首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Respiratory motion causes substantial artifacts in reconstructed PET images when using helical CT as the attenuation map in PET/CT imaging. In this study, we aimed to reduce the respiratory artifacts in PET/CT images of patients with lung tumors using an abdominal compression device.

Methods

Twelve patients with lung cancer located in the middle or lower lobe of the lung were recruited. The patients were injected with 370 MBq of 18F-FDG. During PET, the patients assumed two bed positions for 1.5 min/bed. After conducting free-breathing imaging, we obtained images of the patients with abdominal compression by applying the same setup used in the free-breathing scan. The differences in the standardized uptake value (SUV)max, SUVmean, tumor volume, and the centroid of the tumors between PET and various CT schemes were measured.

Results

The SUVmax and SUVmean derived from PET/CT imaging using an abdominal compression device increased for all the lesions, compared with those obtained using the conventional approach. The percentage increases were 18.1% ±14% and 17% ±16.8% for SUVmax and SUVmean, respectively. PET/CT imaging combined with abdominal compression generally reduced the tumor mismatch between CT and the corresponding attenuation corrected PET images, with an average decrease of 1.9±1.7 mm over all the cases.

Conclusions

PET/CT imaging combined with abdominal compression reduces respiratory artifacts and PET/CT misregistration, and enhances quantitative SUV in tumor. Abdominal compression is easy to set up and is an effective method used in PET/CT imaging for clinical oncology, especially in the thoracic region.  相似文献   

2.
OBJECTIVES: We analyzed the effects of anti-hedgehog signaling on the 18F-FDG uptake of pancreatic cancer xenografts (PCXs) using a clinically implemented positron emission tomography (PET)-computer tomography (CT) scanner with high-resolution reconstruction. METHODS: PCXs from two pancreatic cancer cell lines were developed subcutaneously in nude mice and injected intraperitoneally with a low dose of cyclopamine for 1 week. 18F-FDG PET-CT was performed using a new-generation clinical PET-CT scanner with minor modifications of the scanning protocol to adapt for small-animal imaging. The data set was reconstructed and quantified using a three-dimensional workstation. RESULTS: MiaPaCa-2 cells, which respond to cyclopamine, showed decreased 18F-FDG uptake without a change in tumor size. For hip tumors, the maximum standardized uptake value (SUVmax) was reduced by -24.5 ± 9.2%, the average SUV (SUVavg) by -33.5 ± 7.0%, and the minimum SUV (SUVmin) by -54.4 ± 11.5% (P < .05). For shoulder tumors, SUVmax was reduced by -14.7 ± 7.5%, SUVavg by -12.6 ± 6.3, and SUVmin by -30.3 ± 16.7% (P < .05). Capan-1 cells, which do not respond to cyclopamine, did not show significant SUV changes. CONCLUSIONS: The new generations of clinically implemented PET-CT scanners with high-resolution reconstruction detect a minimal response of PCX to low-dose short-term cyclopamine therapy without changes in tumor size and offer potential for preclinical translational imaging.  相似文献   

3.
PURPOSE. To evaluate the prognostic value of metabolic parameters derived from serial 18F fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with advanced epithelial ovarian cancer (EOC). METHODS. Thirteen patients with advanced EOC who received surgical staging and adjuvant platinum-based combination chemotherapy were prospectively enrolled. 18F–FDG PET/CT was performed before and after the surgical staging, and after third cycle of chemotherapy. Tumor glucose metabolism at baseline and its change after operation and third cycle of chemotherapy such as changes of maximum standardized uptake values (ΔSUVmax) via 18F–FDG PET/CT were measured, and assessed regarding their ability to predict recurrence. RESULTS. Median duration of progression-free survival (PFS) was 25 months (range, 13–34), and although optimal debulking was performed in 10 patients, 5 (38.5%) patients experienced recurrence. Univariate analyses showed significant associations between recurrence and low ΔSUVmax after surgical staging, and low SUVmax change after third cycle of chemotherapy. Multivariate analysis identified low ΔSUVmax after third cycle of chemotherapy as an independent risk factor for recurrence (P = .047, hazard ratio (HR) 16.375, 95% CI 1.041–257.536). Kaplan–Meier survival curves showed that PFS significantly differed in groups categorized based on ΔSUVmax after chemotherapy (P = .001, log-rank test). CONCLUSIONS. 18F–FDG PET/CT allows for prediction of treatment response by the level of FDG uptake in terms of SUV at baseline and after chemotherapy. The metabolic response measured as ΔSUVmax after third cycle of chemotherapy appears to be promising predictor of recurrence in patients with advanced EOC.  相似文献   

