首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactobacillus casei, L. paracasei, and L. rhamnosus form a closely related taxonomic group (Lactobacillus casei group) within the facultatively heterofermentative lactobacilli. Here, we report the complete genome sequences of L. paracasei JCM 8130 and L. casei ATCC 393, and the draft genome sequence of L. paracasei COM0101, all of which were isolated from daily products. Furthermore, we re-annotated the genome of L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG), which we have previously reported. We confirmed that ATCC 393 is distinct from other strains previously described as L. paracasei. The core genome of 10 completely sequenced strains of the L. casei group comprised 1,682 protein-coding genes. Although extensive genome-wide synteny was found among the L. casei group, the genomes of ATCC 53103, JCM 8130, and ATCC 393 contained genomic islands compared with L. paracasei ATCC 334. Several genomic islands, including carbohydrate utilization gene clusters, were found at the same loci in the chromosomes of the L. casei group. The spaCBA pilus gene cluster, which was first identified in GG, was also found in other strains of the L. casei group, but several L. paracasei strains including COM0101 contained truncated spaC gene. ATCC 53103 encoded a higher number of proteins involved in carbohydrate utilization compared with intestinal lactobacilli, and extracellular adhesion proteins, several of which are absent in other strains of the L. casei group. In addition to previously fully sequenced L. rhamnosus and L. paracasei strains, the complete genome sequences of L. casei will provide valuable insights into the evolution of the L. casei group.  相似文献   

2.
In Gram-positive bacteria, sortase-dependent pili mediate the adhesion of bacteria to host epithelial cells and play a pivotal role in colonization, host signaling, and biofilm formation. Lactobacillus rhamnosus strain GG, a well known probiotic bacterium, also displays on its cell surface mucus-binding pilus structures, along with other LPXTG surface proteins, which are processed by sortases upon specific recognition of a highly conserved LPXTG motif. Bioinformatic analysis of all predicted LPXTG proteins encoded by the L. rhamnosus GG genome revealed a remarkable conservation of glycine residues juxtaposed to the canonical LPXTG motif. Here, we investigated and defined the role of this so-called triple glycine (TG) motif in determining sortase specificity during the pilus assembly and anchoring. Mutagenesis of the TG motif resulted in a lack or an alteration of the L. rhamnosus GG pilus structures, indicating that the TG motif is critical in pilus assembly and that they govern the pilin-specific and housekeeping sortase specificity. This allowed us to propose a regulatory model of the L. rhamnosus GG pilus biogenesis. Remarkably, the TG motif was identified in multiple pilus gene clusters of other Gram-positive bacteria, suggesting that similar signaling mechanisms occur in other, mainly pathogenic, species.  相似文献   

3.
Lactobacillus rhamnosus is a lactic acid bacterium that is found in a large variety of ecological habitats, including artisanal and industrial dairy products, the oral cavity, intestinal tract or vagina. To gain insights into the genetic complexity and ecological versatility of the species L. rhamnosus, we examined the genomes and phenotypes of 100 L. rhamnosus strains isolated from diverse sources. The genomes of 100 L. rhamnosus strains were mapped onto the L. rhamnosus GG reference genome. These strains were phenotypically characterized for a wide range of metabolic, antagonistic, signalling and functional properties. Phylogenomic analysis showed multiple groupings of the species that could partly be associated with their ecological niches. We identified 17 highly variable regions that encode functions related to lifestyle, i.e. carbohydrate transport and metabolism, production of mucus-binding pili, bile salt resistance, prophages and CRISPR adaptive immunity. Integration of the phenotypic and genomic data revealed that some L. rhamnosus strains possibly resided in multiple niches, illustrating the dynamics of bacterial habitats. The present study showed two distinctive geno-phenotypes in the L. rhamnosus species. The geno-phenotype A suggests an adaptation to stable nutrient-rich niches, i.e. milk-derivative products, reflected by the alteration or loss of biological functions associated with antimicrobial activity spectrum, stress resistance, adaptability and fitness to a distinctive range of habitats. In contrast, the geno-phenotype B displays adequate traits to a variable environment, such as the intestinal tract, in terms of nutrient resources, bacterial population density and host effects.  相似文献   

