首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We herein summarized the effects of lactoferrin (LF) on bifidobacteria. Many in vitro studies previously reported the growth-promoting (bifidogenic) effects of LF on bifidobacteria. The involvement of bound iron, sugar chains, and LF peptides has been proposed in this bifidogenic mechanism. Peptides in the LF pepsin hydrolysate (LFH) showed stronger bifidogenic activity than natural LF; therefore, we speculated that peptides may be the bifidogenic active principle of LF. LF or its peptides may be recognized by LF-binding proteins on the surface of bifidobacterial cells, and the cationic nature or disulfide bonds of LF or its peptides may play a crucial role in its recognition by these proteins. Of the bifidobacterial species so far identified, human LF and peptides in human LFH were more likely to show bifidogenic activity especially to Bifidobacterium bifidum, and bovine LF (bLF) and peptides in bovine LFH (bLFH) to B. breve and B. infantis. In animal studies, the administration of LF to mice or piglets increased bifidobacteria levels in the intestine. In human trials, the administration of LF-containing formula to infants increased bifidobacteria levels in the feces; however, human milk achieved better results than LF-containing formula. In the case of breast-fed infants, LF may show bifidogenic activity synergistically with other milk components such as human milk oligosaccharides. As bLFH showed stronger bifidogenic activity than natural bLF, especially to B. breve and B. infantis in vitro, and these species are known to be infant-specific species, bLFH may be a beneficial ingredient in formula.  相似文献   

2.
Human milk contains a high concentration of complex oligosaccharides that influence the composition of the intestinal microbiota in breast-fed infants. Previous studies have indicated that select species such as Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum can utilize human milk oligosaccharides (HMO) in vitro as the sole carbon source, while the relatively few B. longum subsp. longum and Bifidobacterium breve isolates tested appear less adapted to these substrates. Considering the high frequency at which B. breve is isolated from breast-fed infant feces, we postulated that some B. breve strains can more vigorously consume HMO and thus are enriched in the breast-fed infant gastrointestinal tract. To examine this, a number of B. breve isolates from breast-fed infant feces were characterized for the presence of different glycosyl hydrolases that participate in HMO utilization, as well as by their ability to grow on HMO or specific HMO species such as lacto-N-tetraose (LNT) and fucosyllactose. All B. breve strains showed high levels of growth on LNT and lacto-N-neotetraose (LNnT), and, in general, growth on total HMO was moderate for most of the strains, with several strain differences. Growth and consumption of fucosylated HMO were strain dependent, mostly in isolates possessing a glycosyl hydrolase family 29 α-fucosidase. Glycoprofiling of the spent supernatant after HMO fermentation by select strains revealed that all B. breve strains can utilize sialylated HMO to a certain extent, especially sialyl-lacto-N-tetraose. Interestingly, this specific oligosaccharide was depleted before neutral LNT by strain SC95. In aggregate, this work indicates that the HMO consumption phenotype in B. breve is variable; however, some strains display specific adaptations to these substrates, enabling more vigorous consumption of fucosylated and sialylated HMO. These results provide a rationale for the predominance of this species in breast-fed infant feces and contribute to a more accurate picture of the ecology of the developing infant intestinal microbiota.  相似文献   

3.
The taxonomic positions of the subspecies of Bifidobacterium longum (B. longum subsp. longum, subsp. infantis, and subsp. suis) have been controversial. A current proposal is that the former two species “B. infantis” and “B. suis” be unified with B. longum and all three reclassified as three subspecies. To test this proposal, ribosomal protein profiling as observed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied to the classification of 17 strains of B. longum, including three subspecies. Among 41 different kinds of ribosomal proteins selected as biomarkers whose masses were calculated from their amino acid sequences, 31-41 ribosomal proteins were observed in sample strains with the same masses as the references. The high matching rate indicates high conservation of ribosomal proteins within the sample strains, and therefore strongly supports the unification of the former species. However, the masses of some ribosomal proteins varied within species. The phylogenetic tree constructed from the profiles of ribosomal proteins matched the references, showing a clear cluster of the subsp. longum and the subsp. infantis strains. This result supports the proposal to reclassify B. longum into subsp. longum and subsp. infantis. The subsp. suis strains formed an individual sub-cluster within the infantis cluster. However, their ribosomal proteins have both characters of longum and infantis types. This result suggests that the taxonomic position of the subsp. suis should be reconsidered.  相似文献   