4.
《Médecine Nucléaire》2014,38(2):71-82
PurposeWe investigated the prognostic significance of F-18 fluorodeoxyglucose (FDG) uptake measured as maximum Standardized Uptake Value (SUVmax) in primary tumor by positron emission tomography/computed tomography (PET/CT) in cervical cancer. The secondary objective was to determine the accuracy of the PET/CT for detecting pelvic lymph node (PLN) and para-aortic lymph node (PALN) metastases.MethodsThis retrospective study included 49 consecutive patients with stage IB1 to IVB cervical cancer. Univariate analysis was performed to determine the relationships between SUVmax value and pathological prognostics factors. Survival was estimated by Kaplan-Meier method. The gold standard of LN metastases was histologic.ResultsA significant difference in SUVmax was observed between stage I and stage II, stage I and stage IV and tumor size ≤ 4 cm and > 4 cm (P = 0.0001). There was a significant correlation between the SUVmax and tumor maximal size (r = 0.597) (P < 0.0001). PLN metastasis was found to be predictive of progression-free survival (P = 0.0007). The negative predictive value (NPV) of the PET/CT for PALN was 100% for locally advanced cervical carcinoma in 24 patients. The specificity and NPV of the PET/CT for PLN in eight early-stage cervical cancer were 100% and 87.5% (7/8) respectively. The PET/CT false-negative PLN measured less than 2 mm.ConclusionOur results demonstrate a correlation between SUVmax and tumor maximal size, which represents an indicator of tumor aggressiveness. PET/CT is effective to predict the absence of PALN in locally advanced cervical carcinoma. PET/CT is not sufficient to predict PLN in early-stage cancer without lymphadenectomy.  相似文献   

5.
ObjectiveRadioresistance of tumor cells is a major factor associated with failure of radiotherapy (RT). This study aimed to investigate the effect of BRCA1 knockdown on MDA-MB231 breast cancer cell radiosensitivity.Materials and methodsShort hairpin RNA (shRNA) was used to knockdown BRCA1 gene in MDA-MB231 cells. Cell viability and proliferative capacity were assessed by CCK-8 and colony formation assays, respectively. We established xenograft models in nude mice to evaluate tumor volume and tumor weight. The mice were imaged by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) before and after RT to evaluate changes in maximum standardized uptake value (SUVmax) and tumor SUVmax/muscle SUVmax (TMR). Changes in HIF-1α, Glut-1 and Ki-67 were analyzed and the correlation between 18F-FDG uptake and tumor biology was analyzed.ResultsCompared with the control cells, RT significantly reduced cell viability and colony formation capacity in cells with the BRCA1 gene knockdown. In vivo assays showed that there was obvious delay in the tumor growth in the shBRCA1+RT group compared with the control group. 18F-FDG Micro PET/CT indicated a reduction in glucose metabolism in the shBRCA1+RT group, with statistically significant differences in both the SUVmax and TMR. The data showed the expression of HIF-1α, Glut-1 and Ki-67 was downregulated in the shBRCA1+RT group, and both SUVmax and TMR had significant correlation with tumor biology.ConclusionThese results demonstrated that BRCA1 knockdown improves the sensitivity of MDA-MB231 breast cancer cells to RT. In addition, 18F-FDG PET/CT imaging allows non-invasive analysis of tumor biology and assessment of radiosensitivity.  相似文献   

6.

Objectives

Cancer and metabolic bone diseases can alter the SUV. SUV values have never been measured from healthy skeletons in NaF18-PET/CT bone scans. The primary aim of this study was to measure the SUV values from normal skeletons in NaF18-PET/CT bone scans.

Methods

A retrospective study was carried out involving NaF18- PET/CT bone scans that were done at our institution between January 2010 to May 2012. Our excluding criteria was patients with abnormal real function and patients with past history of cancer and metabolic bone diseases including but not limited to osteoporosis, osteopenia and Paget’s disease. Eleven studies met all the criteria.