4.
Lactobacillus rhamnosus GG (ATCC 53103) is one of the clinically best-studied probiotic organisms. Moreover, L. rhamnosus GG displays very good in vitro adherence to epithelial cells and mucus. Here, we report that L. rhamnosus GG is able to form biofilms on abiotic surfaces, in contrast to other strains of the Lactobacillus casei group tested under the same conditions. Microtiter plate biofilm assays indicated that in vitro biofilm formation by L. rhamnosus GG is strongly modulated by culture medium factors and conditions related to the gastrointestinal environment, including low pH; high osmolarity; and the presence of bile, mucins, and nondigestible polysaccharides. Additionally, phenotypic analysis of mutants affected in exopolysaccharides (wzb), lipoteichoic acid (dltD), and central metabolism (luxS) showed their relative importance in biofilm formation by L. rhamnosus GG.  相似文献   

5.
Lactobacillus rhamnosus GG is one of the best-characterized lactic acid bacteria and can be considered a probiotic paradigm. Comparative and functional genome analysis showed that L. rhamnosus GG harbors a genomic island including the spaCBA-srtC1 gene cluster, encoding the cell surface-decorating host-interacting pili. Here, induced mutagenesis was used to study pilus biogenesis in L. rhamnosus GG. A combination of two powerful approaches, mutation selection and next-generation sequencing, was applied to L. rhamnosus GG for the selection of pilus-deficient mutants from an enriched population. The isolated mutants were first screened by immuno-dot blot analysis using antiserum against pilin proteins. Relevant mutants were selected, and the lack of pili was confirmed by immunoelectron microscopy. The pilosotype of 10 mutant strains was further characterized by analyzing pilin expression using Western blot, dot blot, and immunofluorescence methods. A mucus binding assay showed that the mutants did not adhere to porcine intestinal mucus. Comparative genome sequence analysis using the Illumina MiSeq platform allowed us to determine the nature of the mutations in the obtained pilus-deficient derivatives. Three major classes of mutants with unique genotypes were observed: class I, with mutations in the srtC1 gene; class II, with a deletion containing the spaCBA-srtC1 gene cluster; and class III, with mutations in the spaA gene. Only a limited number of collateral mutations were observed, and one of the pilus-deficient derivatives with a deficient srtC1 gene contained 24 other mutations. This strain, PB12, can be considered a candidate for human trials addressing the impact of the absence of pili.  相似文献   

6.
Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23.  相似文献   

7.
A primer design strategy named CODEHOP (consensus-degenerate hybrid oligonucleotide primer) for amplification of distantly related sequences was used to detect the priming glycosyltransferase (GT) gene in strains of the Lactobacillus casei group. Each hybrid primer consisted of a short 3′ degenerate core based on four highly conserved amino acids and a longer 5′ consensus clamp region based on six sequences of the priming GT gene products from exopolysaccharide (EPS)-producing bacteria. The hybrid primers were used to detect the priming GT gene of 44 commercial isolates and reference strains of Lactobacillus rhamnosus, L. casei, Lactobacillus zeae, and Streptococcus thermophilus. The priming GT gene was detected in the genome of both non-EPS-producing (EPS) and EPS-producing (EPS+) strains of L. rhamnosus. The sequences of the cloned PCR products were similar to those of the priming GT gene of various gram-negative and gram-positive EPS+ bacteria. Specific primers designed from the L. rhamnosus RW-9595M GT gene were used to sequence the end of the priming GT gene in selected EPS+ strains of L. rhamnosus. Phylogenetic analysis revealed that Lactobacillus spp. form a distinctive group apart from other lactic acid bacteria for which GT genes have been characterized to date. Moreover, the sequences show a divergence existing among strains of L. rhamnosus with respect to the terminal region of the priming GT gene. Thus, the PCR approach with consensus-degenerate hybrid primers designed with CODEHOP is a practical approach for the detection of similar genes containing conserved motifs in different bacterial genomes.  相似文献   

