首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 5.5-kilobase (kb) single sequence DNA fragment (G8) reveals the DNA polymorphic locus D4S10 on Southern blot analysis. This locus is closely linked to Huntington disease and has been mapped to chromosome 4 short arm using human-mouse somatic cell hybrids, and specifically to chromosome 4 band p16 using DNA from individuals with deletions of chromosome 4 short arm who exhibit Wolf-Hirschhorn syndrome. With in situ hybridization techniques, we have confirmed the location of D4S10 on chromosome 4 and further localized it within band p16 utilizing five patients, four with overlapping chromosome 4 short-arm aberrations. The DNA segment G8 was hybridized to the mataphase chromosomes of the five patients. Two of them have different interstitial deletions of one of the chromosome 4 short arms (TA and BA), two have different chromosome 4 short-arm terminal deletions (RG and DQ), and one has a normal male karyotype. By noting the presence or absence of hybridization to the partially deleted chromosomes with known precise breakpoints, we were able to more accurately localize probe G8 to the distal half of band p16.1 of chromosome 4.  相似文献   

2.
3.
Huntington disease (HD) is caused by a genetic defect distal to the anonymous DNA marker D4S10 in the terminal cytogenetic subband of the short arm of chromosome 4 (4p16.3). The effort to identify new markers linked to HD has concentrated on the use of somatic cell hybrid panels that split 4p16.3 into proximal and distal portions. Here we report two new polymorphic markers in the proximal portion of 4p16.3, distal to D4S10. Both loci, D4S126 and D4S127, are defined by cosmids isolated from a library enriched for sequences in the 4pter-4p15.1 region. Physical mapping by pulsed-field gel electrophoresis places D4S126 200 kb telomeric to D4S10, while D4S127 is located near the more distal marker D4S95. Typing of a reference pedigree for D4S126 and D4S127 and for the recently described VNTR marker D4S125 has firmly placed these loci on the existing linkage map of 4p16.3. This genetic analysis has revealed that the region immediately distal to D4S10 shows a dramatically higher rate of recombination than would be expected based on its physical size. D4S10-D4S126-D4S125 span 3.5 cM, but only 300-400 kb of DNA. Consequently, this small region accounts for most of the reported genetic distance between D4S10 and HD. By contrast, it was not possible to connect D4S127 to D4S125 by physical mapping, although they are only 0.3 cM apart. A more detailed analysis of recombination sites within the immediate vicinity of D4S10 could potentially reveal the molecular basis for this phenomenon; however, it is clear that the rate of recombination is not continuously increased with progress toward the telomere of 4p.  相似文献   

4.
A family with Huntington disease and reciprocal translocation 4;5.   总被引:2,自引:1,他引:1       下载免费PDF全文
We report the clinical and cytogenetic findings in a family in which a balanced reciprocal translocation between the long arm of chromosome 4 and the short arm of chromosome 5 is segregating together with Huntington disease in 2 generations. In situ hybridization studies revealed that the linked human DNA marker is located on the short arm of the normal and translocated chromosome 4 in the region 4p16. The association between Huntington disease and the translocation in this family may represent a chance occurrence. However, it is also possible that there is an undetected rearrangement of DNA on chromosome 4 involving the gene for Huntington disease but not affecting the site of the linked marker. Finally, the likelihood that this represents heterogeneity cannot be excluded.  相似文献   

5.
An anonymous DNA fragment (G8) detects two restriction fragment length polymorphic alleles (RFLPs) called D4S10 in HindIII-digested human genomic DNA. This segment had been assigned to chromosome 4 and shows close linkage to the Huntington's disease gene. With in situ hybridization, we mapped D4S10 to the terminal region of the short arm of chromosome 4, localizing the Huntington's disease gene to bands 4p16----p15. This information may prove useful for the development of strategies to clone the Huntington's disease gene.  相似文献   

6.
To facilitate identification of additional DNA markers near and on opposite sides of the Huntington disease (HD) gene, we developed a panel of somatic-cell hybrids that allows accurate subregional mapping of DNA fragments in the distal portion of 4p. By means of the hybrid-cell mapping panel and a library of DNA fragments enriched for sequences from the terminal one-third of the short arm of chromosome 4, 105 DNA fragments were mapped to six different physical regions within 4p15-4pter. Four polymorphic DNA fragments of particular interest were identified, at least three of which are distal to the HD-linked D4S10 (G8) locus, a region of 4p previously devoid of DNA markers. Since the HD gene has also recently been shown to be distal to G8, these newly identified DNA markers are in the direction of the HD gene from G8, and one or more of them may be on the opposite side of HD from G8.  相似文献   

