首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

CD4+CD25highFOXP3+ regulatory T (Treg) cells, which include thymus-derived and peripherally induced cells, play a central role in immune regulation, and are therefore crucial to prevent graft-versus-host disease (GVHD). The increasing use of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for elderly patients with thymus regression, and our case of allo-HSCT shortly after total thymectomy, raised questions about the activity of thymus-derived Treg cells and peripherally induced Treg cells, which are otherwise indistinguishable.

Results

We found that despite pre-transplant thymectomy or older age, both naïve and effector Treg cells, as well as naïve and effector conventional T cells, proliferated in allo-HSCT recipients. Higher proportions of total Treg cells 1 month post allo-HSCT, and naïve Treg cells 1 year post allo-HSCT, appeared in patients achieving complete chimera without developing significant chronic GVHD, including our thymectomized patient, compared with patients who developed chronic GVHD.

Conclusions

Treg cells that modulate human allogeneic immunity may arise peripherally as well as in the thymus of allo-HSCT recipients.  相似文献   

2.
Despite the presence of toll like receptor (TLR) expression in conventional TCRαβ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 (H-2b) → B6D2F1 (H-2b/d), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type (H-2d) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-γ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-γ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT.  相似文献   

3.
Lymphocyte Activation Gene – 3 (LAG-3) is an immune checkpoint molecule that regulates both T-cell activation and homeostasis. However, the molecular mechanisms underlying LAG-3’s function are generally unknown. Using a model in which LAG-3 blockade or absence reliably augmented homeostatic proliferation in vivo, we found that IL-2 and STAT5 are critical for LAG-3 function. Similarly, LAG-3 blockade was ineffective in the absence of regulatory T-cells (Treg), suggesting an important role for LAG-3 in either the responsiveness of conventional T-cells (Tconv) to regulation, or a relative defect in the ability of LAG-3 KO regulatory T-cells (Treg) to suppress the proliferation of Tconv. In this model, LAG-3 KO Treg suppressed proliferation in a manner fairly similar to wild-type (WT) Treg, but LAG-3 KO Tconv were relatively resistant to suppression. Further studies also identified a role for LAG-3 in the induction/expansion of Treg. Finally, we found that LAG-3 blockade (or knockout) led to a relative skewing of naïve CD4 T-cells toward a TH1 phenotype both in vitro and in in vivo. Together, these data suggest that LAG-3 expression on Tconv cells makes them more susceptible to Treg based suppression, and also regulates the development of a TH1 T-cell response.  相似文献   

4.
Lag-3 has emerged as an important molecule in T cell biology. We investigated the role of Lag-3 in conventional T cell (Tcon) and regulatory T cell (Treg) function in murine GVHD with the hypothesis that Lag-3 engagement diminishes alloreactive T cell responses after bone marrow transplantation. We demonstrate that Lag-3 deficient Tcon (Lag-3−/− Tcon) induce significantly more severe GVHD than wild type (WT) Tcon and that the absence of Lag-3 on CD4 but not CD8 T cells is responsible for exacerbating GVHD. Lag-3−/− Tcon exhibited increased activation and proliferation as indicated by CFSE and bioluminescence imaging analyses and higher levels of activation markers such as CD69, CD107a, granzyme B, and Ki-67 as well as production of IL-10 and IFN-g early after transplantation. Lag-3−/− Tcon were less responsive to suppression by WT Treg as compared to WT Tcon. The absence of Lag-3, however, did not impair Treg function as both Lag-3−/− and WT Treg equally suppress the proliferation of Tcon in vitro and in vivo and protect against GVHD. Further, we demonstrate that allogeneic Treg acquire recipient MHC class II molecules through a process termed trogocytosis. As MHC class II is a ligand for Lag-3, we propose a novel suppression mechanism employed by Treg involving the acquisition of host MHC-II followed by the engagement of Lag-3 on T cells. These studies demonstrate for the first time the biologic function of Lag-3 expression on conventional and regulatory T cells in GVHD and identify Lag-3 as an important regulatory molecule involved in alloreactive T cell proliferation and activation after bone marrow transplantation.  相似文献   

