首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

Background

The hypothetical model of dynamic biomarkers for Alzheimer’s disease (AD) describes high amyloid deposition and hypometabolism at the mild cognitive impairment (MCI) stage. However, it remains unknown whether brain amyloidosis and hypometabolism follow the same trajectories in MCI individuals. We used the concept of early MCI (EMCI) and late MCI (LMCI) as defined by the Alzheimer’s disease Neuroimaging Initiative (ADNI)-Go in order to compare the biomarker profile between EMCI and LMCI.

Objectives

To examine the global and voxel-based neocortical amyloid burden and metabolism among individuals who are cognitively normal (CN), as well as those with EMCI, LMCI and mild AD.

Methods

In the present study, 354 participants, including CN (n = 109), EMCI (n = 157), LMCI (n = 39) and AD (n = 49), were enrolled between September 2009 and November 2011 through ADNI-GO and ADNI-2. Brain amyloid load and metabolism were estimated using [18F]AV45 and [18F]fluorodeoxyglucose ([18F]FDG) PET, respectively. Uptake ratio images of [18F]AV45 and [18F]FDG were calculated by dividing the summed PET image by the median counts of the grey matter of the cerebellum and pons, respectively. Group differences of global [18F]AV45 and [18F]FDG were analyzed using ANOVA, while the voxel-based group differences were estimated using statistic parametric mapping (SPM).

Results

EMCI patients showed higher global [18F]AV45 retention compared to CN and lower uptake compared to LMCI. SPM detected higher [18F]AV45 uptake in EMCI compared to CN in the precuneus, posterior cingulate, medial and dorsal lateral prefrontal cortices, bilaterally. EMCI showed lower [18F]AV45 retention than LMCI in the superior temporal, inferior parietal, as well as dorsal lateral prefrontal cortices, bilaterally. Regarding to the global [18F]FDG, EMCI patients showed no significant difference from CN and a higher uptake ratio compared to LMCI. At the voxel level, EMCI showed higher metabolism in precuneus, hippocampus, entorhinal and inferior parietal cortices, as compared to LMCI.

Conclusions

The present results indicate that brain metabolism remains normal despite the presence of significant amyloid accumulation in EMCI. These results suggest a role for anti-amyloid interventions in EMCI aiming to delay or halt the deposition of amyloid and related metabolism impairment.  相似文献   

2.

Background

No reliable biomarkers are identified in KLS. However, few functional neuroimaging studies suggested hypoactivity in thalamic and hypothalamic regions during symptomatic episodes. Here, we investigated relative changes in regional brain metabolism in Kleine-Levin syndrome (KLS) during symptomatic episodes and asymptomatic periods, as compared to healthy controls.

Methods

Four drug-free male patients with typical KLS and 15 healthy controls were included. 18-F-fluorodeoxy glucose positron emission tomography (PET) was obtained in baseline condition in all participants, and during symptomatic episodes in KLS patients. All participants were asked to remain fully awake during the whole PET procedure.

Results

Between state-comparisons in KLS disclosed higher metabolism in paracentral, precentral, and postcentral areas, supplementary motor area, medial frontal gyrus, thalamus and putamen during symptomatic episodes, and decreased metabolism in occipital and temporal gyri. As compared to healthy control subjects, KLS patients in the asymptomatic phase consistently exhibited significant hypermetabolism in a wide cortical network including frontal and temporal cortices, posterior cingulate and precuneus, with no detected hypometabolism. In symptomatic KLS episodes, hypermetabolism was additionally found in orbital frontal and supplementary motor areas, insula and inferior parietal areas, and right caudate nucleus, and hypometabolism in the middle occipital gyrus and inferior parietal areas.