4.
Bifidobacterium breve is a common and sometimes very abundant inhabitant of the human gut. Genome sequencing of B. breve JCM 7017 revealed the presence of an extrachromosomal element, designated pMP7017 consisting of >190 kb, thus representing the first reported bifidobacterial megaplasmid. In silico characterization of this element revealed several genomic features supporting a stable establishment of the megaplasmid in its host, illustrated by predicted CRISPR-Cas functions that are known to protect the host against intrusion of foreign DNA. Interestingly, pMP7017 is also predicted to encode a conjugative DNA transfer apparatus and, consistent with this notion, we demonstrate here the conjugal transfer of pMP7017 to representative strains of B. breve and B. longum subsp. longum. We also demonstrate the presence of a megaplasmid with homology to pMP7017 in three B. longum subsp. longum strains.  相似文献   

5.
6.
7.
Forty-two bifidobacterial strains were screened for α-amylase and/or pullulanase activity by investigating their capacities to utilize starch, amylopectin, or pullulan. Of the 42 bifidobacterial strains tested, 19 were capable of degrading potato starch. Of these 19 strains, 11 were able to degrade starch and amylopectin, as well as pullulan. These 11 strains, which were shown to produce extracellular starch-degrading activities, included 5 strains of Bifidobacterium breve, 1 B. dentium strain, 1 B. infantis strain, 3 strains of B. pseudolongum, and 1 strain of B. thermophilum. Quantitative and qualitative enzyme activities were determined by measuring the concentrations of released reducing sugars and by high-performance thin-layer chromatography, respectively. These analyses confirmed both the inducible nature and the extracellular nature of the starch- and pullulan-degrading enzyme activities and showed that the five B. breve strains produced an activity that is consistent with type II pullulanase (amylopullulanase) activity, while the remaining six strains produced an activity with properties that resemble those of type III pullulan hydrolase.  相似文献   

8.
In order to clarify the distribution of bifidobacterial species in the human intestinal tract, a 16S rRNA-gene-targeted species-specific PCR technique was developed and used with DNAs extracted from fecal samples obtained from 48 healthy adults and 27 breast-fed infants. To cover all of the bifidobacterial species that have been isolated from and identified in the human intestinal tract, species-specific primers for Bifidobacterium longum, B. infantis, B. dentium, and B. gallicum were developed and used with primers for B. adolescentis, B. angulatum, B. bifidum, B. breve, and the B. catenulatum group (B. catenulatum and B. pseudocatenulatum) that were developed in a previous study (T. Matsuki, K. Watanabe, R. Tanaka, and H. Oyaizu, FEMS Microbiol. Lett. 167:113–121, 1998). The specificity of the nine primers was confirmed by PCR, and the species-specific PCR method was found to be a useful means for identifying Bifidobacterium strains isolated from human feces. The results of an examination of bifidobacterial species distribution showed that the B. catenulatum group was the most commonly found taxon (detected in 44 of 48 samples [92%]), followed by B. longum and B. adolescentis, in the adult intestinal bifidobacterial flora and that B. breve, B. infantis, and B. longum were frequently found in the intestinal tracts of infants. The present study demonstrated that qualitative detection of the bifidobacterial species present in human feces can be accomplished rapidly and accurately.  相似文献   