5.
We have examined how the host environment influences the graft-vs-leukemia (GVL) response following transfer of donor T cells to allogeneic chimeras. Donor T cells induce significant GVL when administered in large numbers to established mixed chimeras (MC). However, when using limiting numbers of T cells, we found that late transfer to MC induced less GVL than did early transfer to freshly irradiated allogeneic recipients. Late donor T cell transfer to MC was associated with marked accumulation of anti-host CD8 cells within the spleen, but delayed kinetics of differentiation, reduced expression of effector molecules including IFN-gamma, impaired cytotoxicity, and higher rates of sustained apoptosis. Furthermore, in contrast to the spleen, we observed a significant delay in donor CD8 cell recruitment to the bone marrow, a key location for hematopoietic tumors. Increasing the numbers of T cells transferred to MC led to the enhancement of CTL activity and detectable increases in absolute numbers of IFN-gamma(+) cells without inducing graft-vs-host disease (GVHD). TLR-induced systemic inflammation accelerated differentiation of functional CTL in MC but was associated with severe GVHD. In the absence of inflammation, both recipient T and non-T cell populations impeded the full development of GVHD-inducing effector function. We conclude that per-cell deficits in the function of donor CD8 cells activated in MC may be overcome by transferring larger numbers of T cells without inducing GVHD.  相似文献   

6.
Inducible co-stimulator (ICOS) is a member of CD28/Cytotoxic T-lymphocyte Antigen-4 (CTLA-4) family and broadly expressed in activated CD4+ T cells and induced regulatory CD4+ T cells (CD4+ iTreg). ICOS-related signal pathway could be activated by the interaction between ICOS and its ligand (ICOSL). In our previous work, we established a cost-effective system to generate a novel human allo-antigen specific CD4hi Treg by co-culturing their naïve precursors with allogeneic CD40-activated B cells in vitro. Here we investigate the role of ICOS in the generation and function of CD4hi Treg by interrupting ICOS-ICOSL interaction with ICOS-Ig. It is found that blockade of ICOS-ICOSL interaction impairs the induction and expansion of CD4hi Treg induced by allogeneic CD40-activated B cells. More importantly, CD4hi Treg induced with the addition of ICOS-Ig exhibits decreased suppressive capacity on alloantigen-specific responses. Dysfunction of CD4hi Treg induced with ICOS-Ig is accompanied with its decreased exocytosis and surface CTLA-4 expression. Through inhibiting endocytosis with E64 and pepstatin A, surface CTLA-4 expression and suppressive functions of induced CD4hi Treg could be partly reversed. Conclusively, our results demonstrate the beneficial role of ICOS-ICOSL signal pathway in the generation and function of CD4hi Treg and uncover a novel relationship between ICOS and CTLA-4.  相似文献   

7.
Cell therapy with recipient Tregs achieves engraftment of allogeneic bone marrow (BM) without the need for cytoreductive conditioning (i.e., without irradiation or cytotoxic drugs). Thereby mixed chimerism and transplantation tolerance are established in recipients conditioned solely with costimulation blockade and rapamycin. However, clinical translation would be substantially facilitated if Treg-stimulating pharmaceutical agents could be used instead of individualized cell therapy. Recently, it was shown that interleukin-2 (IL-2) complexed with a monoclonal antibody (mAb) (clone JES6-1A12) against IL-2 (IL-2 complexes) potently expands and activates Tregs in vivo. Therefore, we investigated whether IL-2 complexes can replace Treg therapy in a costimulation blockade-based and irradiation-free BM transplantation (BMT) model. Unexpectedly, the administration of IL-2 complexes at the time of BMT (instead of Tregs) failed to induce BM engraftment in non-irradiated recipients (0/6 with IL-2 complexes vs. 3/4 with Tregs, p<0.05). Adding IL-2 complexes to an otherwise effective regimen involving recipient irradiation (1Gy) but no Treg transfer indeed actively triggered donor BM rejection at higher doses (0/8 with IL-2 complexes vs. 9/11 without, p<0.01) and had no detectable effect at two lower doses (3/5 vs. 9/11, p>0.05). CD8 T cells and NK cells of IL-2 complex-treated naïve mice showed an enhanced proliferative response towards donor antigens in vitro despite the marked expansion of Tregs. However, IL-2 complexes also expanded conventional CD4 T cells, CD8 T cells, NK cells, NKT cells and notably even B cells, albeit to a lesser extent. Notably, IL-2 complex expanded Tregs featured less potent suppressive functions than in vitro activated Tregs in terms of T cell suppression in vitro and BM engraftment in vivo. In conclusion, these data suggest that IL-2 complexes are less effective than recipient Tregs in promoting BM engraftment and in contrast actually trigger BM rejection, as their effect is not sufficiently restricted to Tregs but rather extends to several other lymphocyte populations.  相似文献   