Conclusion

Our results demonstrated significant hypermetabolism and few hypometabolism in specific but widespread brain regions in drug-free KLS patients at baseline and during symptomatic episodes, highlighting the behavioral state-dependent nature of changes in regional brain activity in KLS.  相似文献   

3.
Bai F  Watson DR  Shi Y  Wang Y  Yue C  YuhuanTeng  Wu D  Yuan Y  Zhang Z 《PloS one》2011,6(9):e24271

Background

Deficits of the default mode network (DMN) have been demonstrated in subjects with amnestic type mild cognitive impairment (aMCI) who have a high risk of developing Alzheimer’s disease (AD). However, no longitudinal study of this network has been reported in aMCI. Identifying links between development of DMN and aMCI progression would be of considerable value in understanding brain changes underpinning aMCI and determining risk of conversion to AD.

Methodology/Principal Findings

Resting-state fMRI was acquired in aMCI subjects (n = 26) and controls (n = 18) at baseline and after approximately 20 months follow up. Independent component analysis was used to isolate the DMN in each participant. Differences in DMN between aMCI and controls were examined at baseline, and subsequent changes between baseline and follow-up were also assessed in the groups. Posterior cingulate cortex/precuneus (PCC/PCu) hyper-functional connectivity was observed at baseline in aMCI subjects, while a substantial decrement of these connections was evident at follow-up in aMCI subjects, compared to matched controls. Specifically, PCC/PCu dysfunction was positively related to the impairments of episodic memory from baseline to follow up in aMCI group.

Conclusions/Significance

The patterns of longitudinal deficits of DMN may assist investigators to identify and monitor the development of aMCI.  相似文献   

4.

Background

Local network connectivity disruptions in Alzheimer''s disease patients have been found using graph analysis in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance connectivity changes, both in functional and structural imaging data. The form and role of functional connectivity changes thus remains ambiguous. The current study shows more conclusive data on connectivity changes in early AD using graph analysis on resting-state condition fMRI data.

Methodology/Principal Findings

18 mild AD patients and 21 healthy age-matched control subjects without memory complaints were investigated in resting-state condition with MRI at 1.5 Tesla. Functional coupling between brain regions was calculated on the basis of pair-wise synchronizations between regional time-series. Local (cluster coefficient) and global (path length) network measures were quantitatively defined. Compared to controls, the characteristic path length of AD functional networks is closer to the theoretical values of random networks, while no significant differences were found in cluster coefficient. The whole-brain average synchronization does not differ between Alzheimer and healthy control groups. Post-hoc analysis of the regional synchronization reveals increased AD synchronization involving the frontal cortices and generalized decreases located at the parietal and occipital regions. This effectively translates in a global reduction of functional long-distance links between frontal and caudal brain regions.

Conclusions/Significance

We present evidence of AD-induced changes in global brain functional connectivity specifically affecting long-distance connectivity. This finding is highly relevant for it supports the anterior-posterior disconnection theory and its role in AD. Our results can be interpreted as reflecting the randomization of the brain functional networks in AD, further suggesting a loss of global information integration in disease.  相似文献   

5.

Background

To identify changes in brain activation patterns in bipolar disorder (BD) and unipolar depression (UD) patients.

Methodology/Principal Findings

Resting-state fMRI scans of 16 healthy controls, 17 BD and 16 UD patients were obtained. T-test of normalized regional homogeneity (ReHo) was performed in a voxel-by-voxel manner. A combined threshold of á = 0.05, minimum cluster volume of V = 10503 mm3 (389 voxels) were used to determine ReHo differences between groups. In UD group, fMRI revealed ReHo increases in the left middle occipital lobe, right inferior parietal lobule, right precuneus and left convolution; and ReHo decreases in the left parahippocampalgyrus, right precentralgyrus, left postcentralgyrus, left precentralgyrus and left cingulated. In BD group, ReHo increases in the right insular cortex, left middle frontal gyrus, left precuneus, left occipital lobe, left parietal, left superior frontal gyrus and left thalamus; and ReHo decreases in the right anterior lobe of cerebellum, pons, right precentralgyrus, left postcentralgyrus, left inferior frontal gyrus, and right cingulate. There were some overlaps in ReHo profiles between UD and BD groups, but a marked difference was seen in the thalamus of BD.