7.
The gene for Huntington disease, a neurodegenerative disorder with autosomal dominant inheritance, has been localized to the terminal portion of the short arm of human chromosome 4 (4p16.3) by linkage analysis. Since eventual isolation of the gene requires the application of high-resolution genetic analysis coupled with long-range DNA mapping and cloning techniques, we have constructed a physical map of the chromosomal region 4p16.3 using more than 20 independently derived probes. We have grouped these markers into three clusters which have been ordered and oriented by genetic and somatic cell genetic mapping information. The mapped region extends from D4S10 (G8) toward the telomere and covers minimally 5 Mb.  相似文献   

8.
Genetic linkage studies have mapped Huntington's disease (HD) to the distal portion of the short arm of chromosome 4 (4p16.3), 4 cM distal to D4S10 (G8). To date, no definite flanking marker has been identified. A new DNA marker, D4S90 (D5); which maps to the distal region of 4p16.3, is described. The marker was used in a genetic linkage study in the CEPH reference families with seven other markers at 4p16. The study, together with knowledge of the physical map of the region, places D4S90 as the most distal marker, 6 cM from D4S10. A provisional linkage study with HD gave a maximum lod score of 2.14 at a theta of 0.00 and no evidence of linkage disequilibrium. As D4S90 appears to be located terminally, it should play an important role in the accurate mapping and cloning of the HD gene.  相似文献   

9.
A DNA probe (D4S95) that detects a variable number of tandem repeats and a single-site-variation polymorphism after digestion with a single restriction enzyme, AccI, has previously been described. The order of this probe relative to the gene for Huntington disease (HD) and other previously described markers has not been established. Analysis of 24 affected families with HD has shown that D4S95 is in tight linkage with the gene causing HD, with a maximal Lod score of 12.489 at a theta of .03. D4S90 is a probe which maps to 4p16.3, telomeric to D4S95, and detects polymorphisms with HincII and other enzymes. In one affected person, recombination has occurred between D4S10 and HD, between D4S95 and HD, and in all likelihood also between D4S90 and HD, which strongly suggests that the gene for HD is telomeric to all these DNA probes. This suggests that the gene causing HD is located in the most distal region of the short arm of chromosome 4, flanked by D4S90 and the telomere, and supports the locus order D4S10-D4S95-D4S90-HD-telomere. D4S95 is a most useful DNA marker for predictive testing programs, while D4S90 will serve as a useful starting point for identifying DNA fragments closer to the gene for HD.  相似文献   

10.
A radiation-induced hybrid cell line containing 10-20 million base pairs of DNA derived from the terminal part of human 4p16 in a background of hamster chromosomes has been used to construct a genomic library highly enriched for human sequences located close to the Huntington disease (HD) gene. Recombinant phage containing human inserts were isolated from this library and used as hybridization probes against two other radiation hybrids containing human fragments with chromosomal breaks in 4p16 and against a human-hamster somatic cell hybrid that retains only the 4p15-4pter part of chromosome 4. Of 121 human phage tested, 6 were mapped distal to the HD-linked D4S10 locus. Since the HD gene is located between D4S10 and the 4p telomere, all of these sequences are likely to be closer to HD than D4S10, and any one of them may be a distal flanking marker for the disease locus. Long-range restriction map analysis performed with a field-inversion gel system shows that the six new loci are distributed in different places within 4p16. Although it is not possible to establish an order for the six sequences with the FIGE data, the results demonstrate that the region detected by these probes must span at least 2000 kb of DNA.  相似文献   

11.
Genetic linkage studies have mapped Huntington's disease (HD) to the distal portion of the short arm of chromosome 4 (4p16.3), 4 cM distal to D4S10 (G8). To date, no definite flanking marker has been identified. A new DNA marker, D4S90 (D5), which maps to the distal region of 4p16.3, is described. The marker was used in a genetic linkage study in the CEPH reference families with seven other markers at 4p16. The study, together with knowledge of the physical map of the region, places D4S90 as the most distal marker, 6 cM from D4S10. A provisional linkage study with HD gave a maximum lod score of 2.14 at a θ of 0.00 and no evidence of linkage disequilibrium. As D4S90 appears to be located terminally, it should play an important role in the accurate mapping and cloning of the HD gene.  相似文献   

12.
Genetic linkage between the marker G8 (D4S10) and Huntington disease (HD) was studied in six Dutch pedigrees. The informativeness of the D4S10 locus was increased by isolation of a cosmid, C5.5, with a G8 subclone used as probe. We present a restriction map of 70 kb in the D4S10 region. Two subclones of C5.5, H5.52 and F5.53, detect MspI and SinI RFLPs, respectively. These probes increase the informativeness of D4S10 in the Dutch HD population from 55% to 95%. Seven recombinations were found in 124 informative meioses in which multipoint segregation of D4S10 haplotypes and the HD locus was studied. Two of the recombinations occurred within the D4S10 region. The other five recombinations are highly valuable for the mapping of present and future markers relative to each other and to the HD gene. In addition, several recombinations between markers in meioses from unaffected parents were noted, which will also be useful in ordering new markers. On the basis of our three-point recombination data, the orientation of the D4S10 region relative to HD is HD-H5.52-G8-F5.53, which independently confirms the previously derived polarity for D4S10.  相似文献   

