首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of tumor angiogenesis by thrombospondin-1   总被引:8,自引:0,他引:8  
Angiogenesis plays a critical role in the growth and metastasis of tumors. Thrombospondin-1 (TSP-1) is a potent angiogenesis inhibitor, and down-regulation of TSP-1 has been suggested to alter tumor growth by modulating angiogenesis in a variety of tumor types. Expression of TSP-1 is up-regulated by the tumor suppressor gene, p53, and down-regulated by oncogenes such as Myc and Ras. TSP-1 inhibits angiogenesis by inhibiting endothelial cell migration and proliferation and by inducing apoptosis. In addition, activation of transforming growth factor beta (TGF-beta) by TSP-1 plays a crucial role in the regulation of tumor progression. An understanding of the molecular basis of TSP-1-mediated inhibition of angiogenesis and tumor progression will aid in the development of novel therapeutics for the treatment of cancer.  相似文献   

2.
Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth   总被引:10,自引:0,他引:10  
Thrombospondin-1 (TSP-1) is a matricellular glycoprotein that influences cellular phenotype and the structure of the extracellular matrix. These effects are important components of the tissue remodeling that is associated with angiogenesis and neoplasia. The genetic mutations in oncogenes and tumor suppressor genes that occur within tumor cells are frequently associated with decreased expression of TSP-1. However, the TSP-1 that is produced by stromal fibroblasts, endothelial cells and immune cells suppresses tumor progression. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival and through indirect effects on growth factor mobilization. TSP-1 that is present in the tumor microenvironment also acts to suppress tumor cell growth through activation of transforming growth factor β in those tumor cells that are responsive to TGFβ. In this review, the molecular basis for the role of TSP-1 in the inhibition of tumor growth and angiogenesis is summarized.  相似文献   

3.
Thrombospondin-1 (TSP-1) is a matrix protein that has been implicated in mechanisms of tumor progression. Our laboratory previously showed that the CSVTCG (cys-ser-val-thr-cys-gly) sequence of TSP-1 functioned as a tumor cell adhesion domain and CSVTCG peptides as well as an anti-peptide antibody possessed anti-metastatic activity in a murine model of lung metastasis. In a subsequent study, a putative TSP-1 binding protein from lung carcinoma was isolated by CSVTCG-peptide affinity chromatography. In this study, we present the full-length cDNA of this binding protein isolated from a prostate cancer cell (PC3-NI) cDNA library. The purified recombinant protein, termed angiocidin, is a potent inhibitor of tumor growth of Lewis Lung carcinoma in vivo and tumor invasion and angiogenesis in vitro. In addition, the recombinant protein inhibits tumor and endothelial cell proliferation and induces apoptosis. The activity of angiocidin both in vivo and in vitro is partially dependent on its TSP-1 binding activity, since an angiocidin deletion mutant missing a high affinity-binding site for TSP-1 failed to inhibit tumor growth in vivo and was less active in its anti-tumor and anti-angiogenic activities in vitro. These results suggest that the anti-tumor activity of TSP-1 reported in many studies may be mediated in part by binding proteins such as angiocidin. Such proteins may function as tumor-suppressor proteins, which limit the growth of tumors by inhibiting angiogenesis and cell matrix interaction.  相似文献   

4.
Previous gene targeting studies have implicated an indispensable role of vascular endothelial growth factor (VEGF) in tumor angiogenesis, particularly in tumors of embryonal or endocrine origin. In contrast, we report here that transformation of VEGF-deficient adult fibroblasts (MDF528) with ras or neu oncogenes gives rise to highly tumorigenic and angiogenic fibrosarcomas. These aggressive VEGF-null tumors (528ras, 528neu) originated from VEGF(-/-) embryonic stem cells, which themselves were tumorigenically deficient. We also report that VEGF production by tumor stroma has a modest role in oncogene-driven tumor angiogenesis. Both ras and neu oncogenes down-regulated at least two endogenous inhibitors of angiogenesis [pigment epithelium derived factor (PEDF) and thrombospondin 1 (TSP-1)]. This is functionally important as administration of an antiangiogenic TSP-1 peptide (ABT-526) markedly inhibited growth of VEGF(-/-) tumors, with some ingress of pericytes. These results provide the first definitive genetic demonstration of the dispensability of tumor cell-derived VEGF in certain cases of 'adult' tumor angiogenesis, and thus highlight the importance of considering VEGF-independent as well as VEGF-dependent pathways when attempting to block this process pharmacologically.  相似文献   