9.
Bifidobacterium breve 46, Bifidobacterium lactis 8:8 and Bifidobacterium longum 6:18 and three reference strains B. breve CCUG 24611, B. lactis JCM 10602, and Bifidobacterium pseudocatenulatum JCM 1200 were examined for acid and bile tolerance, prebiotic utilization and antimicrobial activity against four Clostridium difficile (CD) strains including the hypervirulent strain, PCR ribotype NAP1/027. B. lactis 8:8 and B. lactis JCM 10602 exhibited a high tolerance in MRSC broth with pH 2.5 for 30 min. B. breve 46 and B. lactis 8:8 remained 100% viable in MRSC broth with 5% porcine bile after 4 h. All six strains showed a high prebiotic degrading ability (prebiotic score) with galactooligosaccharides (GOS), isomaltooligosaccharides (IMOS) and lactulose as carbon sources and moderate degradation of fructooligosaccharides (FOS). Xylooligosaccharides (XOS) was metabolized to a greater extent by B. lactis 8:8, B. lactis JCM 10602, B. pseudocatenulatum JCM 1200 and B. longum 6:18 (prebiotic score >50%). All strains exhibited extracellular antimicrobial activity (AMA) against four CD strains including the CD NAP1/027. AMA of B. breve 46, B. lactis 8:8 and B. lactis JCM 10602 strains was mainly ascribed to a combined action of organic acids and heat stable, protease sensitive antimicrobial peptides when cells were grown in MRSC broth with glucose and by acids when grown with five different prebiotic-non-digestible oligosaccharides (NDOs). None of C. difficile strains degraded five prebiotic-NDOs. Whole cells of B. breve 46 and B. lactis 8:8 and their supernatants inhibited the growth and toxin production of the CD NAP1/027 strain.  相似文献   

10.
Infant gut-associated bifidobacteria possess species-specific enzymatic sets to assimilate human milk oligosaccharides, and lacto-N-biosidase (LNBase) is a key enzyme that degrades lacto-N-tetraose (Galβ1–3GlcNAcβ1–3Galβ1–4Glc), the main component of human milk oligosaccharides, to lacto-N-biose I (Galβ1–3GlcNAc) and lactose. We have previously identified LNBase activity in Bifidobacterium bifidum and some strains of Bifidobacterium longum subsp. longum (B. longum). Subsequently, we isolated a glycoside hydrolase family 20 (GH20) LNBase from B. bifidum; however, the genome of the LNBase+ strain of B. longum contains no GH20 LNBase homolog. Here, we reveal that locus tags BLLJ_1505 and BLLJ_1506 constitute LNBase from B. longum JCM1217. The gene products, designated LnbX and LnbY, respectively, showed no sequence similarity to previously characterized proteins. The purified enzyme, which consisted of LnbX only, hydrolyzed via a retaining mechanism the GlcNAcβ1–3Gal linkage in lacto-N-tetraose, lacto-N-fucopentaose I (Fucα1–2Galβ1–3GlcNAcβ1–3Galβ1–4Glc), and sialyllacto-N-tetraose a (Neu5Acα2–3Galβ1–3GlcNAcβ1–3Galβ1–4Gal); the latter two are not hydrolyzed by GH20 LNBase. Among the chromogenic substrates examined, the enzyme acted on p-nitrophenyl (pNP)-β-lacto-N-bioside I (Galβ1–3GlcNAcβ-pNP) and GalNAcβ1–3GlcNAcβ-pNP. GalNAcβ1–3GlcNAcβ linkage has been found in O-mannosyl glycans of α-dystroglycan. Therefore, the enzyme may serve as a new tool for examining glycan structures. In vitro refolding experiments revealed that LnbY and metal ions (Ca2+ and Mg2+) are required for proper folding of LnbX. The LnbX and LnbY homologs have been found only in B. bifidum, B. longum, and a few gut microbes, suggesting that the proteins have evolved in specialized niches.  相似文献   

11.
Arabinoxylan oligosaccharides (AXOS) are a promising class of prebiotics that have the potential to stimulate the growth of bifidobacteria and the production of butyrate in the human colon, known as the bifidogenic and butyrogenic effects, respectively. Although these dual effects of AXOS are considered beneficial for human health, their underlying mechanisms are still far from being understood. Therefore, this study investigated the metabolic interactions between Bifidobacterium longum subsp. longum NCC2705 (B. longum NCC2705), an acetate producer and arabinose substituent degrader of AXOS, and Eubacterium rectale ATCC 33656, an acetate-converting butyrate producer. Both strains belong to prevalent species of the human colon microbiota. The strains were grown on AXOS during mono- and coculture fermentations, and their growth, AXOS consumption, metabolite production, and expression of key genes were monitored. The results showed that the growth of both strains and gene expression in both strains were affected by cocultivation and that these effects could be linked to changes in carbohydrate consumption and concomitant metabolite production. The consumption of the arabinose substituents of AXOS by B. longum NCC2705 with the concomitant production of acetate allowed E. rectale ATCC 33656 to produce butyrate (by means of a butyryl coenzyme A [CoA]:acetate CoA-transferase), explaining the butyrogenic effect of AXOS. Eubacterium rectale ATCC 33656 released xylose from the AXOS substrate, which favored the B. longum NCC2705 production of acetate, explaining the bifidogenic effect of AXOS. Hence, those interactions represent mutual cross-feeding mechanisms that favor the coexistence of bifidobacterial strains and butyrate producers in the same ecological niche. In conclusion, this study provides new insights into the bifidogenic and butyrogenic effects of AXOS.  相似文献   