Conclusions/Significance

The resting-state fMRI and ReHo mapping are a promising tool to assist the detection of functional deficits and distinguish clinical and pathophysiological signs of BD and UD.  相似文献   

6.
《Médecine Nucléaire》2022,46(4):183-190
IntroductionThe extracellular deposits of major senile plaques composed of Aβ proteins and intracellular degenerations or neurofibrillary degenerations (NFD) made up of hyperphosphorylated tau proteins are characteristic of Alzheimer's disease (AD). These characteristic lesions develop well before the first symptoms. NFD lesions seem to correlate with clinical symptomatology and allow Alzheimer's disease to be classified into neuropathological stages. In this study, we wanted to compare metabolic activity and NFD density by molecular imaging in a small cohort of subjects.Materials and methodsIn this study we evaluated the binding profile (brain density and distribution) of tau aggregates using [18F] – AV-1451 ([18F] -T807 or flortaucipir) PET in a group of 7 patients with clinical diagnosis of AD or related neurodegenerative pathology but with a very variable evolutionary profile (MMS between 15 and 25). All subjects also underwent a [18F] – FDG PET scan to assess their neuronal metabolic activity. For each subject, [18F] – T807 binding intensity and degree of hypometabolism were visually quantified in 5 levels for each predefined cortical region.ResultsFour subjects had a hypometabolic pattern supporting their diagnosis and which, moreover, was consistent with the distribution of NFD, however with slightly more extensive NFD lesions, particularly in the occipital region. One subject had neither hypometabolism nor a significant NFD array. One subject had predominantly hypometabolism in the frontotemporal cortex without significant lesion of DNF. The 7th subject presented diffuse cortical hypometabolism with few NFD lesions.ConclusionDespite a limited number of subjects, results seem to confirm the close link between the presence of the NFD lesions visible on tau PET imaging and neurodegeneration in AD.  相似文献   

7.

Background

Alzheimer’s disease (AD) is generally considered to be characterized by pathology in gray matter of the brain, but convergent evidence suggests that white matter degradation also plays a vital role in its pathogenesis. The evolution of white matter deterioration and its relationship with gray matter atrophy remains elusive in amnestic mild cognitive impairment (aMCI), a prodromal stage of AD.

Methods

We studied 155 cognitively normal (CN) and 27 ‘late’ aMCI individuals with stable diagnosis over 2 years, and 39 ‘early’ aMCI individuals who had converted from CN to aMCI at 2-year follow up. Diffusion tensor imaging (DTI) tractography was used to reconstruct six white matter tracts three limbic tracts critical for episodic memory function - the fornix, the parahippocampal cingulum, and the uncinate fasciculus; two cortico-cortical association fiber tracts - superior longitudinal fasciculus and inferior longitudinal fasciculus; and one projection fiber tract - corticospinal tract. Microstructural integrity as measured by fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AxD) was assessed for these tracts.

Results

Compared with CN, late aMCI had lower white matter integrity in the fornix, the parahippocampal cingulum, and the uncinate fasciculus, while early aMCI showed white matter damage in the fornix. In addition, fornical measures were correlated with hippocampal atrophy in late aMCI, whereas abnormality of the fornix in early aMCI occurred in the absence of hippocampal atrophy and did not correlate with hippocampal volumes.

Conclusions

Limbic white matter tracts are preferentially affected in the early stages of cognitive dysfunction. Microstructural degradation of the fornix preceding hippocampal atrophy may serve as a novel imaging marker for aMCI at an early stage.  相似文献   

8.
Bai F  Xie C  Watson DR  Shi Y  Yuan Y  Wang Y  Yue C  Teng Y  Wu D  Zhang Z 《PloS one》2011,6(12):e29288

Background

Altered hippocampal structure and function is a valuable indicator of possible conversion from amnestic type mild cognitive impairment (aMCI) to Alzheimer''s disease (AD). However, little is known about the disrupted functional connectivity of hippocampus subregional networks in aMCI subjects.