13.
A consanguineous family affected by an autosomal recessive, progressive neurodegenerative Huntington-like disorder, was tested to rule out juvenile-onset Huntington disease (JHD). The disease manifests at approximately 3-4 years and is characterized by both pyramidal and extrapyramidal abnormalities, including chorea, dystonia, ataxia, gait instability, spasticity, seizures, mutism, and intellectual impairment. Brain magnetic resonance imaging (MRI) findings include progressive frontal cortical atrophy and bilateral caudate atrophy. Huntington CAG trinucleotide-repeat analyses ruled out JHD, since all affected individuals had repeat numbers within the normal range. The presence of only four recombinant events (straight theta=.2) between the disease and the Huntington locus in 20 informative meioses suggested that the disease localized to chromosome 4. Linkage was initially achieved with marker D4S2366 at 4p15.3 (LOD 3.03). High-density mapping at the linked locus resulted in homozygosity for markers D4S431 and D4S394, which span a 3-cM region. A maximum LOD score of 4.71 in the homozygous interval was obtained. Heterozygosity at the distal D4S2366 and proximal D4S2983 markers defines the maximum localization interval (7 cM). Multiple brain-related expressed sequence tags (ESTs) with no known disease association exist in the linkage interval. Among the three known genes residing in the linked interval (ACOX3, DRD5, QDPR), the most likely candidate, DRD5, encoding the dopamine receptor D5, was excluded, since all five affected family members were heterozygous for an intragenic dinucleotide repeat. The inheritance pattern and unique localization to 4p15.3 are consistent with the identification of a novel, autosomal recessive, neurodegenerative Huntington-like disorder.  相似文献   

14.
Somatic cell hybrids were selected that retain a derivative chromosome 5 from an individual in which the p15.1-pter segment of chromosome 5 is replaced with the p15.1-pter segment of chromosome 4. Hybrids that retain this derivative chromosome exclusively were found to be positive for G8, a DNA marker closely linked to the Huntington disease gene on chromosome 4p. From one such hybrid, a segregant was isolated that had deleted the entire q arm of the derivative chromosome but retained the p arm intact as its only detectable human DNA. A complete recombinant DNA library was prepared from this cell line, and the inserts in approximately 1/3 of the recombinant phage with human DNA were shown to be derived from 4pter-4p15.1, which represents only approximately 1% of the total human genome. The cell hybrid and DNA library represent a rapid and efficient means to identify and isolate many polymorphic DNA markers close to and flanking the Huntington disease gene.  相似文献   

15.
Wolf-Hirschhorn syndrome (WHS), associated with a deletion of chromosome 4p, is characterized by mental and growth retardation and typical facial dysmorphism. A girl with clinical features of WHS was found to carry a subtle deletion of chromosome 4p. Initially suggested by high-resolution chromosome analysis, her deletion was confirmed by fluorescence in situ hybridization (FISH) with cosmid probes, E13 and Y2, of D4S113. To delineate this 4p deletion, we performed a series of FISH and pulsed-field gel electrophoresis analyses by using probes from 4p16.3. A deletion of approximately 2.5 Mb with the breakpoint at approximately 80 kb distal to D4S43 was defined in this patient and appears to be the smallest WHS deletion so far identified. To further refine the WHS critical region, we have studied three unrelated patients with presumptive 4p deletions, two resulting from unbalanced segregations of parental chromosomal translocations and one resulting from an apparently de novo unbalanced translocation. Larger deletions were identified in two patients with WHS. One patient who did not clinically present with WHS had a smaller deletion that thus eliminates the distal 100-300 kb from the telomere as being part of the WHS region. This study has localized the WHS region to approximately 2 Mb between D4S43 and D4S142.  相似文献   

16.
Significant linkage disequilibrium has been found between the Huntington disease (HD) gene and DNA markers located around D4S95 and D4S98. The linkage-disequilibrium studies favor the proximal location of the HD gene, in contrast to the conflicting results of recombination analyses. We have analyzed 45 Dutch HD families with 19 DNA markers and have calculated the strength of linkage disequilibrium. Highly significant linkage disequilibrium has been detected with D4S95, consistent with the studies in other populations. In contrast with most other studies, however, the area of linkage disequilibrium extends from D4S10 proximally to D4S95, covering 1,100 kb. These results confirm that the HD gene most likely maps near D4S95.  相似文献   