12.
Human milk oligosaccharides (HMOs) are the third-largest solid component of milk. Their structural complexity renders them nondigestible to the host but liable to hydrolytic enzymes of the infant colonic microbiota. Bifidobacteria and, frequently, Bifidobacterium longum strains predominate the colonic microbiota of exclusively breast-fed infants. Among the three recognized subspecies of B. longum, B. longum subsp. infantis achieves high levels of cell growth on HMOs and is associated with early colonization of the infant gut. The B. longum subsp. infantis ATCC 15697 genome features five distinct gene clusters with the predicted capacity to bind, cleave, and import milk oligosaccharides. Comparative genomic hybridizations (CGHs) were used to associate genotypic biomarkers among 15 B. longum strains exhibiting various HMO utilization phenotypes and host associations. Multilocus sequence typing provided taxonomic subspecies designations and grouped the strains between B. longum subsp. infantis and B. longum subsp. longum. CGH analysis determined that HMO utilization gene regions are exclusively conserved across all B. longum subsp. infantis strains capable of growth on HMOs and have diverged in B. longum subsp. longum strains that cannot grow on HMOs. These regions contain fucosidases, sialidases, glycosyl hydrolases, ABC transporters, and family 1 solute binding proteins and are likely needed for efficient metabolism of HMOs. Urea metabolism genes and their activity were exclusively conserved in B. longum subsp. infantis. These results imply that the B. longum has at least two distinct subspecies: B. longum subsp. infantis, specialized to utilize milk carbon, and B. longum subsp. longum, specialized for plant-derived carbon metabolism.The newborn infant not only tolerates but requires colonization by commensal microbes for its own development and health (3). The relevance of the gut microbiome in health and disease is reflected by its influence in a number of important physiological processes, from physical maturation of the developing immune system (28) to the altered energy homeostasis associated with obesity (51, 52).Human milk provides all the nutrients needed to satisfy the neonate energy expenditure and a cadre of molecules with nonnutritional but biologically relevant functions (6). Neonatal health is likely dependent on the timely and complex interactions among bioactive components in human milk, the mucosal immune system, and specialized gut microbial communities (30). Human milk contains complex prebiotic oligosaccharides that stimulated the growth of select bifidobacteria (24, 25) and are believed to modulate mucosal immunity and protect the newborn against pathogens (23, 33, 41). These complex oligosaccharides, which are abundantly present in human milk (their structures are reviewed by Ninonuevo et al. [31] and LoCascio et al. [24]), arrive intact in the infant colon (5) and modulate the composition of neonatal gastrointestinal (GI) microbial communities.Bifidobacteria and, frequently, Bifidobacterium longum strains often predominate the colonic microbiota of exclusively breast-fed infants (10, 11). Among the three subspecies of B. longum, only B. longum subsp. infantis grows robustly on human milk oligosaccharides (HMOs) (24, 25). The availability of the complete genome sequences of B. longum subsp. infantis ATCC 15697 (40) and two other B. longum subsp. longum strains (22, 39) made possible the analysis of whole-genome diversity across the B. longum species. Analysis of the B. longum subsp. infantis ATCC 15697 genome has identified regions predicted to enable the metabolism of HMOs (40); however, their distribution across the B. longum spp. remains unknown. We predict that these regions are exclusively conserved in B. longum strains adapted to colonization of the infant gut microbiome and are therefore capable of robust growth on HMOs. In this work, whole-genome microarray comparisons (comparative genomic hybridizations [CGHs]) were used to associate genotypic biomarkers among 15 B. longum strains exhibiting various HMO utilization phenotypes and host associations.  相似文献   