8.
The members of the Lactobacillus genus are widely used in the food and feed industry and show a remarkable ecological adaptability. Several Lactobacillus strains have been marketed as probiotics as they possess health‐promoting properties for the host. In the present study, we used two complementary next‐generation sequencing technologies to deduce the genome sequences of two Lactobacillus casei strains LcA and LcY, which were isolated from the products Actimel and Yakult, commercialized as probiotics. The LcA and LcY draft genomes have, respectively, an estimated size of 3067 and 3082 Mb and a G+C content of 46.3%. Both strains are close to identical to each other and differ by no more than minor chromosomal re‐arrangements, substitutions, insertions and deletions, as evident from the verified presence of one insertion‐deletion (InDel) and only 29 single‐nucleotide polymorphisms (SNPs). In terms of coding capacity, LcA and LcY are predicted to encode a comparable exoproteome, indicating that LcA and LcY are likely to establish similar interactions with human intestinal cells. Moreover, both L. casei LcA and LcY harboured a 59.6 kb plasmid that shared high similarities with plasmids found in other L. casei strains, such as W56 and BD‐II. Further analysis revealed that the L. casei plasmids constitute a good evolution marker within the L. casei species. The plasmids of the LcA and LcY strains are almost identical, as testified by the presence of only three verified SNPs, and share a 3.5 kb region encoding a remnant of a lactose PTS system that is absent from the plasmids of W56 and BD‐II but conserved in another smaller L. casei plasmid (pLC2W). Our observations imply that the results obtained in animal and human experiments performed with the Actimel and Yakult strains can be compared with each other as these strains share a very recent common ancestor.  相似文献   

9.
Lactobacillus rhamnosus GG is of general interest as a probiotic. Although L. rhamnosus GG is often used in clinical trials, there are few genetic tools to further determine its mode of action or to develop it as a vehicle for heterologous gene expression in therapy. Therefore, we developed a reproducible, efficient electroporation procedure for L. rhamnosus GG. The best transformation efficiency obtained was 104 transformants per μg of DNA. We validated this protocol by tagging L. rhamnosus GG with green fluorescent protein (GFP) using the nisin-controlled expression (NICE) system. Parameters for overexpression were optimized, which allowed expression of gfp in L. rhamnosus GG upon induction with nisin. The GFP+ strain can be used to monitor the survival and behavior of L. rhamnosus GG in vivo. Moreover, implementation of the NICE system as a gene expression switch in L. rhamnosus GG opens up possibilities for improving and expanding the performance of this strain. The GFP-labeled strain was used to demonstrate that L. rhamnosus GG is sensitive to human beta-defensin-2 but not to human beta-defensin-1.  相似文献   