Methodology/Principal Findings

aMCI group-1 (n = 26) and controls group-1 (n = 18) underwent baseline and after approximately 20 months follow up resting-state fMRI scans. Integrity of distributed functional connectivity networks incorporating six hippocampal subregions (i.e. cornu ammonis, dentate gyrus and subicular complex, bilaterally) was then explored over time and comparisons made between groups. The ability of these extent longitudinal changes to separate unrelated groups of 30 subjects (aMCI-converters, n = 6; aMCI group-2, n = 12; controls group-2, n = 12) were further assessed. Six longitudinal hippocampus subregional functional connectivity networks showed similar changes in aMCI subjects over time, which were mainly associated with medial frontal gyrus, lateral temporal cortex, insula, posterior cingulate cortex (PCC) and cerebellum. However, the disconnection of hippocampal subregions and PCC may be a key factor of impaired episodic memory in aMCI, and the functional index of these longitudinal changes allowed well classifying independent samples of aMCI converters from non-converters (sensitivity was 83.3%, specificity was 83.3%) and controls (sensitivity was 83.3%, specificity was 91.7%).

Conclusions/Significance

It demonstrated that the functional changes in resting-state hippocampus subregional networks could be an important and early indicator for dysfunction that may be particularly relevant to early stage changes and progression of aMCI subjects.  相似文献   

9.

Background

Amyloid deposition and white matter lesions (WMLs) in Alzheimer''s disease (AD) are both considered clinically significant while a larger brain volume is thought to provide greater brain reserve (BR) against these pathological effects. This study identified the topography showing BR in patients with mild AD and explored the clinical balances among BR, amyloid, and WMLs burden.

Methods

Thirty patients with AD were enrolled, and AV-45 positron emission tomography was conducted to measure the regional standardized uptake value ratio (SUVr) in 8 cortical volumes-of- interests (VOIs). The quantitative WMLs burden was measured from magnetic resonance imaging while the normalized VOIs volumes represented BR in this study. The cognitive test represented major clinical correlates.

Results

Significant correlations between the prefrontal volume and global (r = 0.470, p = 0.024), but not regional (r = 0.264, p = 0.223) AV-45 SUVr were found. AD patients having larger regional volume in the superior- (r = 0.572, p = 0.004), superior medial- (r = 0.443, p = 0.034), and middle-prefrontal (r = 0.448, p = 0.032) regions had higher global AV-45 SUVr. For global WML loads, the prefrontal (r = -0.458, p = 0.019) and hippocampal volume (r = -0.469, p = 0.016) showed significant correlations while the prefrontal (r = -0.417, p = 0.043) or hippocampal volume (r = -0.422, p = 0.04) also predicted better composite memory scores. There were no interactions between amyloid SUVr and WML loads on the prefrontal volume.

Conclusions

BR of the prefrontal region might modulate the adverse global pathological burden caused by amyloid deposition. While prefrontal volume positively associated with hippocampal volume, WMLs had an adverse impact on the hippocampal volume that predicts memory performance in mild stage AD.  相似文献   

10.

Background:

Combination of structural and functional data of the human brain can provide detailed information of neurodegenerative diseases and the influence of the disease on various local cortical areas.

Methodology and Principal Findings:

To examine the relationship between structure and function of the brain the cortical thickness based on structural magnetic resonance images and motor cortex excitability assessed with transcranial magnetic stimulation were correlated in Alzheimer''s disease (AD) and mild cognitive impairment (MCI) patients as well as in age-matched healthy controls. Motor cortex excitability correlated negatively with cortical thickness on the sensorimotor cortex, the precuneus and the cuneus but the strength of the correlation varied between the study groups. On the sensorimotor cortex the correlation was significant only in MCI subjects. On the precuneus and cuneus the correlation was significant both in AD and MCI subjects. In healthy controls the motor cortex excitability did not correlate with the cortical thickness.

