首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
Methicillin-ResistantStaphylococcus aureus (MSRA) has become a frequent cause of serious infections. Extended hospitalization and antibiotic therapy have been identified as additional risk factors for MRSA carrier and infection. The aim of this study was to determine the incidence of MRSA infections in the hospitals affiliated to Hamedan University of Medical Sciences. SeventyS. aureus clinical strains were isolated from patients from June 2005 to June 2006 and examined by PCR and conventional microbiological tests. Then, the antibiotic susceptibility to methicillin/oxacillin and other antibiotics were performed by Disc Diffusion Agar (DDA). The results of this study showed that methicillin resistance gene was detected in 35 (50%) and 22 (31.4%) cases by PCR and DDA, respectively. The results of antibiotic susceptibility assays also showed there were high resistance MRSA strains to penicilin (100%), cloxacillin (91.4%), tetracycline (74.2%), cotrimoxazole (68.5%), erythromycin (68.5%) and less resistance to rifampin (11.4). Two MRSA also had decreased susceptibility to vancomycin. But the strains of Methicillin-SensitiveS. aureus (MSSA) showed high sensitivity to all antibiotics profiles except to penicillin (complete resistance). As a conclusion, the resistance to methicillin/oxacillin ofS. aureus in Hamedan hospitals has reached to 50% and they show multidrug resistance.  相似文献   

2.
Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.  相似文献   

3.

Background

Staphylococcus aureus is a major human pathogen responsible for a variety of nosocomial and community-acquired infections. Recent reports show that the prevalence of Methicillin-Resistant S. aureus (MRSA) infections in cystic fibrosis (CF) patients is increasing. In 2006 in Marseille, France, we have detected an atypical MRSA strain with a specific antibiotic susceptibility profile and a unique growth phenotype. Because of the clinical importance of the spread of such strain among CF patients we decided to sequence the genome of one representative isolate (strain CF-Marseille) to compare this to the published genome sequences. We also conducted a retrospective epidemiological analysis on all S. aureus isolated from 2002 to 2007 in CF patients from our institution.

Results

CF-Marseille is multidrug resistant, has a hetero-Glycopeptide-Intermediate resistance S. aureus phenotype, grows on Cepacia agar with intense orange pigmentation and has a thickened cell wall. Phylogenetic analyses using Complete Genome Hybridization and Multi Locus VNTR Assay showed that CF-Marseille was closely related to strain Mu50, representing vancomycin-resistant S. aureus. Analysis of CF-Marseille shows a similar core genome to that of previously sequenced MRSA strains but with a different genomic organization due to the presence of specific mobile genetic elements i.e. a new SCCmec type IV mosaic cassette that has integrated the pUB110 plasmid, and a new phage closely related to phiETA3. Moreover this phage could be seen by electron microscopy when mobilized with several antibiotics commonly used in CF patients including, tobramycin, ciprofloxacin, cotrimoxazole, or imipenem. Phylogenetic analysis of phenotypically similar h-GISA in our study also suggests that CF patients are colonized by polyclonal populations of MRSA that represents an incredible reservoir for lateral gene transfer.

Conclusion

In conclusion, we demonstrated the emergence and spreading of a new isolate of MRSA in CF patients in Marseille, France, that has probably been selected in the airways by antibiotic pressure. Antibiotic-mediated phage induction may result in high-frequency transfer and the unintended consequence of promoting the spread of virulence and/or antibiotic resistance determinants. The emergence of well-adapted MRSA is worrying in such population chronically colonized and receiving many antibiotics and represents a model for emergence of uncontrollable super bugs in a specific niche.

Reviewers

This article was reviewed by Eric Bapteste, Pierre Pontarotti, and Igor Zhulin. For the full reviews, please go to the Reviewers' comments section.  相似文献   

4.

Background

Staphylococcus aureus, one of the most frequently isolated pathogens in both hospitals and the community, has been particularly efficient at developing resistance to antimicrobial agents. In developed countries, as methicillin-resistant S. aureus (MRSA) has prevailed and, furthermore, as S. aureus with reduced susceptibility to vancomycin has emerged, the therapeutic options for the treatment of S. aureus infections have become limited. In developing countries and especially African countries very little is known concerning the resistance of S. aureus to antibiotics. In Madagascar no data exist concerning this resistance.