8.
Donor CD8(+) T cells play a critical role in mediating graft-vs-leukemia (GVL) activity, but also induce graft-vs-host disease (GVHD) in recipients conditioned with total body irradiation (TBI). In this study, we report that injections of donor C57BL/6 (H-2(b)) or FVB/N (H-2(q)) CD8(+) T with bone marrow cells induced chimerism and eliminated BCL1 leukemia/lymphoma cells without clinical signs of GVHD in anti-CD3-conditioned BALB/c (H-2(d)) recipients, but induced lethal GVHD in TBI-conditioned recipients. Using in vivo and ex vivo bioluminescent imaging, we observed that donor CD8(+) T cells expanded rapidly and infiltrated GVHD target tissues in TBI-conditioned recipients, but donor CD8(+) T cell expansion in anti-CD3-conditioned recipients was confined to lymphohematological tissues. This confinement was associated with lack of up-regulated expression of alpha(4)beta(7) integrin and chemokine receptors (i.e., CXCR3) on donor CD8(+) T cells. In addition, donor CD8(+) T cells in anti-CD3-conditioned recipients were rendered unresponsive, anergic, Foxp3(+), or type II cytotoxic T phenotype. Those donor CD8(+) T cells showed strong suppressive activity in vitro and mediated GVL activity without clinical signs of GVHD in TBI-conditioned secondary recipients. These results indicate that anti-CD3 conditioning separates GVL activity from GVHD via confining donor CD8(+) T cell expansion to host lymphohemological tissues as well as tolerizing them in the host.  相似文献   

9.
Adipose tissue-derived mesenchymal stem cells (ADSC) exhibit immunosuppressive capabilities both in vitro and in vivo. Their use for therapy in the transplant field is attractive as they could render the use of immunosuppressive drugs unnecessary. The aim of this study was to investigate the effect of ADSC therapy on prolonging skin allograft survival. Animals that were treated with a single injection of donor allogeneic ADSC one day after transplantation showed an increase in donor skin graft survival by approximately one week. This improvement was associated with preserved histological morphology, an expansion of CD4+ regulatory T cells (Treg) in draining lymph nodes, as well as heightened IL-10 expression and down-regulated IL-17 expression. In vitro, ADSC inhibit naïve CD4+ T cell proliferation and constrain Th-1 and Th-17 polarization. In summary, infusion of ADSC one day post-transplantation dramatically increases skin allograft survival by inhibiting the Th-17 pathogenic immune response and enhancing the protective Treg immune response. Finally, these data suggest that ADSC therapy will open new opportunities for promoting drug-free allograft survival in clinical transplantation.  相似文献   