Conclusions:

In healthy subjects the motor cortex excitability is not dependent on the cortical thickness, whereas in neurodegenerative diseases the cortical thinning is related to weaker cortical excitability, especially on the precuneus and cuneus. However, in AD subjects there seems to be a protective mechanism of hyperexcitability on the sensorimotor cortex counteracting the prominent loss of cortical volume since the motor cortex excitability did not correlate with the cortical thickness. Such protective mechanism was not found on the precuneus or cuneus nor in the MCI subjects. Therefore, our results indicate that the progression of the disease proceeds with different dynamics in the structure and function of neuronal circuits from normal conditions via MCI to AD.  相似文献   

11.

Objective

Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved.

Method

To test this we compared brain metabolism (using PET and 18FDG) between female (n = 10) and male (n = 16) active cocaine abusers when they watched a neutral video (nature scenes) versus a cocaine-cues video.

Results

Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05); females significantly decreased metabolism (−8.6%±10) whereas males tended to increase it (+5.5%±18). SPM analysis (Cocaine-cues vs Neutral) in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001) whereas males showed increases in right inferior frontal gyrus (BA 44/45) (only at p<0.005). The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001) in frontal (BA 8, 9, 10), anterior cingulate (BA 24, 32), posterior cingulate (BA 23, 31), inferior parietal (BA 40) and thalamus (dorsomedial nucleus).

Conclusions

Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from “control networks” (prefrontal, cingulate, inferior parietal, thalamus) in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition). This highlights the importance of gender tailored interventions for cocaine addiction.  相似文献   

12.
Abstract: The function of the phosphoinositide second messenger system was assessed in occipital, temporal, and frontal cortex obtained postmortem from subjects with bipolar affective disorder and matched controls by measuring the hydrolysis of [3H]phosphatidylinositol ([3H]PI) incubated with membrane preparations and several different stimulatory agents. Phospholipase C activity, measured in the presence of 0.1 mM Ca2+ to stimulate the enzyme, was not different in bipolar and control samples. G proteins coupled to phospholipase C were concentration-dependently activated by guanosine 5′-O-(3-thiotriphosphate) (GTPγS) and by NaF. GTPγS-stimulated [3H]PI hydrolysis was markedly lower (50%) at all tested concentrations (0.3–10 µM GTPγS) in occipital cortical membranes from bipolar compared with control subjects. Responses to GTPγS in temporal and frontal cortical membranes were similar in bipolars and controls, as were responses to NaF in all three regions. Brain lithium concentrations correlated directly with GTPγS-stimulated [3H]PI hydrolysis in bipolar occipital, but not temporal or frontal, cortex. Carbachol, histamine, trans-1-aminocyclopentyl-1,3-dicarboxylic acid, serotonin, and ATP each activated [3H]PI hydrolysis above that obtained with GTPγS alone, and these responses were similar in bipolars and controls except for deficits in the responses to carbachol and serotonin in the occipital cortex, which were equivalent to the deficit detected with GTPγS alone. Thus, among the three cortical regions examined there was a selective impairment in G protein-stimulated [3H]PI hydrolysis in occipital cortical membranes from bipolar compared with control subjects. These results directly demonstrate decreased activity of the phosphoinositide signal transduction system in specific brain regions in bipolar affective disorder.  相似文献   

13.

Background

The spontaneous component of neuropathic pain (NP) has not been explored sufficiently with neuroimaging techniques, given the difficulty to coax out the brain components that sustain background ongoing pain. Here, we address for the first time the correlates of this component in an fMRI study of a group of eight patients suffering from diabetic neuropathic pain and eight healthy control subjects. Specifically, we studied the functional connectivity that is associated with spontaneous neuropathic pain with spatial independent component analysis (sICA).