Objective

To update the current status of antibiotic resistance of S. aureus in Antananarivo, Madagascar.

Methods

Clinical S. aureus isolates were collected from patients at the Institut Pasteur of Madagascar from January 2001 to December 2005. Susceptibility tests with 18 antibiotics were performed by the disk diffusion method.

Results

Among a total of 574 isolates, 506 were from community-acquired infections and 68 from nosocomial infections. There was no significant difference in the methicillin resistance rate between community-acquired strains (33 of 506; 6.5%) and nosocomial strains (3 of 68, 4.4%). Many MRSA isolates were resistant to multiple classes of antibiotics. Resistance to tetracyclin, trimethoprim-sulfamethoxazole and erythromycin was more common. Among MRSA isolates resistance rates to rifampicin, fusidic acid, gentamicin and ciprofloxacin were lower than that observed with other drugs easily available in Madagascar. No isolates were resistant to glycopeptides.

Conclusion

The rate of methicillin-resistant S. aureus is not different between community-acquired and nosocomial infections and is still rather low in Madagascar.  相似文献   

5.
The objective of the present work was to observe and profile various antibiotic resistant strains of Staphylococcus aureus and highlight the need for continuous surveillance. Data regarding antibiotic-resistant S. aureus strains isolated and identified at the Medical Microbiology Department, King Khalid Hospital, Riyadh was obtained. Bacterial isolates were collected from several sites of infections in patients and an evaluation of susceptibility were carried out using a fully automated Vitek2 system. Relative frequency (%), odds ratios and Ward's minimum variance were calculated. The results showed that wounds were a source of more than 40% of the S. aureus (MRSA) strains that have ability to resist methicillin, and more than 45% of the methicillin-susceptible S. aureus (non-MRSA) strains. 40% of the isolates were MRSA (N = 251), and all MRSA strains were sensitive to vancomycin, daptomycin, teicoplanin, tigecycline, nitrofurantoin, and itraconazole while all non-MRSA (N = 338) strains were sensitive to vancomycin, cefoxitin, daptomycin, gentamicin, oxacillin, teicoplanin, tigecycline, and mupirocin. Strength of association between antibiotic-resistant S. aureus strains and source of samples (site of infection) was established. The study concluded that S. aureus strains had developed resistance towards 20 (for non-MRSA) and 22 (for MRSA) of the antibiotics tested. All MRSA strains were non-sensitive to amoxicillin/clavulanate, ampicillin cefoxitin, cefazolin, imipenem, oxacillin, and penicillin.  相似文献   

6.

Background

Staphylococci can cause wound infections and community- and nosocomial-acquired pneumonia, among a range of illnesses. Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) have been rapidly increasing as a cause of infections worldwide in recent decades. Numerous reports indicate that S. aureus and MRSA are becoming resistant to many antibiotics, which makes them very dangerous. Therefore, this study retrospectively investigated the resistance to antimicrobial agents in all hospitalized patients suffering from community- or nosocomial-acquired pneumonia due to S. aureus and MRSA.

Methods

Information from the study groups suffering from either community- or nosocomial-acquired pneumonia caused by S. aureus or MRSA was gathered by searching records from 2004 to 2014 at the HELIOS Clinic Wuppertal, Witten/Herdecke University, Germany. The findings of antibiotic resistance were analyzed after the evaluation of susceptibility testing for S. aureus and MRSA.

Results

Total of 147 patients (63.9%, 95% CI 57.5%–69.8%), mean age 67.9 ± 18.5 years, with pneumonia triggered by S. aureus, and 83 patients (36.1%, 95% CI 30.2%–42.5%), mean age 72.3 ± 13.8 years, with pneumonia due to MRSA. S. aureus and MRSA developed no resistance to vancomycin (P = 0.019 vs. < 0.0001, respectively) or linezolid (P = 0.342 vs. < 0.0001, respectively). MRSA (95.3%) and S. aureus (56.3%) showed a high resistance to penicillin. MRSA (87.7%) was also found to have a high antibiotic resistance against ß-lactam antibiotics, compared to S. aureus (9.6%). Furthermore, MRSA compared to S. aureus, respectively, had increased antibiotic resistance to ciprofloxacin (90.1% vs. 17.0%), cefazolin (89.7% vs. 10.2%), cefuroxime (89.0% vs. 9.1%), levofloxacin (88.2% vs. 18.4%), clindamycin (78.0% vs. 14.7%), and erythromycin (76.5% vs. 20.8%).

