HBL-100 and MDA-MB-231 cells accumulated cell surface heparan sulfate proteoglycans (HSPG), with a high apparent molecular weight (Kav 0.1). In contrast, the MCF-7 cell monolayers synthesised small sulfated macromolecules (Kav 0.4) which possessed mostly chondroitin sulfate chains. Moreover, considerable differences in the nature of the sulfated proteoglycans released into the culture medium of these breast epithelial cell lines were observed. MCF-7 cells released into the culture medium HSPG as the main proteoglycan component while MDA-MB-231 and HBL-100 cells released mainly chondroitin sulfate proteoglycans. In these three cell lines, medium-released sulfated macromolecules have a higher hydrodynamic size than cell-associated ones. Proteoglycans purified by ion-exchange chromatography were tested for their ability to bind 125I FGF-2. We demonstrated that HBL-100 and MDA-MB-231 cells bind more FGF-2 to their heparan sulfate proteoglycans than MCF-7 cells. Taken together, these results suggest that differences in proteoglycan synthesis of human breast epithelial cells could be responsible for differences in their proliferative and/or invasive properties. J. Cell. Biochem. 64:605–617. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Proteoglycans synthesized by articular and epiphyseal chondrocytes in culture were compared. Proteoglycans extruded by the two types of cells into the culture medium are of identical Mr. On the other hand, the proteoglycans of cells or pericellular matrix synthesized by the articular chondrocytes are characterized by an heterogeneous fraction of low-Mr which is not present in the material derived from epiphyseal chondrocytes. There are at least two components in this fraction: the first seems to be a precursor of aggregated proteoglycans, the other may represent a component of cell coat. Stimulation of the cell cultures with vitamin D metabolites and somatomedin enhances proteoglycan biosynthesis but no modification is observed in the proteoglycan Mr.  相似文献   

11.
Newly synthesized porcine tubular epithelial cell proteoglycans were labeled in vitro with Na2[35S]SO4. At the beginning of the labeling period (24 h) [35S] sulfate incorporated into macromolecules was measured following PD-10 chromatography. There was a significant reduction in the amount of 35S-labeled macromolecules isolated from polycystic cells compared to that from normal cells. The distribution of recovered radiolabeled material among the medium, cell surface, and intracellular fractions was similar for both normal and polycystic cells. Analysis of the proteoglycans in polycystic cells demonstrated that 86 and 73% of 35S-labeled macromolecules were of the heparan sulfate type in polycystic and normal cells, respectively. The remainder was chondroitin sulfate. Proteoglycans were characterized using DEAE-Sephacel ion-exchange chromatography, chondroitinase ABC, heparitinase, and nitrous acid digestion followed by Sepharose CL-4B gel permeation chromatography. The majority of radiolabeled material in the medium, cell surface, and intracellular fractions eluted between 0.35 and 0.39 M NaCl. However, a second peak (peak II) that eluted at 0.25 M NaCl was found in the medium from polycystic cells. This peak accounted for 27% of the total macromolecules secreted into the medium. Proteoglycans in the major peak were susceptible to nitrous acid and chondroitinase ABC digestion. A similar proportion of peak II was degraded by chondroitinase ABC. However, the remainder was only slightly susceptible to treatment with nitrous acid or heparitase. In normal cells a small amount of material eluted at a similar low charge; the proteoglycans were the same as those found in the major peak and appeared as a shoulder on this peak.  相似文献   

12.
Proteoglycans, a major component of the extracellular matrix, are produced in many tissues. A report from this laboratory describes the proteoglycans synthesized in culture by chick embryonic skeletal muscle myotubes. To extend this study to in vivo conditions, chick embryos were radiolabeled in ovo and the newly synthesized high-buoyant-density proteoglycans from skeletal muscle analyzed. In both leg muscle and pectoral muscle, three major high-density proteoglycans are synthesized. One is small and is similar to the proteoglycans synthesized in culture by muscle fibroblasts. The other two proteoglycans are large. The larger of these shares structural features with the proteoglycan synthesized by skeletal muscle cells in culture. It has large chondroitin sulfate chains (estimated molecular weight of 70,000) with a high proportion of chondroitin 6-sulfate (approximately 90%). The smaller of the two large proteoglycans is distinct (chondroitin sulfate of estimated molecular weight 24,000 and approximately 60% 6-sulfated disaccharides) and is not detected in muscle cultures; evidence suggests it is not made by myoblasts. Whole hearts synthesize proteoglycans with some structural similarities, and also differences, to those made in skeletal muscle. These data indicate that the proteoglycans synthesized in muscle cultures are likewise made in developing muscle in ovo but that another distinct strictly in ovo proteoglycan is also produced.  相似文献   