Results

The average normal SUVmax values from 11 patients were: cervical vertebrae 6.84 (range 4.38–8.64), thoracic vertebrae 7.36 (range 6.99–7.66), lumbar vertebrae 7.27 (range 7.04–7.72), femoral head 2.22 (range 1.1–4.3), humeral head 1.82 (range 1.2–2.9), mid sternum 5.51 (range 2.6–8.1), parietal bone 1.71 (range 1.3–2.4).

Conclusion

According to our study, various skeletal sites have different normal SUV values. SUV values can be different between the normal bones and bones with tumor or metabolic bone disease. SUV can be used to quantify NaF-18 PET/CT studies. If the SUV values of the normal skeleton are known, they can be used in the characterization of bone lesions and in the assessment of treatment response to bone diseases.  相似文献   

7.

Objectives

Glucose metabolism, perfusion, and water diffusion may have a relationship or affect each other in the same tumor. The understanding of their relationship could expand the knowledge of tumor characteristics and contribute to the field of oncologic imaging. The purpose of this study was to evaluate the relationships between metabolism, vasculature and cellularity of advanced hepatocellular carcinoma (HCC), using multimodality imaging such as 18F-FDG positron emission tomography (PET), dynamic contrast enhanced (DCE)-MRI, and diffusion weighted imaging(DWI).

Materials and Methods

Twenty-one patients with advanced HCC underwent 18F-FDG PET, DCE-MRI, and DWI before treatment. Maximum standard uptake values (SUVmax) from 18F-FDG-PET, variables of the volume transfer constant (Ktrans) from DCE-MRI and apparent diffusion coefficient (ADC) from DWI were obtained for the tumor and their relationships were examined by Spearman’s correlation analysis. The influence of portal vein thrombosis on SUVmax and variables of Ktrans and ADC was evaluated by Mann-Whitney test.

Results

SUVmax showed significant negative correlation with Ktrans max (ρ = −0.622, p = 0.002). However, variables of ADC showed no relationship with variables of Ktrans or SUVmax (p>0.05). Whether portal vein thrombosis was present or not did not influence the SUV max and variables of ADC and Ktrans (p>0.05).

Conclusion

In this study, SUV was shown to be correlated with Ktrans in advanced HCCs; the higher the glucose metabolism a tumor had, the lower the perfusion it had, which might help in guiding target therapy.  相似文献   

8.
PurposeDiagnostic positron emission tomography and computed tomography (PET/CT) images can be fused to the planning CT images by a deformable image registration (DIR). The aim of this study was to evaluate the standardized uptake value (SUV) and target delineation on deformed PET images.MethodsWe used a cylindrical phantom and removable inserts of four spheres (16–38 mm in diameter) and three ellipsoids with a volume equal to the 38-mm-diameter sphere (S38) in each. S38 was filled with 18F-fluorodeoxyglucose activity, and then PET/CT images were acquired. The contours of S38 were generated using original PET images by PET auto-segmentation (PET-AS) methods of (1) SUV2.5, (2) 40% of maximum SUV (SUV40%max), and (3) gradient-based (GB), and were deformed to the other inserts by DIR. We compared the volumes and the SUVmax with the generated contours using the deformed PET images.ResultsThe SUVmax was slightly decreased by DIR; the mean absolute difference was −0.10 ± 0.04. For SUV2.5 and SUV40%max, the differences in S38 volumes between the original and deformed PET images were less than 5%, regardless of deformation type. For the GB, the contoured volumes obtained from deformed PET images were larger than those of the original PET images for the deformation type of ellipsoids. When the S38 was deformed to the 16-mm-diameter sphere, the maximum volume difference was −22.8%.ConclusionsAlthough SUV fluctuations by DIR were negligible, the target delineation on deformed PET images by the GB should be carefully considered owing to the distortion of intensity profiles.  相似文献   

9.

Aim

Aim of this study was to investigate the potential of 18F-FDG PET, diffusion weighted imaging (DWI) and susceptibility-weighted (T2*) MRI to predict response to systemic treatment in patients with colorectal liver metastases. The predictive values of pretreatment measurements and of early changes one week after start of therapy, were evaluated.