Conclusion

No development of resistance was found to vancomycin and linezolid in patients with pneumonia caused by S. aureus and MRSA.  相似文献   

7.
Staphylococcus aureus is a major human pathogen and one of the more prominent pathogens causing biofilm related infections in clinic. Antibiotic resistance in S. aureus such as methicillin resistance is approaching an epidemic level. Antibiotic resistance is widespread among major human pathogens and poses a serious problem for public health. Conventional antibiotics are either bacteriostatic or bacteriocidal, leading to strong selection for antibiotic resistant pathogens. An alternative approach of inhibiting pathogen virulence without inhibiting bacterial growth may minimize the selection pressure for resistance. In previous studies, we identified a chemical series of low molecular weight compounds capable of inhibiting group A streptococcus virulence following this alternative anti-microbial approach. In the current study, we demonstrated that two analogs of this class of novel anti-virulence compounds also inhibited virulence gene expression of S. aureus and exhibited an inhibitory effect on S. aureus biofilm formation. This class of anti-virulence compounds could be a starting point for development of novel anti-microbial agents against S. aureus.  相似文献   

8.
Methicillin-resistant Staphylococcus aureus (MRSA) is the most problematic Gram-positive bacterium in the context of public health due to its resistance against almost all available antibiotics except vancomycin and teicoplanin. Moreover, glycopeptide-resistant S. aureus have been emerging with the increasing use of glycopeptides. Recently, resistant strains against linezolid and daptomycin, which are alternative drugs to treat MRSA infection, have also been reported. Thus, the development of new drugs or alternative therapies is clearly a matter of urgency. In response to the antibiotic resistance, many researchers have studied for alternative antibiotics and therapies. In this review, anti-MRSA substances isolated from marine bacteria, with their potential antibacterial effect against MRSA as potential anti-MRSA agents, are discussed and several strategies for overcoming the antibiotic resistance are also introduced. Our objective was to highlight marine bacteria that have potential to lead in developing novel antibiotics or clinically useful alternative therapeutic treatments.  相似文献   

9.
Staphylococcus aureus (S. aureus) strains cause several diseases in humans from minor skin infections to severe lethal infections. To explore the virulence determinants of this important microorganism, two clinical isolates of methicillin susceptible S. aureus (MSSA) and methicillin resistant S. aureus (MRSA) were subjected to proteomic analysis of their extracellular products using liquid chromatography–tandem mass spectrometry. The numbers of proteins identified in MSSA and MRSA extracellular products were 168 and 261; respectively, from them 117 were shared, while 144 proteins were unique to MRSA. The shared proteins, having a higher protein score with increased number of peptide matches in MRSA over MSSA, reflect the relatively active secretory state of MRSA rather than biased analytical variances. Characteristic determinants for MRSA were identified; mostly found to play a role in the virulence. We conclude that MRSA produces distinct proteins considered as its virulence determinants and we found that the shared extracellular products are more abundant in MRSA than MSSA that supporting the high invasiveness of MRSA over MSSA in pathogenesis.  相似文献   

10.
Skin and chronic wound infections caused by highly antibiotic resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) are an increasing and urgent health problem worldwide, particularly with sharp increases in obesity and diabetes. New Zealand manuka honey has potent broad-spectrum antimicrobial activity, has been shown to inhibit the growth of MRSA strains, and bacteria resistant to this honey have not been obtainable in the laboratory. Combinational treatment of chronic wounds with manuka honey and common antibiotics may offer a wide range of advantages including synergistic enhancement of the antibacterial activity, reduction of the effective dose of the antibiotic, and reduction of the risk of antibiotic resistance. The aim of this study was to investigate the effect of Medihoney in combination with the widely used antibiotic rifampicin on S. aureus. Using checkerboard microdilution assays, time-kill curve experiments and agar diffusion assays, we show a synergism between Medihoney and rifampicin against MRSA and clinical isolates of S. aureus. Furthermore, the Medihoney/rifampicin combination stopped the appearance of rifampicin-resistant S. aureus in vitro. Methylglyoxal (MGO), believed to be the major antibacterial compound in manuka honey, did not act synergistically with rifampicin and is therefore not the sole factor responsible for the synergistic effect of manuka honey with rifampicin. Our findings support the idea that a combination of honey and antibiotics may be an effective new antimicrobial therapy for chronic wound infections.  相似文献   