13.
Thirty-four strains of bifidobacteria belonging to Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, and Bifidobacterium pseu-docatenulatum were assayed in vitro for the ability to assimilate cholesterol and for bile salt hydrolase (BSH) against glycocholic and taurodeoxycholic acids (GCA and TDCA). Cholesterol assimilation was peculiar characteristic of two strains belonging to the species B. bifidum (B. bifidum MB 107 and B. bifidum MB 109), which removed 81 and 50 mg of cholesterol per gram of biomass, being the median of specific cholesterol absorption by bifidobacteria 19 mg/g. Significant differences in BSH activities were not established among bifidobacterial species. However, the screening resulted in the selection of promising strains able to efficiently deconjugate GCA and TDCA. No relationship was recognized between BSH phenotype and the extent of cholesterol assimilation. On the basis of cholesterol assimilation or BSHGCA and BSHTDCA activities, B. bifidum MB 109 (DSMZ 23731), B. breve MB 113 (DSMZ 23732), and B. animalis subsp. lactis MB 2409 (DSMZ 23733) were combined in a probiotic mixture to be fed to hypercholesterolemic rats. The administration of this probiotic formulation resulted in a significant reduction of total cholesterol and low-density cholesterol (LDL-C), whereas it did not affect high-density cholesterol (HDL-C) and HDL-C/LDL-C ratio.  相似文献   

14.
15.
Bifidobacterium, which is a dominant genus in infants’ fecal flora and can be used as a probiotic, has shown beneficial effects in various pathologies, including allergic diseases, but its role in immunity has so far been little known. Numerous studies have shown the crucial role of the initial intestinal colonization in the development of the intestinal immune system, and bifidobacteria could play a major role in this process. For a better understanding of the effect of Bifidobacterium on the immune system, we aimed at determining the impact of Bifidobacterium on the T-helper 1 (TH1)/TH2 balance by using gnotobiotic mice. Germfree mice were inoculated with Bifidobacterium longum NCC2705, whose genome is sequenced, and with nine Bifidobacterium strains isolated from infants’ fecal flora. Five days after inoculation, mice were killed. Transforming growth factor β1 (TGF-β1), interleukin-4 (IL-4), IL-10, and gamma interferon (IFN-γ) gene expressions in the ileum and IFN-γ, tumor necrosis factor alpha (TNF-α), IL-10, IL-4, and IL-5 secretions by splenocytes cultivated for 48 h with concanavalin A were quantified. Two Bifidobacterium species had no effect (B. adolescentis) or little effect (B. breve) on the immune system. Bifidobacterium bifidum, Bifidobacterium dentium, and one B. longum strain induced TH1 and TH2 cytokines at the systemic and intestinal levels. One B. longum strain induced a TH2 orientation with high levels of IL-4 and IL-10, both secreted by splenocytes, and of TGF-β gene expression in the ileum. The other two strains induced TH1 orientations with high levels of IFN-γ and TNF-α splenocyte secretions. Bifidobacterium's capacity to stimulate immunity is species specific, but its influence on the orientation of the immune system is strain specific.  相似文献   

16.
pMP7017 is a conjugative megaplasmid isolated from the gut commensal Bifidobacterium breve JCM7017 and was shown to encode two putative replicases, designated here as RepA and RepB. In the current work, RepB was identified as the pMP7017 replicative initiator, as the repB gene, and its surrounding region was shown to be sufficient to allow autonomous replication in two bifidobacterial species, B. breve and Bifidobacterium longum subsp. longum. RepB was shown to bind to repeat sequence downstream of its coding sequence and this region was determined to be essential for efficient replication. Based on our results, we hypothesize that pMP7017 is an iteron-regulated plasmid (IRP) under strict auto-regulatory control. Recombinantly produced and purified RepB was determined to exist as a dimer in solution, differing from replicases of other IRPs, which exist as a mix of dimers and monomers. Furthermore, a stable low-copy Bifidobacterium-E. coli shuttle vector, pRD1.3, was created which can be employed for cloning and expression of large genes, as was demonstrated by the cloning and heterologous expression of the 5.1 kb apuB gene encoding the extracellular amylopullulanase from B. breve UCC2003 into B. longum subsp. longum NCIMB8809.  相似文献   