Methods

Imaging was performed prior to and one week after start of first line chemotherapy in 39 patients with colorectal liver metastases. 18F-FDG PET scans were performed on a PET/CT scanner and DWI and T2* were performed on a 1.5T MR scanner. The maximum standardized uptake values (SUV), total lesion glycolysis (TLG), apparent diffusion coefficient (ADC) and T2* value were assessed in the same lesions. Up to 5 liver metastases per patient were analyzed. Outcome measures were progression free survival (PFS), overall survival (OS) and size response.

Results

Pretreatment, high SUVmax, high TLG, low ADC and high T2* were associated with a shorter OS. Low pretreatment ADC value was associated with shorter PFS. After 1 week a significant drop in SUVmax and rise in ADC were observed. The drop in SUV was correlated with the rise in ADC (r=-0.58, p=0.002). Neither change in ADC nor in SUV was predictive of PFS or OS. T2* did not significantly change after start of treatment.

Conclusion

Pretreatment SUVmax, TLG, ADC, and T2* values in colorectal liver metastases are predictive of patient outcome. Despite sensitivity of DWI and 18F-FDG PET for early treatment effects, change in these parameters was not predictive of long term outcome.  相似文献   

10.
ObjectiveTo compare the apparent diffusion coefficient (ADC) in lymph node metastases of non-small cell lung cancer (NSCLC) patients with standardized uptake values (SUV) derived from combined 18F-fluoro-deoxy-glucose-positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI).ResultsA total of 146 suspicious lymph nodes were found in 25 patients. One hundred lymph nodes were eligible for final analysis. Ninety-one lymph nodes were classified as malignant and 9 as benign according to the reference standard. In malignant lesions, mean SUVmax was 9.1 ± 3.8 and mean SUVmean was 6.0 ± 2.5 while mean ADCmean was 877.0 ± 128.6 x10-5 mm²/s in PET/MRI. For all malignant lymph nodes, a weak, inverse correlation between SUVmax and ADCmean as well as SUVmean and ADCmean (r = -0.30, p<0.05 and r = -0.36, p<0.05) existed.ConclusionThe present data show a weak inverse correlation between increased glucose-metabolism and cellularity in lymph node metastases of NSCLC patients. 18F-FDG-PET and DWI thus may offer complementary information for the evaluation of treatment response in lymph node metastases of NSCLC.  相似文献   

11.

Objectives

Previous non–simultaneous PET/MR studies have shown heterogeneous results about the correlation between standardized uptake values (SUVs) and apparent diffusion coefficients (ADCs). The aim of this study was to investigate correlations in patients with primary and recurrent tumors using a simultaneous PET/MRI system which could lead to a better understanding of tumor biology and might play a role in early response assessment.

Methods

We included 31 patients with histologically confirmed primary (n = 14) or recurrent cervical cancer (n = 17) who underwent simultaneous whole-body 18F-FDG-PET/MRI comprising DWI. Image analysis was performed by a radiologist and a nuclear physician who identified tumor margins and quantified ADC and SUV. Pearson correlations were calculated to investigate the association between ADC and SUV.

Results

92 lesions were detected. We found a significant inverse correlation between SUVmax and ADCmin (r = -0.532, p = 0.05) in primary tumors as well as in primary metastases (r = -0.362, p = 0.05) and between SUVmean and ADCmin (r = -0.403, p = 0.03). In recurrent local tumors we found correlations for SUVmax and ADCmin (r = -0.747, p = 0.002) and SUVmean and ADCmin (r = -0.773, p = 0.001). Associations for recurrent metastases were not significant (p>0.05).

Conclusions

Our study demonstrates the feasibility of fast and reliable measurement of SUV and ADC with simultaneous PET/MRI. In patients with cervical cancer we found significant inverse correlations for SUV and ADC which could play a major role for further tumor characterization and therapy decisions.

Key Point 1

This study investigates the correlation of functional parameters in a simultaneous PET/MRI.

Key Point 2

We found significant inverse correlations between ADC and SUV in cervical carcinoma which could increase knowledge about tumor biology.  相似文献   

12.

Objectives

To investigate the correlations between functional imaging markers derived from positron emission tomography/computed tomography (PET/CT) and diffusion-weighted magnetic resonance imaging (DWI) in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). Further to compare the usefulness of these tumor markers in differentiating diagnosis of the two common types of Non-Hodgkin''s lymphoma (NHL).