10.
Lactobacillus rhamnosus GG is a well-established Gram-positive probiotic strain, whose health-benefiting properties are dependent in part on prolonged residence in the gastrointestinal tract and are likely dictated by adherence to the intestinal mucosa. Previously, we identified two pilus gene clusters (spaCBA and spaFED) in the genome of this probiotic bacterium, each of which contained the predicted genes for three pilin subunits and a single sortase. We also confirmed the presence of SpaCBA pili on the cell surface and attributed an intestinal mucus-binding capacity to one of the pilin subunits (SpaC). Here, we report cloning of the remaining pilin genes (spaA, spaB, spaD, spaE, and spaF) in Escherichia coli, production and purification of the recombinant proteins, and assessment of the adherence of these proteins to human intestinal mucus. Our findings indicate that the SpaB and SpaF pilin subunits also exhibit substantial binding to mucus, which can be inhibited competitively in a dose-related manner. Moreover, the binding between the SpaB pilin subunit and the mucosal substrate appears to operate through electrostatic contacts and is not related to a recognized mucus-binding domain. We conclude from these results that it is conceivable that two pilin subunits (SpaB and SpaC) in the SpaCBA pilus fiber play a role in binding to intestinal mucus, but for the uncharacterized and putative SpaFED pilus fiber only a single pilin subunit (SpaF) is potentially responsible for adhesion to mucus.The human intestinal microbiota is comprised of more than 1,000 species of commensal and probiotic bacteria, including several members of the Gram-positive genus Lactobacillus (42, 52). Many strains of lactobacilli have a variety of health-promoting effects in humans and consequently have been used commercially as probiotics in foods and nutritional supplements (for a review, see reference 48). Often a necessary precondition for colonization of the human gastrointestinal (GI) tract by probiotic bacteria is preferential adherence to the intestinal mucosa, which in turn prolongs and stabilizes intestinal residence, possibly triggering a variety of defensive host cell immune responses and excluding pathogenic bacteria by competitive inhibition or steric hindrance (48). The outermost layer of the intestinal mucosa, which is a secreted and hydrated mucus gel that acts as a protective barrier and filter, consists primarily of a heterogeneous mixture of highly glycosylated membrane-associated and secreted glycoproteins called mucins (36). Although many studies have demonstrated that various probiotic Lactobacillus spp. adhere initially to the mucus gel layer, relatively few details about the overall molecular mechanism of mucosal adhesion are known (for a review, see reference 23). Nonetheless, several studies have reported that the adherence of Lactobacillus cells to the mucosal barrier is frequently due to a surface protein-mediated interaction. For example, Rojas et al. (44) determined that the ability of Lactobacillus fermentum 104R (reclassified as Lactobacillus reuteri 104R) to bind to porcine small intestinal mucus and gastric mucin was facilitated by a cell surface-localized mucus adhesion-promoting protein (MapA). Similarly, Macías-Rodríguez et al. (25) described two adhesion-associated proteins specific for porcine intestinal mucus-related substrates that are attached noncovalently to the cell surface of L. fermentum BCS87. Also, Roos and Jonsson (45) demonstrated adherence between the surface-associated Mub (mucus binding) protein from L. reuteri 1063 and intestinal mucus components derived from porcine and poultry sources. In addition, Pretzer et al. (38) identified a large multidomain surface protein in Lactobacillus plantarum WCFS1 with binding specificity for the mannose moieties in mucins. Interestingly, Kinoshita et al. (19) discovered that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an enzyme normally associated with glycolysis, is localized on the surface of L. plantarum LA318 cells and adheres tightly to human colonic mucin.Until quite recently, only indirect or circumstantial evidence suggested that pilus-like structures extend from the surface of probiotic lactobacilli (28, 39). However, in a previous study (18) we demonstrated that Lactobacillus rhamnosus GG, a well-studied and widely used probiotic strain (48), is a piliated microbe. Pili are slender, elongated, heteromeric, proteinaceous surface appendages that are present in numerous other Gram-positive bacteria and often mediate adherence between pathogenic and nonpathogenic species and their host cell targets (for reviews, see references 20, 26, 40, and 49) but have now emerged as possible facilitators of adhesion for probiotic colonization of the GI tract (18). Prototypically, the pilus fiber is composed of one major pilin that forms the pilus backbone and two minor pilin subunits (26, 40, 49), one subunit that has a role in signaling the cessation of pilus polymerization (27, 30) and is deposited at the pilus base and at irregular intervals along the pilus backbone and another subunit with an adhesive property that is often localized at the pilus tip (1, 41). The current model of pilus assembly in Corynebacterium diphtheriae (27) suggests that these pilin subunits are connected covalently to one another through isopeptidyl bonds by a membrane-bound transpeptidase (pilin-specific sortase) to produce polymerized pili, which are then attached covalently to the cell wall by a different transpeptidase (the housekeeping sortase) that is capable of recognizing all C-terminal LPXTG-like substrates. The genes encoding these pilus proteins, as well as the pilin-specific sortase, are clustered at the same locus in the genome (54).In a recent study (18), we discovered that in the L. rhamnosus GG genome the genes encoding two different pilus fibers are in the spaCBA and spaFED gene clusters and, based on a genomic comparison with another L. rhamnosus strain (LC705), that the spaCBA cluster is present in only L. rhamnosus GG. Moreover, in our previous work (18) the predicted genes for the major pilin subunit forming the pilus backbone (SpaA and SpaD), one ancillary minor pilin subunit (SpaB and SpaE) that (based on a model for pilus biogenesis) is likely located at the pilus base and decorates the pilus backbone (27), and another larger adherent minor pilin subunit (SpaC and SpaF) were identified in L. rhamnosus GG on the basis of amino acid identity with pilins from two enterococcal species. In addition, we also detected in the sequences of the predicted spaCBA and spaFED gene products the anticipated consensus motifs and domains characteristic of a pilin primary structure, including the Sec-dependent secretion signal, the sortase recognition site, the YPKN pilin-like motif, and the E box (18). Subsequently, expression and localization of intact SpaCBA pili on the cell surface of L. rhamnosus GG were confirmed by immunoblotting and immunogold-labeled electron microscopy using antiserum specific for the SpaC pilin (18). Adhesion interactions between the L. rhamnosus GG strain and intestinal mucosal surfaces have been reported and characterized in previous studies (15, 31, 33, 46, 55-57). However, in our recent study (18), SpaCBA pilus-mediated binding of L. rhamnosus GG cells to human intestinal mucus was revealed in adhesion experiments performed with both L. rhamnosus GG pretreated with SpaC antiserum and an L. rhamnosus GG spaC insertion mutant. More specifically, we demonstrated that there was significant binding between recombinant SpaC pilin protein and intestinal mucus and thus identified a mucus-binding capacity for one of the minor pilin components localized at the tip and along the backbone of the SpaCBA pilus (18). To expand on these findings, here we describe a study in which each of the remaining predicted pilin subunits (SpaA, SpaB, SpaD, SpaE, and SpaF) encoded by genes in the spaCBA and spaFED gene clusters was overproduced in a recombinant form, purified to apparent homogeneity, and characterized to determine its adherence to human intestinal mucus.  相似文献   

