首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Murine models indicate that Gαs and its extra-long variant XLαs, both of which are derived from GNAS, markedly differ regarding their cellular actions, but these differences are unknown. Here we investigated activation-induced trafficking of Gαs and XLαs, using immunofluorescence microscopy, cell fractionation, and total internal reflection fluorescence microscopy. In transfected cells, XLαs remained localized to the plasma membrane, whereas Gαs redistributed to the cytosol after activation by GTPase-inhibiting mutations, cholera toxin treatment, or G protein-coupled receptor agonists (isoproterenol or parathyroid hormone (PTH)(1-34)). Cholera toxin treatment or agonist (isoproterenol or pituitary adenylate cyclase activating peptide-27) stimulation of PC12 cells expressing Gαs and XLαs endogenously led to an increased abundance of Gαs, but not XLαs, in the soluble fraction. Mutational analyses revealed two conserved cysteines and the highly charged domain as being critically involved in the plasma membrane anchoring of XLαs. The cAMP response induced by M-PTH(1-14), a parathyroid hormone analog, terminated quickly in HEK293 cells stably expressing the type 1 PTH/PTH-related peptide receptor, whereas the response remained maximal for at least 6 min in cells that co-expressed the PTH receptor and XLαs. Although isoproterenol-induced cAMP response was not prolonged by XLαs expression, a GTPase-deficient XLαs mutant found in certain tumors and patients with fibrous dysplasia of bone and McCune-Albright syndrome generated more basal cAMP accumulation in HEK293 cells and caused more severe impairment of osteoblastic differentiation of MC3T3-E1 cells than the cognate Gαs mutant (gsp oncogene). Thus, activated XLαs and Gαs traffic differently, and this may form the basis for the differences in their cellular actions.  相似文献   

3.
G protein-coupled receptors (GPCRs) are critical players in tumor growth and progression. The redundant roles of GPCRs in tumor development confound effective treatment; therefore, targeting a single common signaling component downstream of these receptors may be efficacious. GPCRs transmit signals through heterotrimeric G proteins composed of Gα and Gβγ subunits. Hyperactive Gαs signaling can mediate tumor progression in some tissues; however, recent work in medulloblastoma and basal cell carcinoma revealed that Gαs can also function as a tumor suppressor in neoplasms derived from ectoderm cells including neural and epidermal stem/progenitor cells. In these stem-cell compartments, signaling through Gαs suppresses self-renewal by inhibiting the Sonic Hedgehog (SHH) and Hippo pathways. The loss of GNAS, which encodes Gαs, leads to activation of these pathways, over-proliferation of progenitor cells, and tumor formation. Gαs activates the cAMP-dependent protein kinase A (PKA) signaling pathway and inhibits activation of SHH effectors Smoothened-Gli. In addition, Gαs-cAMP-PKA activation negatively regulates the Hippo pathway by blocking the NF2-LATS1/2-Yap signaling. In this review, we will address the novel function of the signaling network regulated by Gαs in suppression of SHH-driven tumorigenesis and the therapeutic approaches that can be envisioned to harness this pathway to inhibit tumor growth and progression.  相似文献   

4.
These studies explore the effects of statins on cyclic AMP-modulated signaling pathways in vascular endothelial cells. We previously observed (Kou, R., Sartoretto, J., and Michel, T. (2009) J. Biol. Chem. 284, 14734-14743) that simvastatin treatment of endothelial cells leads to a marked decrease in PKA-modulated phosphorylation of the protein VASP. Here we show that long-term treatment of mice with simvastatin attenuates the vasorelaxation response to the β-adrenergic agonist isoproterenol, without affecting endothelin-induced vasoconstriction or carbachol-induced vasorelaxation. We found that statin treatment of endothelial cells dose-dependently inhibits PKA activation as assessed by analyses of serine 157 VASP phosphorylation as well as Epac-mediated Rap1 activation. These effects of simvastatin are completely reversed by mevalonate and by geranylgeranyl pyrophosphate, implicating geranylgeranylation as a critical determinant of the stain response. We used biochemical approaches as well as fluorescence resonance energy transfer (FRET) methods with a cAMP biosensor to show that simvastatin treatment of endothelial cells markedly inhibits cAMP accumulation in response to epinephrine. Importantly, simvastatin treatment significantly decreases Gα(s) abundance, without affecting other Gα subunits. Simvastatin treatment does not influence Gα(s) protein stability, and paradoxically increases the abundance of Gα(s) mRNA. Finally, we found that simvastatin treatment inhibits Gα(s) translation mediated by Akt/mTOR/eIF4/4EBP. Taken together, these findings establish a novel mechanism by which simvastatin modulates β-adrenergic signaling in vascular wall, and may have implications for cardiovascular therapeutics.  相似文献   