Materials and Methods

Thirty-four consecutive pre-therapy adult patients with proven NHL (23 DLBCL and 11 FL) underwent PET/CT and MRI examinations and laboratory tests. The maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and metabolic tumor burden (MTB) were determined from the PET/CT images. DWI was performed in addition to conventional MRI sequences using two b values (0 and 800 s/mm2). The minimum and mean apparent diffusion coefficient (ADCmin and ADCmean) were measured on the parametric ADC maps.

Results

The SUVmax correlated inversely with the ADCmin (r = −0.35, p<0.05). The ADCmin, ADCmean, serum thymidine kinase (TK), Beta 2-microglobulin (B2m), lactate dehydrogenase (LD), and C-reactive protein (CRP) correlated with both whole-body MTV and whole-body MTB (p<0.05 or 0.01). The SUVmax, TK, LD, and CRP were significantly higher in the DLBCL group than in the FL group. Receiver operating characteristic curve analysis showed that they were reasonable predictors in differentiating DLBCL from FL.

Conclusions

The functional imaging markers determined from PET/CT and DWI are associated, and the SUVmax is superior to the ADCmin in differentiating DLBCL from FL. All the measured serum markers are associated with functional imaging markers. Serum LD, TK, and CRP are useful in differentiating DLBCL from FL.  相似文献   

13.
We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients'' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements significantly improves the prediction accuracy of morphological changes (Spearman correlation coefficient = 0.8715, p<2e-16).  相似文献   

14.

Background

To evaluate a potential correlation of the maximum standard uptake value (SUVmax) and the minimum apparent diffusion coefficient (ADCmin) in primary and recurrent cervical cancer based on integrated PET/MRI examinations.

Methods

19 consecutive patients (mean age 51.6 years; range 30–72 years) with histopathologically confirmed primary cervical cancer (n = 9) or suspected tumor recurrence (n = 10) were prospectively enrolled for an integrated PET/MRI examination. Two radiologists performed a consensus reading in random order, using a dedicated post-processing software. Polygonal regions of interest (ROI) covering the entire tumor lesions were drawn into PET/MR images to assess SUVmax and into ADC parameter maps to determine ADCmin values. Pearson’s correlation coefficients were calculated to assess a potential correlation between the mean values of ADCmin and SUVmax.

Results

In 15 out of 19 patients cervical cancer lesions (n = 12) or lymph node metastases (n = 42) were detected. Mean SUVmax (12.5±6.5) and ADCmin (644.5±179.7×10−5 mm2/s) values for all assessed tumor lesions showed a significant but weak inverse correlation (R = −0.342, p<0.05). When subdivided in primary and recurrent tumors, primary tumors and associated primary lymph node metastases revealed a significant and strong inverse correlation between SUVmax and ADCmin (R = −0.692, p<0.001), whereas recurrent cancer lesions did not show a significant correlation.

Conclusions

These initial results of this emerging hybrid imaging technique demonstrate the high diagnostic potential of simultaneous PET/MR imaging for the assessment of functional biomarkers, revealing a significant and strong correlation of tumor metabolism and higher cellularity in cervical cancer lesions.  相似文献   

15.

Purpose

To determine the optimal standardized uptake value (SUV) of 18F-fluorodeoxyglucose (18F-FDG) for positron emission tomography (PET) imaging, at which the PET-defined gross tumor volume (GTVPET) best matches with the pathological volume (GTVPATH) in the cervical cancer.

Materials and Methods

Ten patients with the cervical cancer who underwent surgery were enrolled in this study. The excised specimens were processed for whole-mount serial sections and H-E staining. The tumor borders were outlined in sections under a microscope, histopathological images were scanned and the GTVPATH calculated. The GTVPET was delineated automatically by using various percentages relative to the maximal SUV and absolute SUV. The optimal threshold SUV was further obtained as the value at which the GTVPET best matched with the GTVPATH.

Results

An average of 85±10% shrinkage of tissue was observed after the formalin fixation. The GTVPATH was 13.38±2.80 cm3 on average. The optimal threshold on percentile SUV and absolute SUV were 40.50%±3.16% and 7.45±1.10, respectively. The correlation analysis showed that the optimal percentile SUV threshold was inversely correlated with GTVPATH (p<0.05) and tumor diameter (p<0.05). The absolute SUV was also positively correlated with SUVmax (p<0.05).