11.
12.
13.
The minD gene encoding an inhibitor cell division MinD homolog from Lactobacillus acidophilus VTCC-B-871 was cloned. We showed that there were 97 % homology between minD genes of L. acidophilus VTCC-B-871 and Lactobacillus rhamnosus GG and Lactobacillus rhamnosus Lc705. Based on the analysis of the DNA sequence data from the L. rhamnosus genome project and sequenced minD gene of L. acidophilus VTCC-B-871, a pair of primers was designed to identified the different minD genes from L. acidophilus ATCC 4356, L. rhamnosus ATCC 11443. Besides, the polymerase chain reaction product of minD gene was also obtained in L. rhamnosus PN04, a strain was isolated from Vietnamese Hottuynia cordata Thunb. In addition, we performed a phylogenetic analysis of the deduced amino acid sequence of MinD homologs from L. acidophilus VTCC-B-871 with the other strains and compared the predicted three-dimension structure of L. acidophilus VTCC-B-871 MinD with Escherichia coli MinD, there are similarity that showed evolution of these strains. The overexpression of L. acidophilus VTCC-B-871 MinD in E. coli led to cell filamentation in IPTG and morphology changes in different sugar stresses, interestingly. The present study is the first report characterizing the Lactobacilus MinD homolog that will be useful in probiotic field.  相似文献   

14.
Probiotic Lactobacillus strains are widely used to benefit human and animal health, although the exact mechanisms behind their interactions with the host and the microbiota are largely unknown. Fluorescent tagging of live probiotic cells is an important tool to unravel their modes of action. In this study, the implementation of different heterologously expressed fluorescent proteins for the labelling of the model probiotic strains Lactobacillus rhamnosusGG (gastrointestinal) and Lactobacillus rhamnosusGR‐1 (vaginal) was explored. Heterologous expression of mTagBFP2 and mCherry resulted in long‐lasting fluorescence of L. rhamnosusGG and GR‐1 cells, using the nisin‐controlled expression (NICE) system. These novel fluorescent strains were then used to study in vitro aspects of their microbe–microbe and microbe–host interactions. Lactobacillus rhamnosusGG and L. rhamnosusGR‐1 expressing mTagBFP2 and mCherry could be visualized in mixed‐species biofilms, where they inhibited biofilm formation by Salmonella Typhimurium–gfpmut3 expressing the green fluorescent protein. Likewise, fluorescent L. rhamnosusGG and L. rhamnosusGR‐1 were implemented for the visualization of their adhesion patterns to intestinal epithelial cell cultures. The fluorescent L. rhamnosus strains developed in this study can therefore serve as novel tools for the study of probiotic interactions with their environment.  相似文献   

15.
In this study, we investigated whether probiotic lysates can modify the tight-junction function of human primary keratinocytes. The keratinocytes were grown on cell culture inserts and treated with lysates from Bifidobacterium longum, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, or Lactobacillus rhamnosus GG. With the exception of L. fermentum (which decreased cell viability), all strains markedly enhanced tight-junction barrier function within 24 h, as assessed by measurements of transepithelial electrical resistance (TEER). However, B. longum and L. rhamnosus GG were the most efficacious, producing dose-dependent increases in resistance that were maintained for 4 days. These increases in TEER correlated with elevated expression of tight-junction protein components. Neutralization of Toll-like receptor 2 abolished both the increase in TEER and expression of tight-junction proteins induced by B. longum, but not L. rhamnosus GG. These data suggest that some bacterial strains increase tight-junction function via modulation of protein components but the different pathways involved may vary depending on the bacterial strain.  相似文献   