17.
Although probiotic-containing nutrient formulas for infants and toddlers have become very popular, some adverse effects related to translocation of probiotic strains have been reported. We assessed the safety of probiotic bifidobacteria that have been used in clinical investigations and proven to have beneficial effects, by analyzing mucin degradation activity and translocation ability. Mucin degradation activities of three probiotic bifidobacteria strains; Bifidobacterium longum BB536, Bifidobacterium breve M-16V and Bifidobacterium infantis M-63, were evaluated by three in vitro tests comprising growth in liquid medium, SDS-PAGE analysis of degraded mucin residues, and degradation assay in Petri dish. All test strains and control type strains failed to grow in the liquid medium containing mucin as the only carbon source, although good growth was obtained from fecal sample. In the SDS-PAGE analyses of mucin residues and observation of mucinolytic zone in agar plate, the three test strains also showed no mucin degradation activity as the type strains, although fecal sample yielded positive results. In another study, a high dose of B. longum BB536 was administered orally to conventional mice to examine the translocation ability. No translocation into blood, liver, spleen, kidney and mesenteric lymph nodes was observed and no disturbance of epithelial cells and mucosal layer in the ileum, cecum and colon was detected, indicating that the test strain had no translocation ability and induced no damage to intestinal surface. These results resolve the concern about bacterial translocation when using bifidobacteria strains as probiotics, which have been tested in various clinical trials, supporting the continuous use of these probiotic strains without anxiety.  相似文献   

18.
A Bifidobacterium infantis strain was microencapsulated within a film-forming protein-carbohydrate-oil emulsion. This novel encapsulant incorporated prebiotics and substantially protected the bacterium during nonrefrigerated storage and gastrointestinal transit. The dried microcapsules were small (15 to 20 μm), had low water activity (0.2 to 0.3), and rapidly released the bacteria in simulated intestinal fluid.  相似文献   

19.
Human milk contains approximately 200 complex oligosaccharides believed to stimulate the growth and establishment of a protective microbiota in the infant gut. The lack of scalable analytical techniques has hindered the measurement of bacterial metabolism of these and other complex prebiotic oligosaccharides. An in vitro, multi‐strain, assay capable of measuring kinetics of bacterial growth and detailed oligosaccharide consumption analysis by FTICR‐MS was developed and tested simultaneously on 12 bifidobacterial strains. For quantitative consumption, deuterated and reduced human milk oligosaccharide (HMO) standards were used. A custom software suite developed in house called Glycolyzer was used to process the large amounts of oligosaccharide mass spectra automatically with 13C corrections based on de‐isotoping protocols. High growth on HMOs was characteristic of Bifidobacterium longum biovar infantis strains, which consumed nearly all available substrates, while other bifidobacterial strains tested, B. longum bv. longum, B. adolescentis, B. breve and B. bifidum, showed low or only moderate growth ability. Total oligosaccharide consumption ranged from a high of 87% for B. infantis JCM 7009 to only 12% for B. adolescentis ATCC 15703. A detailed analysis of consumption glycoprofiles indicated strain‐specific capabilities towards differential metabolism of milk oligosaccharides. This method overcomes previous limitations in the quantitative, multi‐strain analysis of bacterial metabolism of HMOs and represents a novel approach towards understanding bacterial consumption of complex prebiotic oligosaccharides.  相似文献   

20.
Metabolism of chicory fructooligosaccharides by bifidobacteria   总被引:6,自引:0,他引:6  
Two types of chicory fructooligosaccharides (Fibruline Instant and Fibrulose F97) were metabolised by Bifidobacterium longum, B. infantis and B. angulatum. Chromatographic analysis of the medium after 120 h revealed a consumption of all the fructose oligomers present in the commercial chicory fructooligosaccharide mixtures for all the strains. Maximum measurable degree of polymerisation of the substrates before fermentation was 41. The higher biomass production was reached with B. infantis (1.4 and 1.7 g dry wt l–1) for its cultivation on medium complemented, respectively, with Fibruline Instant and Fibrulose F97 as substrate. These results give the opportunity to use chicory fructooligosaccharides as a prebiotic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号