Conclusion

The pathological volume could provide the more accurate tumor volume. The optimal SUV of FDG for PET imaging by use of GTVPATH as standard for cervical cancer target volume delineation was thus determined in this study, and more cases are being evaluated to substantiate this conclusion.  相似文献   

16.

 

The most common semiquantitative method of evaluation of pulmonary lesions using 18F-FDG PET is FDG standardized uptake value (SUV). An SUV cutoff of 2.5 or greater has been used to differentiate between benign and malignant nodules. The goal of our study was to investigate the correlation between the size of pulmonary nodules and the SUV for benign as well as for malignant nodules.

Methods

Retrospectively, 173 patients were selected from 420 referrals for evaluation of pulmonary lesions. All patients selected had a positive CT and PET scans and histopathology biopsy. A linear regression equation was fitted to a scatter plot of size and SUVmax for malignant and benign nodules together. A dot diagram was created to calculate the sensitivity, specificity, and accuracy using an SUVmax cutoff of 2.5.

Results

The linear regression equations and (R2)s as well as the trendlines for malignant and benign nodules demonstrated that the slope of the regression line is greater for malignant than for benign nodules. Twenty-eight nodules of group one (≤ 1.0 cm) are plotted in a dot diagram using an SUVmax cutoff of 2.5. The sensitivity, specificity, and accuracy were calculated to be 85%, 36% and 54% respectively. Similarly, sensitivity, specificity, and accuracy were calculated for an SUVmax cutoff of 2.5 and found to be 91%, 47%, and 79% respectively for group 2 (1.1–2.0 cm); 94%, 23%, and 76%, respectively for group 3 (2.1–3.0 cm); and 100%, 17%, and 82%,, respectively for group 4 (> 3.0 cm). The previous results of the dot diagram indicating that the sensitivity and the accuracy of the test using an SUVmax cutoff of 2.5 are increased with an increase in the diameter of pulmonary nodules.

Conclusion

The slope of the regression line is greater for malignant than for benign nodules. Although, the SUVmax cutoff of 2.5 is a useful tool in the evaluation of large pulmonary nodules (> 1.0 cm), it has no or minimal value in the evaluation of small pulmonary nodules (≤ 1.0 cm).  相似文献   

17.

Objectives

Reusing baseline volumes of interest (VOI) by applying non-rigid and to some extent (local) rigid image registration showed good test-retest variability similar to delineating VOI on both scans individually. The aim of the present study was to compare response assessments and classifications based on various types of image registration with those based on (semi)-automatic tumour delineation.

Methods

Baseline (n = 13), early (n = 12) and late (n = 9) response (after one and three cycles of treatment, respectively) whole body [18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (PET/CT) scans were acquired in subjects with advanced gastrointestinal malignancies. Lesions were identified for early and late response scans. VOI were drawn independently on all scans using an adaptive 50% threshold method (A50). In addition, various types of (non-)rigid image registration were applied to PET and/or CT images, after which baseline VOI were projected onto response scans. Response was classified using PET Response Criteria in Solid Tumors for maximum standardized uptake value (SUVmax), average SUV (SUVmean), peak SUV (SUVpeak), metabolically active tumour volume (MATV), total lesion glycolysis (TLG) and the area under a cumulative SUV-volume histogram curve (AUC).

Results

Non-rigid PET-based registration and non-rigid CT-based registration followed by non-rigid PET-based registration (CTPET) did not show differences in response classifications compared to A50 for SUVmax and SUVpeak,, however, differences were observed for MATV, SUVmean, TLG and AUC. For the latter, these registrations demonstrated a poorer performance for small lung lesions (<2.8 ml), whereas A50 showed a poorer performance when another area with high uptake was close to the target lesion. All methods were affected by lesions with very heterogeneous tracer uptake.