16.
The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect.  相似文献   

17.
Lactobacillus rhamnosus GG is a human intestinal isolate that has been studied intensively because of its probiotic properties. We have previously shown that L. rhamnosus GG produces proteinaceous pili that earlier had been observed only in Gram-positive pathogens (M. Kankainen et al., Proc. Natl. Acad. Sci. U. S. A. 106:17193-17198, 2009). These pili were found to be encoded by the spaCBA gene cluster, and the pilus-associated SpaC pilin was shown to confer on the cells a mucus-binding ability. In addition to the spaCBA cluster, another putative pilus cluster, spaFED, was predicted from the L. rhamnosus GG genome sequence. Herein, we show that only SpaCBA pili are produced by L. rhamnosus, and we describe a detailed analysis of cell wall-associated and affinity-purified SpaCBA pili by Western blotting and immunogold electron microscopy. Our results indicate that SpaCBA pili are heterotrimeric protrusions with a SpaA subunit as the shaft-forming major pilin. Only a few SpaB subunits could be observed in pilus fibers. Instead, SpaB pilins were found at pilus bases, as assessed by immunogold double labeling of thin sections of cells, suggesting that SpaB is involved in the termination of pilus assembly. The SpaC adhesin was present along the whole pilus length at numbers nearly equaling those of SpaA. The relative amount and uniform distribution of SpaC within pili not only makes it possible to exert both long-distance and intimate contact with host tissue but also provides mucus-binding strength, which explains the prolonged intestinal residency times observed for L. rhamnosus GG compared to that of nonpiliated lactobacilli.  相似文献   

18.
Lactobacillus rhamnosus GG is one of the most thoroughly studied probiotic strains. Its advantages in the treatment of gastrointestinal disorders are well documented. The aim of the present study was to demonstrate with colonic biopsies the attachment of strain GG to human intestinal mucosae and the persistence of the attachment after discontinuation of GG administration. A whey drink fermented with strain GG was fed to human volunteers for 12 days. Fecal samples were collected before, during, and after consumption. L. rhamnosus GG-like colonies were detected in both fecal and colonic biopsy samples. Strain GG was identified by its characteristic colony morphology, a lactose fermentation test, and PCR. This study showed that strain GG was able to attach in vivo to colonic mucosae and, although the attachment was temporary, to remain for more than a week after discontinuation of GG administration. The results demonstrate that the study of fecal samples alone is not sufficient in evaluating colonization by a probiotic strain.  相似文献   

19.
Roy D  Ward P 《Current microbiology》2004,49(5):313-320
Comparative analysis of fructose-1,6-bisphosphatase gene (fbp) sequences was evaluated for the differentiation of reference and clinical strains of Lactobacillus rhamnosus. The sequences of 1,971 nucleotides of the fbp gene were determined on both DNA strands for 21 L. rhamnosus strains, representing reference, probiotic, and clinical strains. No PCR amplification of the fbp gene was observed for other species of the Lactobacillus casei complex (L. casei and L. zeae) or strains of Lactobacillus acidophilus, Streptococcus thermophilus, and Escherichia coli. Phylogenetic analysis of the fbp putative amino acid sequences of L. rhamnosus strains by the neighbor-joining method showed clear distinct positions of this species. The phylogenetic tree, derived from fbp nucleotide sequences, showed four clear divisions between strains of L. rhamnosus. From a taxonomic point of view, our results confirm for the first time that fbp gene sequences have high discriminating power for strains of L. rhamnosus that are difficult to differentiate.  相似文献   