10.
11.
12.
Myeloid differentiation factor 88 (MyD88) is an essential adaptor protein in the Toll-like receptor-mediated innate signaling pathway, as well as in interleukin-1 receptor (IL-1R) and IL-18R signaling. The importance of MyD88 in the regulation of innate immunity to microbial pathogens has been well demonstrated. However, its role in regulating acquired immunity to viral pathogens and neuropathogenesis is not entirely clear. In the present study, we examine the role of MyD88 in the CD4+ T-cell response following lymphocytic choriomeningitis virus (LCMV) infection. We demonstrate that wild-type (WT) mice developed a CD4+ T-cell-mediated wasting disease after intracranial infection with LCMV. In contrast, MyD88 knockout (KO) mice did not develop wasting disease in response to the same infection. This effect was not the result of MyD88 regulation of IL-1 or IL-18 responses since IL-1R1 KO and IL-18R KO mice were not protected from weight loss. In the absence of MyD88, naïve CD4+ T cells failed to differentiate to LCMV-specific CD4 T cells. We demonstrated that MyD88 KO antigen-presenting cells are capable of activating WT CD4+ T cells. Importantly, when MyD88 KO CD4+ T cells were reconstituted with an MyD88-expressing lentivirus, the rescued CD4+ T cells were able to respond to LCMV infection and support IgG2a antibody production. Overall, these studies reveal a previously unknown role of MyD88-dependent signaling in CD4+ T cells in the regulation of the virus-specific CD4+ T-cell response and in viral infection-induced immunopathology in the central nervous system.  相似文献   

13.
The immunosuppressant Protosappanin A (PrA), isolated from the medicinal herb, promotes cardiac allograft survival, diminishes inflammatory cell infiltration, and inhibits interferon γ-induced protein 10 kDa (IP-10) mRNA expression in rats cardiac grafts. Binding of the chemokine IP-10 to its cognate receptor, CXCR3, plays crucial roles in allograft immunity, especially by mediating the recruitment of effector T cells to allografted tissues. In this study, we attempted to determine whether PrA-mediated inhibition of IP-10 contributes to the effect of reduced T cell infiltration into cardiac allograft within a rat model. Administration of PrA (25 mg/kg daily) via oral gavage following heart transplantation significantly reduced the increase of IP-10 mRNA level in allograft and prevented IP-10 secretion by peripheral blood mononuclear cells (PBMC) isolated from recipient rats seven days posttransplantation. Furthermore, in vitro experiments demonstrated that PrA addition to control PBMC prevented IP-10 secretion. Chemotactic migration assays were utilized to evaluate recipient T cell migration towards PBMC supernatant. PrA administration impaired PBMC supernatant-induced T cell migration. Additional in vitro experiments revealed that PrA slightly reduced naïve T cell migration towards chemokines. The presence of IP-10 in PBMC supernatant prevented PrA from reducing T cell migration in PrA-treated recipients. Neither CXCR3 chemokine ligand Mig nor non-CXCR3 chemokine ligand SDF-1 had any effect on T cell migration in PrA-treated recipients. The addition of anti-CXCR3 antibody restored PrA-mediated inhibition of T cell migration. Immunofluorescence microscopy showed that IP-10 was expressed mainly in CD68 positive infiltrating monocytes. Furthermore, PrA consistently reduced CXCR3+T cell infiltration into cardiac allografts. The reduced intensity of CXCR3 staining in PrA-treated allografts contributed to the previously depressed naïve T cell migrating activity induced by PrA. Collectively, these data indicate that PrA inhibition of IP-10 activity reduced recipient T cell migration and infiltration of cardiac allografts, thus partially explaining the immunosuppressive effect of PrA.  相似文献   

14.
Background: Graft-versus-leukemia (GVL) effect is an essential component in the course of allogeneic stem cell transplantation (SCT). However, both prevention and treatment of established graft-versus-host disease (GVHD), including with drugs such as cyclosporine, can suppress GVL effects. Mycophenolate mofetil (MMF) is becoming a standard of care in SCT recipients for better prevention of GVHD as well as for promoting stem cell engraftment. Aims: To evaluate the effect of MMF, an immunosuppressive drug increasingly used for prevention of GVHD, on disease recurrence following SCT in a preclinical animal model. Since GVL effects may be also induced by alloreactive natural killer (NK) cells, the goal was to investigate the effects of MMF on the activity of lymphokine-activated killer (LAK) cells. Methods: MMF was administered by daily intraperitoneal injection starting at day 1 post-SCT. Cytotoxic LAK activity was measured by 5-h 35S-release assay, and GVL was tested by the appearance of BCL1 leukemia in a semi-mismatched (C57BL/6 donors to [BALB/c × C57BL/6] F1 recipients) murine model. Results: A dosage regimen of 28–200 mg/kg per day MMF had no negative effect on either cytotoxic LAK activity or GVL (as measured by finding of leukemic cells in recipient spleen by PCR or the appearance of clinical leukemia with adoptive transfer). Conclusions: These results suggest that MMF does not impair GVL effects or reduce LAK cell activity in mice.  相似文献   