5.
β-Adrenergic receptors can activate extracellular signal-regulated kinases (ERKs) via different mechanisms. In this study, we investigated the molecular mechanism of β1-adrenergic receptor (β1AR)-mediated ERK activation in African green monkey kidney COS-7 cells. Treatment of cells with isoproterenol (ISO), a β1AR selective agonist, induced phosphorylation of ERK1/2 in a dose-dependent manner. ISO-stimulated ERK phosphorylation was not influenced by the Gβγ inhibitor, βAR kinase carboxyl terminal (βARKct) or by the Gi inhibitor, pertussis toxin (PTX), but it was clearly abolished via inhibition of protein kinase A (PKA) with H89, or of mitogen-activated protein kinase kinase (MEK1) with PD98059, revealing that the Gαs subunit is involved in ERK regulation through the PKA/MEK1 pathway. We also tested the effect of the adenylate cyclase activator forskolin on ERK activation, and the result was identical to that of ISO stimulation. Moreover, pretreatment with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 or with the Src tyrosine kinase inhibitor PP2 did not affect ERK activation. These observations suggest a mechanism of β1AR-mediated ERK activity that involves the Gαs subunit, but not EGFR or Src tyrosine kinase.  相似文献   

6.
Intestinal homeostasis and the coordinated actions of digestion, absorption and excretion are tightly regulated by a number of gastrointestinal hormones. Most of them exert their actions through G-protein-coupled receptors. Recently, we showed that the absence of Gαq/Gα11 signaling impaired the maturation of Paneth cells, induced their differentiation toward goblet cells, and affected the regeneration of the colonic mucosa in an experimental model of colitis. Although an immunohistochemical study showed that Gαq/Gα11 were highly expressed in enterocytes, it seemed that enterocytes were not affected in Int-Gq/G11 double knock-out intestine. Thus, we used an intestinal epithelial cell line to examine the role of signaling through Gαq/Gα11 in enterocytes and manipulated the expression level of Gαq and/or Gα11. The proliferation was inhibited in IEC-6 cells that overexpressed Gαq/Gα11 and enhanced in IEC-6 cells in which Gαq/Gα11 was downregulated. The expression of T-cell factor 1 was increased according to the overexpression of Gαq/Gα11. The expression of Notch1 intracellular cytoplasmic domain was decreased by the overexpression of Gαq/Gα11 and increased by the downregulation of Gαq/Gα11. The relative mRNA expression of Muc2, a goblet cell marker, was elevated in a Gαq/Gα11 knock-down experiment. Our findings suggest that Gαq/Gα11-mediated signaling inhibits proliferation and may support a physiological function, such as absorption or secretion, in terminally differentiated enterocytes.  相似文献   

7.
Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that Gαs plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO2 responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved Gαs also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that Gαs plays a role in the OR mediated signaling cascade in Drosophila.  相似文献   

8.
Bailes HJ  Zhuang LY  Lucas RJ 《PloS one》2012,7(1):e30774
Originally developed to regulate neuronal excitability, optogenetics is increasingly also used to control other cellular processes with unprecedented spatiotemporal resolution. Optogenetic modulation of all major G-protein signalling pathways (Gq, Gi and Gs) has been achieved using variants of mammalian rod opsin. We show here that the light response driven by such rod opsin-based tools dissipates under repeated exposure, consistent with the known bleaching characteristics of this photopigment. We continue to show that replacing rod opsin with a bleach resistant opsin from Carybdea rastonii, the box jellyfish, (JellyOp) overcomes this limitation. Visible light induced high amplitude, reversible, and reproducible increases in cAMP in mammalian cells expressing JellyOp. While single flashes produced a brief cAMP spike, repeated stimulation could sustain elevated levels for 10s of minutes. JellyOp was more photosensitive than currently available optogenetic tools, responding to white light at irradiances ≥1 μW/cm(2). We conclude that JellyOp is a promising new tool for mimicking the activity of Gs-coupled G protein coupled receptors with fine spatiotemporal resolution.  相似文献   