11.
Staphylococcus aureus is one of the major causes of community and hospital-acquired infections. Bacteriophage considered as a major risk factor acquires S. aureus new virulence genetic elements. A total number of 119 S. aureus isolated from different specimens obtained from (RKH) were distinguished by susceptibility to 19 antimicrobial agents, phage typing, and PCR amplification for mecA gene. All of MRSA isolates harbored mecA gene, except three unique isolates. The predominant phage group is belonging to the (mixed group). Phage group (II) considered as an epidemiological marker correlated to β-lactamase hyper producer isolates. MRSA isolates indicated high prevalence of phage group (II) with highly increase for phage types (Ø3A), which were correlated to the skin. Phage types (Ø80/Ø81) played an important roll in Community Acquired Methicillin Resistant S. aureus (CAMRSA). Three outpatients MRSA isolates had low multiresistance against Bacitracin (Ba) and Fusidic acid (FD), considered as CAMRSA isolates. It was detected that group I typed all FD-resistant MSSA isolates. Phage groups (M) and (II) were found almost to be integrated for Gentamycin (GN) resistance especially phage type (Ø95) which relatively increased up to 20% in MRSA. Tetracycline (TE) resistant isolates typed by groups (II) and (III) in MSSA. Only one isolate resistant to Sulphamethoxazole/Trimethoprim (SXT) was typed by (III/V) alone in MSSA. MRSA isolates resistant to Chloramphenicol (C) and Ba were typed by all groups except (V). It could be concluded that (PERSA) S. aureus isolates from the wound that originated and colonized, and started to build up multi-resistance against the topical treatment antibiotics. In this study, some unique sporadic isolates for both MRSA and MSSA could be used as biological, molecular and epidemiological markers such as prospective tools.  相似文献   

12.
Staphylococcus aureus is the leading cause of many human infectious diseases. Besides infectious dangers, S. aureus is well-known for the quickly developed drug resistance. Although great efforts have been made, mechanisms underlying the antibiotic effects of S. aureus are still not well clarified. Recently, reports have shown that oxidative stress connects with bactericidal antibiotics [Dwyer et al. (2009) Curr. Opin. Microbiol. 12, 482–489]. Based on this point, we demonstrate that reactive oxygen species (ROS) induced by sublethal vancomycin may be partly responsible for the antibiotic resistance in heterogeneous vancomycin resistant S. aureus (hVRSA). Sublethal vancomycin treatment may induce protective ROS productions in hVRSA, whereas reduction in ROS level in hVRSA strains may increase their vancomycin susceptibility. Moreover, low dose of ROS in VSSA (vancomycin susceptible S. aureus) strains may promote their survival under vancomycin conditions. Our findings reveal that modest ROS generation may be protective for vancomycin resistance in hVRSA. These results recover novel insights into the relationship between oxidative stress and bacterial resistance, which has important applications for further use of antibiotics and development of therapeutics strategies for hVRSA.  相似文献   