Conclusions

Non-rigid PET- and CTPET-based image registrations may be used to classify response based on SUVmax and SUVpeak. For other quantitative measures future studies should assess which method is valid for response evaluations by correlating with survival data.  相似文献   

18.
In 18F-Fluoro-Desoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT), respiratory motion induces bias in image interpretations. These movements can introduce organs misregistration between both modalities yielding erroneous attenuation correction and thus wrong maximum standardized uptake values (SUVmax). We present here the results of a clinical study which aims to assess the benefits of a novel respiratory gating method (CT-based) for liver lesions detection. Forty-nine patients planed to undergo hepatic surgery were addressed to our department for PET/CT examination before surgery. Each patient had both standard and CT-based protocols. Hepatic lesions described by two observers on PET images were compared with pathological analysis and intra-operative ultrasound. Sensitivities calculated for observer 1 were 60 and 64% for standard and CT-based, respectively. For the second observer, sensitivities were 58.7 and 72%. CT-based showed a significant increase (P < 0.01) of sensitivity on a per-lesion basis for one observer. CT-based did not improve inter-observer variability. At last, SUVmax were significantly higher with CT-based method (P < 0.001). Respiratory gating CT-based method is easily bearable by the patients. This procedure ensures good matching between both modalities and reduces motion-blurring effect in PET data. CT-based method improves liver lesions detectability and allows more accurate quantitation compared to non-gated FDG-PET/CT examinations.  相似文献   

19.

Introduction

In the last decade, (18)F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET and PET/CT) has become one of the major diagnostic tools used in oncology. A significant number of patients who undergo this procedure, due to non-thyroidal reasons, present incidental uptake of (18F-FDG) in the thyroid. The aim of the study was to compare the SUVmax (standardized uptake value) of thyroid focal lesions, which were incidentally found on PET/CT, in relation to the results of thyroid fine-needle aspiration biopsy (FNAB) and/or histopathological evaluation.

Materials and Methods

Patients referred for PET/CT examination, due to non-thyroidal illness, presented focal 18F-FDG uptake in the thyroid and were advised to undergo ultrasonography (US), hormonal evaluation, FNAB and/or total thyroidectomy at our institution.

Results

6614 PET/CT examinations performed in 5520 patients were analyzed. Of the 122 patients with focal thyroid 18F-FDG activity, 82 patients (67.2%) underwent further thyroid evaluation using FNAB. Benign lesions were diagnosed in 46 patients, malignant - in 19 patients (confirmed by post-surgical histopathology), while 17 patients had inconclusive results of cytological assessment. Mean SUVmax of benign lesions was 3.2±2.8 (median = 2.4), while the mean SUVmax value for malignant lesions was 7.1±8.2 (median = 3.5). The risk of malignancy was 16.7% for lesions with a SUVmax under 3, 43.8% for lesions with a SUVmax between 3 and 6, and 54.6% for lesions with a SUVmax over 6. In the group of malignant lesions, a positive correlation between the lesion’s diameter and SUVmax was observed (p = 0.03, r = 0.57).

Conclusions

Subjects with incidental focal uptake of 18F-FDG in thyroid are at a high risk of thyroid malignancy. A high value of SUVmax further increases the risk of malignancy, indicating the necessity for further cytological or histological evaluation. However, as SUVmax correlated with the diameter of malignant lesions, small lesions with focal uptake of 18F-FDG should be interpreted cautiously.  相似文献   

20.
Respiratory motion causes a spread of lesion uptake over a larger area in Positron Emission Tomography (PET) images for moving structures. When CT images are used for attenuation correction of emission data, this motion may alter the quantization of PET images. We present the clinical results of a respiratory-gated PET processing “CT-based” method, which aims to improve PET-CT coregistration by using an additional breath-hold CT (BH-CT). The CT-based protocol consisted in a 10-min List Mode respiratory-gated PET acquisition, followed by an end-expiration BH-CT acquisition. During these two examinations, the respiratory signal was recorded continuously. Eleven pulmonary lesions were studied. Patients underwent both a standard clinical PET protocol (free breathing) and the CT-based protocol. The respective performances of the CT-based and clinical PET methods were evaluated by comparing the distances between the lesions’ centroids on PET and CT images. SUVMAX (Standardized Uptake Value) and volume variations were also investigated. The CT-based method showed a significant reduction (p = 0.049) of centroid distances (mean relative change versus standard method: 49%). We also noted a higher SUVMAX (mean change: 39%). Lesion volumes were significantly lower (p = 0.026) in CT-based PET volumes (mean change: 43%) compared with standard ones. The CT-based method improves PET-CT coregistration of pulmonary lesions. This protocol should lead to more accurate attenuation correction and thus improve SUV measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号