Principal Findings

Functional connectivity analyses revealed a cortical network consisting of two anti-correlated patterns: one includes the left fusiform gyrus, the left lingual gyrus, the left inferior temporal gyrus, the right inferior occipital gyrus, the dorsal anterior cingulate cortex bilaterally, the pre and postcentral gyrus bilaterally, in which its activity is correlated negatively with pain and positively with the controls; the other includes the left precuneus, dorsolateral prefrontal, frontopolar cortex (both bilaterally), right superior frontal gyrus, left inferior frontal gyrus, thalami, both insulae, inferior parietal lobuli, right mammillary body, and a small area in the left brainstem, in which its activity is correlated positively with pain and negatively with the controls. Furthermore, a power spectra analyses revealed group differences in the frequency bands wherein the sICA signal was decomposed: patients'' spectra are shifted towards higher frequencies.

Conclusion

In conclusion, we have characterized here for the first time a functional network of brain areas that mark the spontaneous component of NP. Pain is the result of aberrant default mode functional connectivity.  相似文献   

14.

Purpose

Neuroinflammation is involved in several brain disorders and can be monitored through expression of the translocator protein 18 kDa (TSPO) on activated microglia. In recent years, several new PET radioligands for TSPO have been evaluated in disease models. [18F]DPA-714 is a TSPO radiotracer with great promise; however results vary between different experimental models of neuroinflammation. To further examine the potential of [18F]DPA-714, it was compared directly to [11C]PK11195 in experimental cerebral ischaemia in rats.

Methods

Under anaesthesia, the middle cerebral artery of adult rats was occluded for 60 min using the filament model. Rats were allowed recovery for 5 to 7 days before one hour dynamic PET scans with [11C]PK11195 and/or [18F]DPA-714 under anaesthesia.

Results

Uptake of [11C]PK11195 vs [18F]DPA-714 in the ischemic lesion was similar (core/contralateral ratio: 2.84±0.67 vs 2.28±0.34 respectively), but severity of the brain ischemia and hence ligand uptake in the lesion appeared to vary greatly between animals scanned with [11C]PK11195 or with [18F]DPA-714. To solve this issue of inter-individual variability, we performed a direct comparison of [11C]PK11195 and [18F]DPA-714 by scanning the same animals sequentially with both tracers within 24 h. In this direct comparison, the core/contralateral ratio (3.35±1.21 vs 4.66±2.50 for [11C]PK11195 vs [18F]DPA-714 respectively) showed a significantly better signal-to-noise ratio (1.6 (1.3–1.9, 95%CI) fold by linear regression) for [18F]DPA-714.

Conclusions

In a clinically relevant model of neuroinflammation, uptake for both radiotracers appeared to be similar at first, but a high variability was observed in our model. Therefore, to truly compare tracers in such models, we performed scans with both tracers in the same animals. By doing so, our result demonstrated that [18F]DPA-714 displayed a higher signal-to-noise ratio than [11C]PK11195. Our results suggest that, with the longer half-life of [18F] which facilitates distribution of the tracer across PET centre, [18F]DPA-714 is a good alternative for TSPO imaging.  相似文献   

15.

Introduction

Detection of (subclinical) synovitis is relevant for both early diagnosis and monitoring of therapy of rheumatoid arthritis (RA). Previously, the potential of imaging (sub)clinical arthritis was demonstrated by targeting the translocator protein in activated macrophages using (R)-[11C]PK11195 and positron emission tomography (PET). Images, however, also showed significant peri-articular background activity. The folate receptor (FR)-β is a potential alternative target for imaging activated macrophages. Therefore, the PET tracer [18F]fluoro-PEG-folate was synthesized and evaluated in both in vitro and ex vivo studies using a methylated BSA induced arthritis model.

Methods

[18F]fluoro-PEG-folate was synthesized in a two-step procedure. Relative binding affinities of non-radioactive fluoro-PEG-folate, folic acid and naturally circulating 5-methyltetrahydrofolate (5-Me-THF) to FR were determined using KB cells with high expression of FR. Both in vivo [18F]fluoro-PEG-folate PET and ex vivo tissue distribution studies were performed in arthritic and normal rats and results were compared with those of the established macrophage tracer (R)-[11C]PK11195.