17.
Summary The chromosomal localization of a unique DNA fragment, closely linked to Hintington disease (HD), was assessed in situ by hybridization with 2-acetylaminofluorene (AAF) modified probes. In these experiments, a cosmid cloned genomic fragment (c5.5) was used for hybridization. Here we present evidence that confirms the mapping of the D4S10 locus to the p16 region of chromosome 4 and assigns it to the telomere of the short arm.  相似文献   

18.
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor disturbance, cognitive loss, and psychiatric manifestations. The disease is associated with a CAG trinucleotide-repeat expansion in the Huntington gene (IT15) on chromosome 4p16.3. One family with a history of HD was referred to us initially for predictive testing using linkage analysis. However, the chromosome 4p region was completely excluded by polymorphic markers, and later no CAG-repeat expansion in the HD gene was detected. To map the disease trait segregating in this family, whole-genome screening with highly polymorphic dinucleotide-, trinucleotide-, and tetranucleotide-repeat DNA markers was performed. A positive LOD score of 3.01 was obtained for the marker D20S482 on chromosome 20p, by two-point LOD-score analysis with the MLINK program. Haplotype analysis indicated that the gene responsible for the disease is likely located in a 2.7-cM region between the markers D20S193 and D20S895. Candidate genes from the mapping region were screened for mutations.  相似文献   

19.
In an attempt to define the distinctive Wolf-Hirschhorn syndrome (WHS) phenotype, and to map its specific clinical manifestations, a total of eight patients carrying a 4p16.3 microdeletion were analyzed for their clinical phenotype and their respective genotypes. The extent of each individual deletion was established by fluorescence in situ hybridization, with a cosmid contig spanning the genomic region from MSX1 (distal half of 4p16.1) to the subtelomeric locus D4S3359. The deletions were 1.9-3.5 Mb, and all were terminal. All the patients presented with a mild phenotype, in which major malformations were usually absent. It is worth noting that head circumference was normal for height in two patients (those with the smallest deletions [1.9 and 2.2 Mb]). The currently accepted WHS critical region (WHSCR) was fully preserved in the patient with the 1.9-Mb deletion, in spite of a typical WHS phenotype. The deletion in this patient spanned the chromosome region from D4S3327 (190 b4 cosmid clone included) to the telomere. From a clinical point of view, the distinctive WHS phenotype is defined by the presence of typical facial appearance, mental retardation, growth delay, congenital hypotonia, and seizures. These signs represent the minimal diagnostic criteria for WHS. This basic phenotype maps distal to the currently accepted WHSCR. Here, we propose a new critical region for WHS, and we refer to this region as "WHSCR-2." It falls within a 300-600-kb interval in 4p16.3, between the loci D4S3327 and D4S98-D4S168. Among the candidate genes already described for WHS, LETM1 (leucine zipper/EF-hand-containing transmembrane) is likely to be pathogenetically involved in seizures. On the basis of genotype-phenotype correlation analysis, dividing the WHS phenotype into two distinct clinical entities, a "classical" and a "mild" form, is recommended for the purpose of proper genetic counseling.  相似文献   

20.
The Huntington disease (HD) mutation has been localized to human chromosome 4p16, in a 6-Mb region between the D4S10 locus and the 4p telomere. In a report by Robbins et al., a family was identified in which an affected individual failed to inherit three alleles within the 6-Mb region originating from the parental HD chromosome. To explain these results, it was suggested that the HD locus (HD) lies close to the telomere and that a recombination event took place between HD and the most telomeric marker examined, D4S90. As a test of this telomere hypothesis, we examined six members of this family, five of whom are affected with HD, for the segregation of 12 polymorphic markers from 4p16, including D4S169, which lies within 80 kb of the 4p telomere. We separated, in somatic cell hybrids, the chromosomes 4 from each family member, to determine the phase of marker alleles on each chromosome. We excluded nonpaternity by performing DNA fingerprint analyses on all six family members, and we found no evidence for chromosomal rearrangements when we used high-resolution karyotype analysis. We found that two affected siblings, including one of the patients originally described by Robbins et al., inherited alleles from the non-HD chromosome 4 of their affected parents, throughout the 6-Mb region. We found that a third affected sibling, also studied by Robbins et al., inherited alleles from the HD chromosome 4 of the affected parent, throughout the 6-Mb region. Finally, we found that a fourth sibling, who is likely affected with HD, has both a recombination event within the 6-Mb region and an additional recombination event in a more centromeric region of the short arm of chromosome 4. Our results argue against a telomeric location for HD and suggest that the HD mutation in this family is either associated with DNA predisposed to double recombination and/or gene conversion within the 6-Mb region or is in a gene that is outside this region and that is different from that mutated in most other families with HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号