15.
YD Joo  WS Lee  HJ Won  SM Lee  HR Kim  JK Park  SG Park  IW Choi  I Choi  SK Seo 《Cytokine》2012,60(1):277-283
The immunoregulatory effects of granulocyte colony-stimulating factor (G-CSF) on allogeneic peripheral blood cell transplantation (PBCT) have been demonstrated to reduce acute graft-versus-host disease (GVHD). However, the underlying mechanism is still not clear. In this study, we focused on the direct effects of G-CSF on donor CD4(+) T cell responses after transplantation. We observed that lethally irradiated B6D2F1 recipient mice that are transplanted with CD4(+) T cells from G-CSF-treated B6 donors showed mild attenuations in severity and mortality compared with recipients transplanted with PBS-treated CD4(+) T cells. Notably, skin GVHD was significantly reduced, but no such reduction was observed in other organs. Although there was no difference with respect to alloreactive expansion or Foxp3(+) Treg induction, the use of G-CSF-treated CD4(+) T cells significantly reduced the numbers of IL-17-producing and RORγt-expressing cells in the secondary lymphoid organs of allogeneic recipients after transplantation compared with the use of the control cells. Finally, we found that the suppressor of cytokine signaling-3 (SOCS3) expression in G-CSF-treated donor CD4(+) T cells was much higher than that in control CD4(+) T cells. Our results demonstrate that the inhibition of Th17 cell differentiation by SOCS3 induction is associated with the immunoregulatory role of G-CSF in CD4(+) T cell-mediated acute GVHD.  相似文献   

16.
Accumulating evidence suggests a contribution of T cell-derived IL-17, IL-21 and IL-22 cytokines in skin immune homeostasis as well as inflammatory disorders. Here, we analyzed whether the cytokine-producing T lymphocytes could be induced by the different subsets of human skin dendritic cells (DCs), i.e., epidermal Langerhans cells (LCs), dermal CD1c+CD14 and CD14+ DCs (DDCs). DCs were purified following a 2-day migration from separated epidermal and dermal sheets and co-cultured with allogeneic T cells before cytokine secretion was explored. Results showed that no skin DCs could induce substantial IL-17 production by naïve CD4+ or CD8+T lymphocytes whereas all of them could induce IL-17 production by memory T cells. In contrast, LCs and CD1c+CD14DDCs were able to differentiate naïve CD4+T lymphocytes into IL-22 and IL-21-secreting cells, LCs being the most efficient in this process. Intracellular cytokine staining showed that the majority of IL-21 or IL-22 secreting CD4+T lymphocytes did not co-synthesized IFN-γ, IL-4 or IL-17. IL-21 and IL-22 production were dependent on the B7/CD28 co-stimulatory pathway and ICOS-L expression on skin LCs significantly reduced IL-21 level. Finally, we found that TGF-β strongly down-regulates both IL-21 and IL-22 secretion by allogeneic CD4+ T cells. These results add new knowledge on the functional specialization of human skin DCs and might suggest new targets in the treatment of inflammatory skin disorders.  相似文献   

17.
The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body’s internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-β and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP.  相似文献   