5.
6.
Thrombospondins (TSPs) -1 and -2 were among the first protein inhibitors of angiogenesis to be identified, a property that was subsequently attributed to the interactions of sequences in their type I repeats with endothelial cell-surface receptors. The interactions of TSPs-1 and -2 with cell-surface receptors, proteases, growth factors, and other bioactive molecules, coupled with the absence of direct structural functions that can be attributed to these matrix proteins, qualify them for inclusion in the category of ‘matricellular proteins’. The phenotypes of TSP-1, TSP-2, and double TSP-1/2-null mice confirm the roles that these proteins play in the regulation of angiogenesis, and provide clues to some of the other important functions of these multi-domain proteins. One of these functions is the ability of TSP-1 to activate the latent TGFβ1 complex, a property that is not shared by TSP-2. A major pathway by which TSP1 or TSP2 inhibits angiogenesis involves an interaction with CD 36 on endothelial cells, which leads to apoptosis of both the liganded and adjacent cells. However a homeostatic mechanism, which inhibits endothelial cell proliferation, and may be physiologically preferable under some circumstances, has also been elucidated, and involves interaction with the very low density lipoprotein receptor (VLDLR). The interaction of TSP1with its receptor, CD47, further inhibits angiogenesis by antagonizing nitric oxide signaling in endothelial and vascular smooth muscle cells. Paradoxically, there is also evidence that TSP-1 can function to promote angiogenesis. This apparent contradiction can be explained by the presence of sequences in different domains of the protein that interact with different receptors on endothelial cells. The anti-angiogenic function of TSPs has spurred interest in their use as anti-tumor agents. Currently, peptide mimetics, based on sequences in the type I repeats of TSPs that have been shown to have anti-angiogenic properties, are undergoing clinical testing.  相似文献   

7.
Thrombospondin (TSP-1) is a large glycoprotein secreted by platelets and synthesized by many cell types, including endothelial and tumor cells. Although controversy exists about the biological function of TSP-1, the following observations suggest that TSP-1 may potentiate tumor progression. (1) Tumor metastases in mice are promoted by TSP-1 and inhibited by anti-TSP-1 antibodies. (2) TSP-1 promotes tumor cell adhesion, migration and invasion. (3) TSP-1 promotes angiogenesis in the rat aorta model. (4) TSP-1 up-regulates the plasminogen activator system through a mechanism involving the activation of TGF-β1. (5) Human tumors express increased levels of the CSVTCG-specific TSP-1 receptor. (6) Tumor stroma is enriched in TSP-1. (7) Cancer patients have high blood levels of TSP-1. (8) Poor patient survival correlates with a higher expression of the CSVTCG-specific TSP-1 receptor on tumor cells. In this paper we discuss the evidence that TSP-1 promotes tumor progression and present a hypothetical scheme for its mechanism of action.  相似文献   

8.
Thrombospondin (TSP-1) is a 450-kd adhesive glycoprotein that was initially discovered in platelets and subsequently in a variety of cell types. Several reports suggest that TSP-1 possesses tumour suppressor function, through its ability to inhibit tumour neovascularization. In this study we investigated tissue sections from 124 breast carcinomas for the immuno-histochemical expression of TSP-1 protein and its relationship to several clinicopathological parameters. The possible relationship to hormone receptors content, p53 protein, proliferation associated indices, angiogenesis, VEGF expression and extracellular matrix components (tenascin, fibronectin, laminin, collagen type IV and syndecan-1) was also estimated. TSP-1 was detected in the perivascular tissue, at the epithelial-stromal junction, in the stroma and in the tumour cells. High tumour cell TSP-1 expression was observed in 9.7%, moderate in 17.7%, mild in 10.5%, while 62.1% of the cases were negative for TSP-1 expression. The survival analysis showed an increased risk of recurrence associated with low TSP-1 tumour cell expression. High stromal TSP-1 expression was observed in 3.2% of the cases, moderate in 3.3%, mild in 27.4%, while 63.6% of the cases showed absence of TSP-1 expression. This expression was higher in invasive lobular type of breast cancer and inversely correlated with the lymph node involvement and the estrogen receptor content. Stromal TSP-1 expression was also positively correlated with extracellular matrix components expression, tenascin, fibronectin, collagen type IV, laminin, and syndecan-1. The relationship of TSP-1 expression with tumor angiogenesis, growth fraction and p53 protein expression was not significant. Our data suggest that TSP-1 expression seems to be associated with favorable biological behavior and may have clinical value in terms of predicting the risk of recurrence. In addition, TSP-1 might not be a direct anti-angiogenic factor, although it seems to be implicated in the remodeling of breast cancer tissue through interaction with other extracellular matrix components.  相似文献   