13.
Confluent testicular peritubular cells derived from immature rats were used to study membrane associated proteoglycans (PG) Peripheral material (heparin releasable), membrane and intracellular material (Triton X-100 releasable) were collected, purified by anion exchange chromatography then characterized by gel filtration and by hydrophobic interaction chromatography, followed by enzymatic digestion and chemical treatment. The peripheral material was constituted of two populations of PG (Kav=0 and 0.10 on Superose 6 column), each containing both heparan sulfate proteoglycans (HSPG) and chondroitin proteoglycans (CSPG) and perhaps a hybrid PG (HSCSPG). These PG being not retained on an octyl Sepharose column they were devoided of hydrophobic properties. The integral membrane proteoglycans isolated on the basis of their hydrophobic properties represented 20% of the Triton X-100 releasable material, and were exclusively constituted of proteoheparan sulfate. There were no relationships between this membrane HSPG and the peripheral HSPG as evidenced by pulse chase experiments. The mode of intercalation of the hydrophobic HSPG in the cell membrane was studied. The majority of these macromolecules (80%) were sensitive to trypsin and only a minor proportion (20%) were sensitive to phosphatidylinositol specific phospholipase C. Thus, about 80% of the hydrophobic HSPG were intercalated in the cell membrane by a hydrophobic segment of the core protein whereas about 20% were associated with the cell membrane via a phosphatidylinositol residue covalently bound to the core protein of the PG.Abbreviations PG Proteoglycans - CSPG Chondroitin Sulfate Proteoglycans - HSPG Heparan Sulfate Proteoglycans - HSCSPG Heparan and Chondroitin Sulfate Proteoglycans - DNAse I Deoxyribonuclease I - DMEM Dulbeccos modified Eagle's medium - H/D HAM F12/DMEM - ECM Extracellular Matrix - PBS Phosphate Buffered Saline - PI Phosphatidylinositol - GPI Glycosyl Phosphatidylinositol - PI-PLC Phosphatidylinositol Specific Phospholipase C - TBS Tris Buffered Saline - STI Soybean Trypsin Inhibitor - GAG Glycosaminoglycans - HA Hyaluronic Acid  相似文献   

14.
15.
1. Proteoglycans (PGs) of the extracellular matrix (ECM) play an important role in several morphogenetic and differentiation events that occur during embryonic development. 2. The purpose of this work was to characterize the ECM PGs present during development of Drosophila melanogaster, in an attempt to elucidate their functional relevance. 3. The major 35SO4 incorporation into PGs occurred during the first instar larvae. Sulfated PGs (90%) from both first and second instar larvae were degraded by HNO2 treatment. 4. This result indicated that heparan sulfate proteoglycans (HSPG) are present in Drosophila ECM throughout early development. 5. Charge fractionation of PGs on DEAE-Sephacel columns indicated that most of them eluted at 0.45 M NaCl and were sensitive to HNO2. 6. The administration of beta-D-xyloside, a drug that competes with core proteins for the glycosaminoglycan synthetic apparatus, generated biochemical modifications in the ECM PGs together with alterations in larval locomotor behavior.  相似文献   

16.
Link proteins are glycoproteins which stabilize aggregates of proteoglycans and hyaluronic acid in cartilage. We recently identified link proteins in canine synovial cell cultures. We now find that link proteins and proteoglycans extracted from these cells under dissociative conditions sediment in the high-buoyant-density fractions of an associative cesium chloride density gradient, suggesting that link proteins interact with high-bouyant-density proteoglycans. In gradients containing [35S]sulfate-labeled synovial cell extracts, 76% of the labeled sulfate and 54% of the uronic acid is found in the high-buoyant-density fractions. Under associative conditions, Sepharose 2B elution profiles of the crude synovial cell extract, synovial cell high-buoyant-density fractions, and culture medium indicate that synovial cell proteoglycans are present in monomeric form, rather than in aggregates. Synovial cell link proteins co-elute with the [35S]sulfate-labeled material under the same conditions. These proteoglycans do not interact in vitro with exogenous hyaluronic acid. Dermatan sulfate, chondroitin sulfate and heparan sulfate are the major cell-associated sulfated glycosaminoglycans synthesized by cultured canine synovial cells, while hyaluronic acid is found in the culture medium. Although the proteoglycans synthesized by cultured synovial cells interact with link proteins, these data indicate that they do not interact with hyaluronic acid to form aggregates.  相似文献   