13.
Staphylococcus aureus frequently invades the human bloodstream, leading to life threatening bacteremia and often secondary foci of infection. Failure of antibiotic therapy to eradicate infection is frequently described; in some cases associated with altered S. aureus antimicrobial resistance or the small colony variant (SCV) phenotype. Newer antimicrobials, such as linezolid, remain the last available therapy for some patients with multi-resistant S. aureus infections. Using comparative and functional genomics we investigated the molecular determinants of resistance and SCV formation in sequential S. aureus isolates from a patient who had a persistent and recurrent S. aureus infection, after failed therapy with multiple antimicrobials, including linezolid. Two point mutations in key staphylococcal genes dramatically affected clinical behaviour of the bacterium, altering virulence and antimicrobial resistance. Most strikingly, a single nucleotide substitution in relA (SACOL1689) reduced RelA hydrolase activity and caused accumulation of the intracellular signalling molecule guanosine 3′, 5′-bis(diphosphate) (ppGpp) and permanent activation of the stringent response, which has not previously been reported in S. aureus. Using the clinical isolate and a defined mutant with an identical relA mutation, we demonstrate for the first time the impact of an active stringent response in S. aureus, which was associated with reduced growth, and attenuated virulence in the Galleria mellonella model. In addition, a mutation in rlmN (SACOL1230), encoding a ribosomal methyltransferase that methylates 23S rRNA at position A2503, caused a reduction in linezolid susceptibility. These results reinforce the exquisite adaptability of S. aureus and show how subtle molecular changes cause major alterations in bacterial behaviour, as well as highlighting potential weaknesses of current antibiotic treatment regimens.  相似文献   

14.

Background

The virulence, antimicrobial resistance, and prevalence of S. aureus underscores the need for up-to-date and extensive insights regarding antimicrobial susceptibility trends. One approach to meet this need is analysis of clinical laboratory – based surveillance data.

Methods

Data from The Surveillance Network-USA (TSN), an electronic surveillance network that collects microbiology data from 300 clinical microbiology laboratories across the United States, were used as the source for analysis that included prevalence of S. aureus in clinical specimens, MRSA and multi-drug resistance phenotype rates and trends according to patient location, geographic distributions, and specimen source.

Results

S. aureus was the most prevalent species isolated from inpatient specimens (18.7% of all bacterial isolates) and the second most prevalent (14.7%) from outpatient specimens. In March 2005 MRSA rates were 59.2%, 55%, and 47.9% for strains from non-ICU inpatients, ICU, and outpatients, respectively. This trend was noted in all nine US Bureau of Census regions and multi-drug resistance phenotypes (resistance to ≥ 3 non-beta-lactams) was common among both inpatient MRSA (59.9%) and outpatient MRSA (40.8%). Greater than 90% of multi-drug resistant MRSA were susceptible to trimethoprim-sulfamethoxazole, linezolid, and vancomycin.

Conclusion

Prevalence of MRSA among both inpatient and outpatient specimens continues to increase with multi-drug resistance as a common phenotype. Continued emergence of outpatient MRSA that exhibit multi-drug resistant phenotypes has important implications for developing and evolving outpatient treatment guidelines.  相似文献   

15.
16.

Background

The rise of antibiotic resistance in pathogenic bacteria is a significant problem for the treatment of infectious diseases. Resistance is usually selected by the antibiotic itself; however, biocides might also co-select for resistance to antibiotics. Although resistance to biocides is poorly defined, different in vitro studies have shown that mutants presenting low susceptibility to biocides also have reduced susceptibility to antibiotics. However, studies with natural bacterial isolates are more limited and there are no clear conclusions as to whether the use of biocides results in the development of multidrug resistant bacteria.

Methods

The main goal is to perform an unbiased blind-based evaluation of the relationship between antibiotic and biocide reduced susceptibility in natural isolates of Staphylococcus aureus. One of the largest data sets ever studied comprising 1632 human clinical isolates of S. aureus originated worldwide was analysed. The phenotypic characterization of 13 antibiotics and 4 biocides was performed for all the strains. Complex links between reduced susceptibility to biocides and antibiotics are difficult to elucidate using the standard statistical approaches in phenotypic data. Therefore, machine learning techniques were applied to explore the data.

Results

In this pioneer study, we demonstrated that reduced susceptibility to two common biocides, chlorhexidine and benzalkonium chloride, which belong to different structural families, is associated to multidrug resistance. We have consistently found that a minimum inhibitory concentration greater than 2 mg/L for both biocides is related to antibiotic non-susceptibility in S. aureus.