9.
10.
Thrombospondin-1 (TSP-1), a multifunctional matrix protein, affects tumor growth through modulation of angiogenesis and other stromal biological functions. In several of nine human cancer cell lines derived from liver, brain, pancreas, and bone, expression of TSP-1 was up-regulated in response to the two most representative growth factors, epidermal growth factor (EGF) and transforming growth factor beta1 (TGFbeta1). Expression of TSP-1 was markedly enhanced in hepatic HuH-7 cells by EGF but not by TGFbeta1. In contrast, expression of TSP-1 was markedly enhanced by TGFbeta1, but not by EGF, in osteosarcoma MG63 cells. EGF induced activation of TSP-1 promoter-driven luciferase activity in HuH-7 cells, and the elements between -267 and -71 on the 5' region of TSP-1 gene containing two GC boxes to which Sp1 bound, were found to be responsible for the promoter activation by EGF. However, EGF did not alter TSP-1 mRNA stability in hepatic cells. On the other hand, no such enhancement of the TSP-1 promoter activity by TGFbeta1 appeared in MG63 cells. Enhanced expression of TSP-1 by TGFbeta1 in MG63 cells was partially blocked by exogenous addition of SB203580, an inhibitor of p38 mitogen-activated protein kinase. TGFbeta was found to induce marked elongation of TSP-1 mRNA longevity in osteosarcoma cells when mRNA degradation was assayed in the presence of alpha-amanitin. The up-regulation of TSP-1 by EGF and TGFbeta might play a critical role in modulation of angiogenesis and formation of matrices in tumor stroma.  相似文献   

11.
12.
Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that limits vessel density in normal tissues and curtails tumor growth. Here, we show that the inhibition of angiogenesis in vitro and in vivo and the induction of apoptosis by thrombospondin-1 all required the sequential activation of CD36, p59fyn, caspase-3 like proteases and p38 mitogen-activated protein kinases. We also detected increased endothelial cell apoptosis in situ at the margins of tumors in mice treated with thrombospondin-1. These results indicate that thrombospondin-1, and possibly other broad-spectrum natural inhibitors of angiogenesis, act in vivo by inducing receptor-mediated apoptosis in activated microvascular endothelial cells.  相似文献   

13.
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with proinflammatory, proangiogenic, and protumorigenic properties. The molecular mechanisms underlying the role of MIF in tumorigenesis and angiogenesis are not well understood. To address these roles, an interfering MIF (iMIF) RNA was stably introduced into the B16-F10 mouse melanoma cell line, reducing MIF mRNA expression 1.6-fold and MIF protein expression 2.8-fold relative to control cells. When iMIF cells were subcutaneously injected into C57BL/6 mice, tumor establishment was significantly delayed and there was a marked absence of intratumoral vasculature in iMIF tumors relative to controls. A comparative gene expression analysis of iMIF and control melanoma cell lines revealed that thrombospondin-1 (TSP-1) mRNA expression was up-regulated 88-fold in the iMIF cells by real-time PCR. A 2-fold increase in TSP-1 protein levels was observed in iMIF cell culture supernatants. These results strongly suggest that the delayed tumor establishment and reduced vasculature in iMIF melanomas are linked to the up-regulation of the antiangiogenic TSP-1. They further define a novel function of MIF as a regulator of TSP-1 in a mouse melanoma model.  相似文献   

14.
The thrombospondins (TSPs) are a family of proteins that regulate tissue genesis and remodeling. In many tumors, down-regulation of TSPs accompanies activation of oncogenes or inactivation of tumor suppresser genes and appears to be a prerequisite for the aquisition of a pro-angiogenic phenotype. The normal suppression of angiogenesis by TSP-1 and -2 involves multiple mechanisms including direct interaction with vascular endothelial cell growth factor (VEGF), inhibition of matrix metalloproteinase 9 (MMP9) activation, inhibition of endothelial cell migration and induction of endothelial cell apoptosis. The importance of down-regulation of TSPs for tumor progression is further established by the fact that several different approaches that are designed to increase the levels of TSP-1 or -2 in tumor tissue inhibit tumor growth. These approaches include cell-based gene therapy, low dose chemotherapeutics and systemic delivery of recombinant proteins or synthetic peptides that include type 1 repeat (TSR) sequences. Initial studies indicate that these reagents, in combination with established approaches for the treatment of cancer, will offer more efficacious therapies.  相似文献   