Results

[18F]fluoro-PEG-folate was synthesized with a purity >97%, a yield of 300 to 1,700 MBq and a specific activity between 40 and 70 GBq/µmol. Relative in vitro binding affinity for FR of F-PEG-folate was 1.8-fold lower than that of folic acid, but 3-fold higher than that of 5-Me-THF. In the rat model, [18F]fluoro-PEG-folate uptake in arthritic knees was increased compared with both contralateral knees and knees of normal rats. Uptake in arthritic knees could be blocked by an excess of glucosamine-folate, consistent with [18F]fluoro-PEG-folate being specifically bound to FR. Arthritic knee-to-bone and arthritic knee-to-blood ratios of [18F]fluoro-PEG-folate were increased compared with those of (R)-[11C]PK11195. Reduction of 5-Me-THF levels in rat plasma to those mimicking human levels increased absolute [18F]fluoro-PEG-folate uptake in arthritic joints, but without improving target-to-background ratios.

Conclusions

The novel PET tracer [18F]fluoro-PEG-folate, designed to target FR on activated macrophages provided improved contrast in a rat model of arthritis compared with the accepted macrophage tracer (R)-[11C]PK11195. These results warrant further exploration of [18F]fluoro-PEG-folate as a putative PET tracer for imaging (sub)clinical arthritis in RA patients.  相似文献   

16.

Background

The capacity of visual working memory (WM) is substantially limited and only a fraction of what we see is maintained as a temporary trace. The process of binding visual features has been proposed as an adaptive means of minimising information demands on WM. However the neural mechanisms underlying this process, and its modulation by task and load effects, are not well understood.

Objective

To investigate the neural correlates of feature binding and its modulation by WM load during the sequential phases of encoding, maintenance and retrieval.

Methods and Findings

18 young healthy participants performed a visuospatial WM task with independent factors of load and feature conjunction (object identity and position) in an event-related functional MRI study. During stimulus encoding, load-invariant conjunction-related activity was observed in left prefrontal cortex and left hippocampus. During maintenance, greater activity for task demands of feature conjunction versus single features, and for increased load was observed in left-sided regions of the superior occipital cortex, precuneus and superior frontal cortex. Where these effects were expressed in overlapping cortical regions, their combined effect was additive. During retrieval, however, an interaction of load and feature conjunction was observed. This modulation of feature conjunction activity under increased load was expressed through greater deactivation in medial structures identified as part of the default mode network.

Conclusions and Significance

The relationship between memory load and feature binding qualitatively differed through each phase of the WM task. Of particular interest was the interaction of these factors observed within regions of the default mode network during retrieval which we interpret as suggesting that at low loads, binding processes may be ‘automatic’ but at higher loads it becomes a resource-intensive process leading to disengagement of activity in this network. These findings provide new insights into how feature binding operates within the capacity-limited WM system.  相似文献   

17.

Background

It has been discussed that neural phase-synchrony across distant cortical areas (or global phase-synchrony) was correlated with various aspects of consciousness. The generating process of the synchrony, however, remains largely unknown. As a first step, we investigate transient process of global phase-synchrony, focusing on phase-synchronized clusters. We hypothesize that the phase-synchronized clusters are dynamically organized before global synchrony and clustering patterns depend on perceptual conditions.

Methods

In an EEG study, Kitajo reported that phase-synchrony across distant cortical areas was selectively enhanced by top-down attention around 4 Hz in Necker cube perception. Here, we further analyzed the phase-synchronized clusters using hierarchical clustering which sequentially binds up the nearest electrodes based on similarity of phase locking between the cortical signals. First, we classified dominant components of the phase-synchronized clusters over time. We then investigated how the phase-synchronized clusters change with time, focusing on their size and spatial structure.

Results

Phase-locked clusters organized a stable spatial pattern common to the perceptual conditions. In addition, the phase-locked clusters were modulated transiently depending on the perceptual conditions and the time from the perceptual switch. When top-down attention succeeded in switching perception as subjects intended, independent clusters at frontal and occipital areas grew to connect with each other around the time of the perceptual switch. However, the clusters in the occipital and left parietal areas remained divided when top-down attention failed in switching perception. When no primary biases exist, the cluster in the occipital area grew to its maximum at the time of the perceptual switch within the occipital area.