20.
Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Therefore, probiotic strains should be able to survive passage through the human gastrointestinal tract. Human gastrointestinal tract survival of probiotics in a low-fat spread matrix has, however, never been tested. The objective of this randomized, double-blind, placebo-controlled human intervention study was to test the human gastrointestinal tract survival of Lactobacillus reuteri DSM 17938 and Lactobacillus rhamnosus GG after daily consumption of a low-fat probiotic spread by using traditional culturing, as well as molecular methods. Forty-two healthy human volunteers were randomly assigned to one of three treatment groups provided with 20 g of placebo spread (n = 13), 20 g of spread with a target dose of 1 × 109 CFU of L. reuteri DSM 17938 (n = 13), or 20 g of spread with a target dose of 5 × 109 CFU of L. rhamnosus GG (n = 16) daily for 3 weeks. Fecal samples were obtained before and after the intervention period. A significant increase, compared to the baseline, in the recovery of viable probiotic lactobacilli in fecal samples was demonstrated after 3 weeks of daily consumption of the spread containing either L. reuteri DSM 17938 or L. rhamnosus GG by selective enumeration. In the placebo group, no increase was detected. The results of selective enumeration were supported by quantitative PCR, detecting a significant increase in DNA resulting from the probiotics after intervention. Overall, our results indicate for the first time that low-fat spread is a suitable carrier for these probiotic strains.The human intestinal microflora or microbiota constitutes a metabolically active microbial environment. This community is relatively stable in the guts of healthy individuals (20). Some of the microbial groups harbor species that are potentially harmful, whereas others, such as the bifidobacteria and lactobacilli, are regarded as beneficial (8). Specific members of the genera Lactobacillus and Bifidobacterium are being applied in functional foods as probiotics (25). Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host (9). The current scientific consensus is that probiotics should be alive to exert their beneficial effect in the human gastrointestinal (GI) tract (6). Consequently, probiotics should remain alive in the product, such that the daily effective dose per serving is still present at the end of the shelf life (14). Food matrices, production processes, or product usages that involve heating can affect the viability of probiotics (24).Typically, those members selected for probiotic application are chosen for their resistance to passage through the upper GI tract and thus are able to transiently colonize the gut (25). Human GI tract survival of probiotics should lead to shedding of live cells in fecal samples. GI tract survival is, however, dependent on both the strain and the food matrix involved (27). Fecal recovery of several probiotic strains has been demonstrated in different food matrices, including fermented milk and yoghurt (10, 26, 29), fruit drinks (21), a cereal bar (22), supplements (13, 17, 27), and infant formula (29).For this study, we have selected two well-established probiotic strains to test the suitability of a low-fat spread as a probiotic carrier, namely, Lactobacillus reuteri DSM 17938 (BioGaia, Sweden) and Lactobacillus rhamnosus GG (ATCC 53103; Valio, Finland). L. reuteri DSM 17938 was derived from L. reuteri ATCC 55730 by curing of two plasmids harboring antibiotic resistance genes (23). A series of in vitro experiments confirmed the retention of the functional properties of the daughter strain, as no differences in colony morphology, fermentation patterns, production of reuterin, generation time, mucus-binding ability, or tolerance to bovine bile were found between L. reuteri ATCC 55730 and DSM 17938. The daughter strain is somewhat more resistant to low pH and grows to a higher density in vitro (23). Several studies have been published which provide data on the survival of L. reuteri ATCC 55730 in the human GI tract at doses of 4 × 108 to 1 × 1010 CFU/day in freeze-dried matrices and chewable tablets (32-34). Furthermore, L. reuteri DSM 17938 was demonstrated to survive human GI tract passage in the same way as L. reuteri ATCC 55730 (23).L. rhamnosus GG has been isolated from a healthy human intestinal flora by Goldin et al. (10). L. rhamnosus GG is relatively resistant to acid and bile, adheres in vitro to epithelial cells, and can produce an antimicrobial substance (10, 15). A wide range of studies have been published which provide data on the survival of L. rhamnosus GG in the human GI tract (3, 4, 10, 18, 19, 27-30), as well as transient colonization of the intestinal microbiota in healthy adults in various formats, including freeze-dried powder, capsules, and tablets or via fermented milk drinks, yoghurt, or fruit juice. Saxelin et al. (28) evaluated the dose-response effect of orally administered L. rhamnosus GG in powder form on fecal colonization in healthy adults, which indicated that consumption of approximately 1010 to 1011 CFU/day was required to reach detectable levels in fecal samples from volunteers. This was also the case when L. rhamnosus GG was administered in gelatin capsules (29). Additionally, Saxelin et al. (27) observed that milk, but possibly also other protective compounds in food, can improve the survival of L. rhamnosus GG. Fecal recovery of L. rhamnosus GG in milk-based products was shown at dose levels of around 2 × 109 CFU/day.It is, however, not known whether probiotics can survive passage through the human GI tract after the consumption of a low-fat spread. The objective of this randomized, double-blind, placebo-controlled human intervention study was therefore to test the human GI tract survival of L. reuteri DSM 17938 and L. rhamnosus GG after daily consumption of a low-fat probiotic spread by using traditional culturing, as well as molecular methods. The primary outcome parameter of this study was a significant change from the baseline in the number of probiotic bacteria of the respective strains in fecal samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号