Conclusions

Two important results emerged from our work, one methodological and one other with relevance in the field of antibiotic resistance. We could not conclude on whether the use of antibiotics selects for biocide resistance or vice versa. However, the observation of association between multiple resistance and two biocides commonly used may be of concern for the treatment of infectious diseases in the future.  相似文献   

17.
Biofilms are major causes of impairment of wound healing and patient morbidity. One of the most common and aggressive wound pathogens is Staphylococcus aureus, displaying a large repertoire of virulence factors and commonly reduced susceptibility to antibiotics, such as the spread of methicillin-resistant S. aureus (MRSA). Bacteriophages are obligate parasites of bacteria. They multiply intracellularly and lyse their bacterial host, releasing their progeny. We isolated a novel phage, DRA88, which has a broad host range among S. aureus bacteria. Morphologically, the phage belongs to the Myoviridae family and comprises a large double-stranded DNA (dsDNA) genome of 141,907 bp. DRA88 was mixed with phage K to produce a high-titer mixture that showed strong lytic activity against a wide range of S. aureus isolates, including representatives of the major international MRSA clones and coagulase-negative Staphylococcus. Its efficacy was assessed both in planktonic cultures and when treating established biofilms produced by three different biofilm-producing S. aureus isolates. A significant reduction of biofilm biomass over 48 h of treatment was recorded in all cases. The phage mixture may form the basis of an effective treatment for infections caused by S. aureus biofilms.  相似文献   

18.
Staphylococcus aureus is a Gram-positive pathogen that causes opportunistic infections and a wide variety of diseases. Methicillin-resistant S. aureus (MRSA) is frequently isolated as multidrug-resistant in nosocomial and community infections. Molecular genetic manipulation is an important tool for understanding the molecular mechanism of S. aureus infection. However the number of available antibiotic markers is limited due to multidrug resistance. In this study, we constructed two Escherichia coli-S. aureus shuttle vectors, pKFT and pKFC, that carry a temperature-sensitive origin of replication in S. aureus, lacZ(a) enabling a simple blue-white screening in E. coli, an ampicillin resistant gene, and either a tetracycline resistance gene or a chloramphenicol resistance gene. We report a simple technique using pKFT to construct a markerless gene deletion mutant in S. aureus by allelic replacement without the use of a counter-selection marker. Subculture twice at 25 °C was critical to promote an allelic exchange rate in S. aureus. This technique is very simple and useful to facilitate genetic research on S. aureus.  相似文献   

19.
All methicillin resistant S. aureus (MRSA) strains carry an acquired genetic determinant – mecA or mecC - which encode for a low affinity penicillin binding protein –PBP2A or PBP2A′ – that can continue the catalysis of peptidoglycan transpeptidation in the presence of high concentrations of beta-lactam antibiotics which would inhibit the native PBPs normally involved with the synthesis of staphylococcal cell wall peptidoglycan. In contrast to this common genetic and biochemical mechanism carried by all MRSA strains, the level of beta-lactam antibiotic resistance shows a very wide strain to strain variation, the mechanism of which has remained poorly understood. The overwhelming majority of MRSA strains produce a unique – heterogeneous – phenotype in which the great majority of the bacteria exhibit very poor resistance often close to the MIC value of susceptible S. aureus strains. However, cultures of such heterogeneously resistant MRSA strains also contain subpopulations of bacteria with extremely high beta-lactam MIC values and the resistance level and frequency of the highly resistant cells in such strain is a characteristic of the particular MRSA clone. In the study described in this communication, we used a variety of experimental models to understand the mechanism of heterogeneous beta-lactam resistance. Methicillin-susceptible S. aureus (MSSA) that received the mecA determinant in the laboratory either on a plasmid or in the form of a chromosomal SCCmec cassette, generated heterogeneously resistant cultures and the highly resistant subpopulations that emerged in these models had increased levels of PBP2A and were composed of bacteria in which the stringent stress response was induced. Each of the major heterogeneously resistant clones of MRSA clinical isolates could be converted to express high level and homogeneous resistance if the growth medium contained an inducer of the stringent stress response.  相似文献   

20.
An isolate of the methicillin-resistant Staphylococcus aureus (MRSA) clone USA300 with reduced susceptibility to vancomycin (SG-R) (i.e, vancomycin-intermediate S. aureus, VISA) and its susceptible “parental” strain (SG-S) were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev). The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a “stealth” strategy to evade detection by the host immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号