17.
Cultured arterial fibroblasts were used for a quantitative study on adsorption, uptake and degradation of [35S]proteoglycans derived from secretions of cultured arterial or skin fibroblasts. The following results were obtained: 1) Proteoglycans added to the culture medium are integrated into the pool of cell membrane-associated (trypsin-removable) glycosaminoglycans by a saturable process, which depends on time and temperature. 2) Up to 17% of the added proteoglycans are taken up by the cells within 24 h. The uptake exhibits saturation kinetics, characteristic for adsorptive pinocytosis. Proteoglycan concentrations required for half-maximum uptake are higher than for half-maximum saturation of the glycosaminoglycan pool associated with the cell membrane. 3) After a lag phase, inorganic 35SO4 appears in the culture medium as a degradation product of the internalized proteoglycans. Pinocytosed proteoglycans are catabolized more rapidly than proteoglycans which remain inside the cell after their biosynthesis. 4) Pinocytosis exhibits specificity, the individual proteoglycans being internalized at different rates. The highest rate of uptake was measured for a dermatan-sulfate-rich proteoglycan. No competition of uptake between a dermatan-sulfate-rich and a heparan-sulfate-rich proteoglycan was observed. 5) Optimum pinocytosis requires an intact protein moiety and, presumably, undegraded carbohydrate chains of the proteoglycans.  相似文献   

18.
19.
Proteoglycans were extracted from normal human articular cartilage of various ages with 4M-guanidinium chloride and were purified and characterized by using preformed linear CsCl density gradients. With advancing age, there was a decrease in high-density proteoglycans of low protein/uronic acid weight ratio and an increase in the proportion of lower-density proteoglycans, richer in keratan sulphate and protein. Proteoglycans of each age were also shown to disaggregate in 4M-guanidinium chloride and at low pH and to reaggregate in the presence of hyaluronic acid and/or low-density fractions. Osteoarthrotic-cartilage extracts had an increased content of higher-density proteoglycans compared with normal cartilage of the same age, and results also suggested that these were not mechanical or enzymic degradation products, but were possibly proteoglycans of an immature nature.  相似文献   

20.
The synthesis of proteoglycans by aorta explants from rabbits with diet-induced atherosclerosis and controls was studied by 35S-incorporation. Proteoglycans were isolated under dissociative conditions from incubation medium and from arterial explants. Additionally, the tissue proteoglycans that were not extracted by 4 M guanidine-HCl were solubilized by digestion of the tissue by elastase in the presence of proteinase inhibitors. The residual tissue was hydrolyzed by papain and glycosaminoglycans were isolated. The atherosclerotic aorta tissue incorporated twice the amount of 35S into proteoglycans than observed for controls; in both groups about 70% of the label incorporated into the tissue was noted in the proteoglycans extracted by guanidine-HC;, while about 30% of the total 35S-labeled proteoglycans synthesized by the explants were found in the media. Atherosclerotic tissue incorporated 35S predominantly into chondroitin sulfate proteoglycans when compared to control tissue. The chondroitinase ABC-digestable proteoglycans that were extracted by guanidine-HCl from atherosclerotic tissues were of larger molecular size than those from control tissue, but the core proteins from these preparations were similar. The heparan sulfate proteoglycan that was obtained by dissociative extraction from atherosclerotic tissue had greater amounts of N-acetyl and lesser amounts of N-sulfate ester groups than the preparation from control tissue. Digestion of the tissue by elastase yielded heparan sulfate proteoglycan as the major constituent in both groups, although atherosclerotic tissue contained relatively small amounts of this proteoglycan. The residual tissue from both groups contained chondroitin sulfate and heparan sulfate as the major glycosaminoglycans with the latter showing a decrease with atherosclerosis. Atherosclerotic tissue secreted into the medium about two-fold more 35S-labeled proteoglycans with larger molecular size than control tissue; proteoglycans of the heparan sulfate and chondroitin sulfate types were the major constituents in the culture medium of both tissues. Thus, proteoglycans undergo both quantitative and qualitative changes in atherosclerosis, reflecting the enhanced smooth muscle cell activity. These changes are potentially important in modulating lipoprotein binding and hemostatic properties, as well as fibrillogenesis of the arterial wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号