15.
Thrombospondin-1 (TSP-1) is a multidomain extracellular macromolecule that was first identified as natural modulator of angiogenesis and tumor growth. In the present study, we found that epidermal growth factor (EGF) up-regulated TSP-1 expression in FTC-133 (primary tumor) but not in FTC-238 (lung metastasis) thyroid cancer cells. Both EGF and TSP-1 induced expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In FTC-133 cells, EGF induced proliferation in a TSP-1- and TIMP-1-dependent manner. In addition, we determined that re-expression of the tumor suppressor protein PTEN induced cell death, an effect that correlated with a block of Akt kinase phosphorylation. EGF-induced TSP-1 and TIMP-1 promoter activity and protein expression were inhibited in FTC-133 cells stably expressing wtPTEN but not in cells expressing mutant PTEN. Furthermore, we found that wtPTEN inhibited EGF--but not TSP-1--stimulated FTC-133 cell migration and also inhibited invasion induced by EGF and by TSP-1. Finally, an antibody against TSP-1 reversed EGF-stimulated FTC-133 cell invasion as well as the constitutive invasive potential of FTC-238 cells. Overall, our results suggest that PTEN can function as an important modulator of extracellular matrix proteins in thyroid cancer. Therefore, analyzing differential regulation of TSP-1 by growth factors such as EGF can be helpful in understanding thyroid cancer development.  相似文献   

16.
Thrombospondin-4 (TSP-4) belongs to the thrombospondin protein family that consists of five highly homologous members. A number of novel functions have been recently assigned to TSP-4 in cardiovascular and nervous systems, inflammation, cancer, and the motor unit, which have attracted attention to this extracellular matrix (ECM) protein. These newly discovered functions set TSP-4 apart from other thrombospondins. For example, TSP-4 promotes angiogenesis while other TSPs either prevent it or have no effect on new blood vessel growth; TSP-4 reduces fibrosis and collagen production while TSP-1 and TSP-2 promote fibrosis in several organs; unlike other TSPs, TSP-4 appears to have some structural functions in ECM. The current information about TSP-4 functions in different organs and physiological systems suggests that this evolutionary conserved protein is a major regulator of the extracellular matrix (ECM) organization and production and tissue remodeling during the embryonic development and response to injury. In this review article, we summarize the properties and functions of TSP-4 and discuss its role in tissue remodeling.  相似文献   

17.
Angiogenesis involves proliferation of capillary endothelial cells and formation of lumen-containing tube-like structures. A recently established murine brain capillary endothelial cell line, IBE, can either proliferate or form tube-like structures (i.e., differentiate) in response to fibroblast growth factor-2 (FGF-2), dependent on the culture conditions. The 4N1K peptide (KRFYVVMWKK), which is derived from the C-terminal cell-binding domain of thrombospondin-1 (TSP-1), inhibited tube formation, but not proliferation of IBE cells. Polyclonal antibodies against 4N1K blocked TSP-1-induced inhibition of tube formation by IBE cells. 4N1K inhibited tyrosine phosphorylation of focal adhesion kinase and FGF-2-stimulated tyrosine phosphorylation of phospholipase C-gamma in tube-forming, but not proliferating, IBE cells. The peptide also inhibited FGF-2-induced neovascularization in mouse cornea. Our results indicate that TSP-1 may exert its inhibitory effects on angiogenesis via the C-terminal cell-binding domain containing the 4N1K sequence by inhibiting tube formation by endothelial cells.  相似文献   