18.
Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (TEM) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1). This can be correlated with decreased apoptosis but not with enhanced homeostatic turnover potential of these cells. PD-1 ablation increased the frequency of memory phenotype CD4 IFN-γ producers but decreased the respective frequency of IL-17A-producing cells. In particular, IFN-γ producers were more abundant but IL-17A producing cells were more scarce among PD-1 KO TEM-phenotype cells relative to WT. Transfer of peripheral naïve CD4 T cells suggested that accumulated PD-1 KO TEM-phenotype cells are of peripheral and not of thymic origin. This accumulation effect was mediated by CD4 cell-intrinsic mechanisms as shown by mixed bone marrow chimera experiments. Naïve PD-1 KO CD4 T cells gave rise to higher numbers of TEM-phenotype lymphopenia-induced proliferation memory cells. In conclusion, we provide evidence that PD-1 has an important role in determining the composition and functional aspects of memory phenotype CD4 T cell pool.  相似文献   

19.

Background

Pre-transplant infusion of rabbit anti-T cell globulin (ATG) is increasingly used as prevention of graft-versus-host disease (GVHD) after allogeneic peripheral blood stem cell transplantation (PBSCT). However, the precise impact of pre-transplant ATG on immune recovery after PBSCT is still poorly documented.

Methods

In the current study, we compared immune recovery after myeloablative PBSCT in 65 patients who either received (n = 37) or did not (n = 28) pre-transplant ATG-Fresenius (ATG-F). Detailed phenotypes of circulating T, B, natural killer (NK) and invariant NKT (iNKT) cells were analyzed by multicolor flow cytometry at serial time-points from day 40 to day 365 after transplantation. Thymic function was also assessed by sjTREC quantification. Serious infectious events were collected up to 2 years post-transplantation.

Results

Pre-transplant ATG-F had a prolonged (for at least up to 1-year) and selective negative impact on the T-cell pool, while it did not impair the recovery of B, NK nor iNKT cells. Among T cells, ATG-F selectively compromised the recovery of naïve CD4+, central memory CD4+ and naïve CD8+ cells, while it spared effector memory T and regulatory T cells. Levels of sjTRECs were similar in both cohorts at 1-year after PBSCT, suggesting that ATG-F unlikely impaired thymopoiesis at long-term after PBSCT. Finally, the incidence and rate of serious infections were similar in both groups, while ATG-F patients had a lower incidence of grade II-IV acute graft-versus-host disease.

Conclusions

Pre-transplant ATG-F induces long-lasting modulation of the circulating T-cell pool after myeloablative PBSCT, that may participate in preventing graft-versus-host disease without deeply compromising anti-pathogen defenses.  相似文献   

20.
Acute and chronic graft-versus-host disease (GVHD) remain the major complications limiting the efficacy of allogeneic hemopoietic stem cell transplantation. Chronic GVHD can evolve from acute GVHD, or in some cases may overlap with acute GVHD, but how acute GVHD evolves to chronic GVHD is unknown. In this study, in a classical CD8+ T cell-dependent mouse model, we found that pathogenic donor CD4+ T cells developed from engrafted hemopoietic stem cells (HSCs) in C57BL/6SJL(B6/SJL, H-2(b)) mice suffering from acute GVHD after receiving donor CD8+ T cells and HSCs from C3H.SW mice (H-2(b)). These CD4+ T cells were activated, infiltrated into GVHD target tissues, and produced high levels of IFN-gamma. These in vivo-generated CD4+ T cells caused lesions characteristic of chronic GVHD when adoptively transferred into secondary allogeneic recipients and also caused GVHD when administered into autologous C3H.SW recipients. The in vivo generation of pathogenic CD4+ T cells from engrafted donor HSCs was thymopoiesis dependent. Keratinocyte growth factor treatment improved the reconstitution of recipient thymic dendritic cells in CD8+ T cell-repleted allogeneic hemopoietic stem cell transplantation and prevented the development of pathogenic donor CD4+ T cells. These results suggest that de novo-generated donor CD4+ T cells, arising during acute graft-versus-host reactions, are key contributors to the evolution from acute to chronic GVHD. Preventing or limiting thymic damage may directly ameliorate chronic GVHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号