Conclusions

Our study confirmed the existence of stable phase-synchronized clusters. Furthermore, these clusters were transiently connected with each other. The connecting pattern depended on subjects’ internal states. These results suggest that subjects’ attentional states are associated with distinct spatio-temporal patterns of the phase-locked clusters.
  相似文献   

18.

Background and Purpose

Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin’s scale ≤1 and Mini Mental State Examination (MMSE) ≥24).

Methods

Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models.

Results

MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls.

Conclusions

Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.  相似文献   

19.

Background

Unilateral ischemic stroke disrupts the well balanced interactions within bilateral cortical networks. Restitution of interhemispheric balance is thought to contribute to post-stroke recovery. Longitudinal measurements of cerebral blood flow (CBF) changes might act as surrogate marker for this process.

Objective

To quantify longitudinal CBF changes using arterial spin labeling MRI (ASL) and interhemispheric balance within the cortical sensorimotor network and to assess their relationship with motor hand function recovery.

Methods

Longitudinal CBF data were acquired in 23 patients at 3 and 9 months after cortical sensorimotor stroke and in 20 healthy controls using pulsed ASL. Recovery of grip force and manual dexterity was assessed with tasks requiring power and precision grips. Voxel-based analysis was performed to identify areas of significant CBF change. Region-of-interest analyses were used to quantify the interhemispheric balance across nodes of the cortical sensorimotor network.

Results

Dexterity was more affected, and recovered at a slower pace than grip force. In patients with successful recovery of dexterous hand function, CBF decreased over time in the contralesional supplementary motor area, paralimbic anterior cingulate cortex and superior precuneus, and interhemispheric balance returned to healthy control levels. In contrast, patients with poor recovery presented with sustained hypoperfusion in the sensorimotor cortices encompassing the ischemic tissue, and CBF remained lateralized to the contralesional hemisphere.

Conclusions

Sustained perfusion imbalance within the cortical sensorimotor network, as measured with task-unrelated ASL, is associated with poor recovery of dexterous hand function after stroke. CBF at rest might be used to monitor recovery and gain prognostic information.  相似文献   

20.

Background

β-amyloid (Aβ) plaques in brain''s grey matter (GM) are one of the pathological hallmarks of Alzheimer''s disease (AD), and can be imaged in vivo using Positron Emission Tomography (PET) with 11C or 18F radiotracers. Estimating Aβ burden in cortical GM has been shown to improve diagnosis and monitoring of AD. However, lacking structural information in PET images requires such assessments to be performed with anatomical MRI scans, which may not be available at different clinical settings or being contraindicated for particular reasons. This study aimed to develop an MR-less Aβ imaging quantification method that requires only PET images for reliable Aβ burden estimations.

Materials and Methods

The proposed method has been developed using a multi-atlas based approach on 11C-PiB scans from 143 subjects (75 PiB+ and 68 PiB- subjects) in AIBL study. A subset of 20 subjects (PET and MRI) were used as atlases: 1) MRI images were co-registered with tissue segmentation; 2) 3D surface at the GM-WM interfacing was extracted and registered to a canonical space; 3) Mean PiB retention within GM was estimated and mapped to the surface. For other participants, each atlas PET image (and surface) was registered to the subject''s PET image for PiB estimation within GM. The results are combined by subject-specific atlas selection and Bayesian fusion to generate estimated surface values.

Results

All PiB+ subjects (N = 75) were highly correlated between the MR-dependent and the PET-only methods with Intraclass Correlation (ICC) of 0.94, and an average relative difference error of 13% (or 0.23 SUVR) per surface vertex. All PiB- subjects (N = 68) revealed visually akin patterns with a relative difference error of 16% (or 0.19 SUVR) per surface vertex.

Conclusion

The demonstrated accuracy suggests that the proposed method could be an effective clinical inspection tool for Aβ imaging scans when MRI images are unavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号