18.
Tumor-stroma interactions play a significant role in tumor development and progression. Alterations in the stromal microenvironment, including enhanced vasculature (angiogenesis), modified extracellular matrix composition, inflammatory cells, and dys-balanced protease activity, are essential regulatory factors of tumor growth and invasion. Differential modulation of stromal characteristics is induced by epithelial skin tumor cells depending on their transformation stage when grown as surface transplants in vivo. Tumor cells can regulate the development of a "tumor-stroma" via the aberrant expression of growth factors or induction of growth factor receptors in the stromal compartment. In this context, secretion of the hematopoietic growth factors G-CSF and GM-CSF, constituitively expressed in enhanced malignant tumors, may be good candidates for induction of a tumor stroma through their effect on inflammatory cells. Upon its induction, the tumor stroma will reciprocally influence the differentiation status of tumor cells resulting in a normalization of benign tumor epithelia and the maintenance of a malignant phenotype, respectively. In the HaCaT model for squamous cell carcinoma of the skin, stromal activation and angiogenesis are transient in pre-malignant transplants, however they remain persistent in malignant transplants where progressive angiogenesis is closely correlated with tumor invasion. While continued expression of VEGF and PDGF are associated with benign tumor phenotypes, activation of VEGFR-2 is a hallmark of malignant tumors and accompanies ongoing angiogenesis and tumor invasion. As a consequence the inhibition of ongoing angiogenesis by blocking VEGFR-2 signalling resulted in dramatically impaired malignant tumor expansion and invasion. Comparably, tumor vascularization and invasion was blocked by disturbing the balance of matrix protease activity caused by a lack of PAI-1 in the stromal cells of the knockout mouse hosts. A similar inhibition of tumor vascularization was caused by TSP-1 over-expression in skin carcinoma cells, which also blocked tumor invasion and expansion. On the other hand, when granulation tissue and angiogenesis were only transiently activated as a result of stable transfection of PDGF into non-tumorigenic HaCaT cells, the target cells formed benign, but not malignant, tumors. Collectively, these data show that tumor vascularization, providing intimate association of blood vessels with tumor cells, is a prerequisite for tumor invasion. A potential mechanism for this interrelationship may be the differential regulation of MMP-expression in tumors of different grades of malignancy. In vitro MMP expression did not discriminate between benign and malignant tumor cells unless they were co-cultured with stromal fibroblasts. However, in vivo regulation of MMP expression was clearly dependent on tumor phenotype. While MMP-1 and MMP-13 were down-regulated in benign transplants, they were persistently up-regulated in malignant ones. A tight balance between proteases and their inhibitors is crucial for both the formation and infiltration of blood vessels and for tumor cell invasion, thus again emphasizing the importance of the stromal compartment for the development and progression of carcinomas.  相似文献   

19.
The thrombospondins (TSPs), multifunctional matricellular proteins, are known mediators of endothelial cell (EC) angiogenesis and apoptosis. TSP-1, an antiangiogenic molecule, is important in the progression of vascular disease, in part by inducing EC apoptosis. TSP-2, although less studied, also induces EC apoptosis and inhibits angiogenesis. The effects of TSP-5 are largely unexplored in ECs, but TSP-5 is believed to be protective against arterial disease. Statin drugs have been shown to have beneficial pleiotropic effects, including decreasing EC apoptosis, increasing angiogenesis, and blocking TSP signaling. We hypothesized TSP-5 will be proangiogenic and antiapoptotic, and statin pretreatment would reverse the proapoptotic and antiangiogenic phenotype of TSP-1 and TSP-2. ECs were exposed to serum-free medium, TSP-1, TSP-2, or TSP-5 with or without fluvastatin pretreatment. Quantitative real-time polymerase chain reaction was performed on 96 apoptosis and 96 angiogenesis-related genes using microfluidic card assays. Angiogenesis was measured using Matrigel assays, while apoptosis was measured by fluorescent caspase assay. TSP-5 suppressed apoptotic genes and had a mixed effect on the angiogenic genes; however, TSP-5 did not alter apoptois but was proangiogenic. Pretreatment with fluvastatin downregulated proapoptotic genes and apoptosis and upregulated proangiogenic genes and angiogenesis. Findings indicate TSP-5 and fluvastatin have a protective effect on ECs, being proangiogenic and reversing the antiangiogenic effects of TSP-1 and TSP-2. In conclusion, TSP-5 and fluvastatin may be beneficial for inducing angiogenesis in the setting of ischemia.  相似文献   

20.
The angiogenic switch during tumorigenesis is thought to be induced by a change in the balance of pro- angiogenic and anti-angiogenic factors. To elucidate the biological role of the endogenous angiogenesis inhibitor thrombospondin-2 (TSP-2) during multistep carcinogenesis, we subjected TSP-2-deficient and wild-type mice to a chemical skin carcinogenesis regimen. Surprisingly, TSP-2 expression was strongly upregulated in the mesenchymal stroma of wild-type mice throughout the consecutive stages of tumorigenesis whereas the angiogenesis factor, vascular endothelial growth factor, was induced predominantly in tumor cells. TSP-2 deficiency dramatically enhanced susceptibility to skin carcinogenesis and resulted in accelerated and increased tumor formation. The angiogenic switch occurred in early stages of pre-malignant tumor formation, and tumor angiogenesis was significantly enhanced in TSP-2-deficient mice. While TSP-2 deficiency did not affect tumor differentiation or proliferation, tumor cell apoptosis was significantly reduced. These results reveal upregulation of an endogenous angiogenesis inhibitor during multi step tumorigenesis and identify enhanced stromal TSP-2 expression as a novel host anti-tumor defense mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号