9.
Because of their surface localization, G protein-coupled receptors (GPCRs) are often pharmaceutical targets as they respond to a variety of extracellular stimuli (e.g., light, hormones, small molecules) that may activate or inhibit a downstream signaling response. The adenosine A2A receptor (A2AR) is a well-characterized GPCR that is expressed widely throughout the human body, with over 10 crystal structures determined. Truncation of the A2AR C-terminus is necessary for crystallization as this portion of the receptor is long and unstructured; however, previous work suggests shortening of the A2AR C-terminus from 412 to 316 amino acids (A2AΔ316R) ablates downstream signaling, as measured by cAMP production, to below that of constitutive full-length A2AR levels. As cAMP production is downstream of the first activation event—coupling of G protein to its receptor—investigating that first step in activation is important in understanding how the truncation effects native GPCR function. Here, using purified receptor and Gαs proteins, we characterize the association of A2AR and A2AΔ316R to Gαs with and without GDP or GTPγs using surface plasmon resonance (SPR). Gαs affinity for A2AR was greatest for apo-Gαs, moderately affected in the presence of GDP and nearly completely ablated by the addition of GTPγs. Truncation of the A2AR C-terminus (A2AΔ316R) decreased the affinity of the unliganded receptor for Gαs by ~20%, suggesting small changes to binding can greatly impact downstream signaling.  相似文献   

10.
Various heterotrimeric G(i) proteins are considered to be involved in cell migration and effector function of immune cells. The underlying mechanisms, how they control the activation of myeloid effector cells, are not well understood. To elucidate isoform-redundant and -specific roles for Gα(i) proteins in these processes, we analyzed mice genetically deficient in Gα(i2) or Gα(i3). First, we show an altered distribution of tissue macrophages and blood monocytes in the absence of Gα(i2) but not Gα(i3). Gα(i2)-deficient but not wild-type or Gα(i3)-deficient mice exhibited reduced recruitment of macrophages in experimental models of thioglycollate-induced peritonitis and LPS-triggered lung injury. In contrast, genetic ablation of Gα(i2) had no effect on Gα(i)-dependent peritoneal cytokine production in vitro and the phagocytosis-promoting function of the Gα(i)-coupled C5a anaphylatoxin receptor by liver macrophages in vivo. Interestingly, actin rearrangement and CCL2- and C5a anaphylatoxin receptor-induced chemotaxis but not macrophage CCR2 and C5a anaphylatoxin receptor expression were reduced in the specific absence of Gα(i2). Furthermore, knockdown of Gα(i2) caused decreased cell migration and motility of RAW 264.7 cells, which was rescued by transfection of Gα(i2) but not Gα(i3). These results indicate that Gα(i2), albeit redundant to Gα(i3) in some macrophage activation processes, clearly exhibits a Gα(i) isoform-specific role in the regulation of macrophage migration.  相似文献   

11.
12.
The aim of this study was to perform an in silico analysis of the interaction of the human β2 adrenergic receptor with Gαs. In a first step, a systematic surface-interaction-scan between the inactive or active human β2 adrenergic receptor and Gαs was performed in order to gain knowledge about energetically preferred areas on the potential energy surface. Subsequently, two energetically favored regions for the active human β2 adrenergic receptor–Gαs complex were identified. Two representative complex structures were put into a POPC (1-palmitoyl-2-oleoyl-phosphatidylcholine) bilayer and solvated in order to perform molecular dynamic simulations. The simulations revealed that both conformations, which have comparable potential energy, are stable. A mean number of about 14 hydrogen bonds was observed between the active receptor and Gαs for both conformations. Based on these results, two energetically favored β2–Gαscomplexes can be proposed.  相似文献   

13.
Regulator of G protein signaling domain-containing Rho guanine-nucleotide exchange factors (RGS-RhoGEFs) directly links activated forms of the G12 family of heterotrimeric G protein α subunits to the small GTPase Rho. Stimulation of G12/13-coupled GPCRs or expression of constitutively activated forms of α12 and α13 has been shown to induce the translocation of the RGS-RhoGEF, p115-RhoGEF, from the cytoplasm to the plasma membrane (PM). However, little is known regarding the functional importance and mechanisms of this regulated PM recruitment, and thus PM recruitment of p115-RhoGEF is the focus of this report. A constitutively PM-localized mutant of p115-RhoGEF shows a much greater activity compared to wild type p115-RhoGEF in promoting Rho-dependent neurite retraction of NGF-differentiated PC12 cells, providing the first evidence that PM localization can activate p115-RhoGEF signaling. Next, we uncovered the unexpected finding that Rho is required for α13-induced PM translocation of p115-RhoGEF. However, inhibition of Rho did not prevent α12-induced PM translocation of p115-RhoGEF. Additional differences between α13 and α12 in promoting PM recruitment of p115-RhoGEF were revealed by analyzing RGS domain mutants of p115-RhoGEF. Activated α12 effectively recruits the isolated RGS domain of p115-RhoGEF to the PM, whereas α13 only weakly does. On the other hand, α13 strongly recruits to the PM a p115-RhoGEF mutant containing amino acid substitutions in an acidic region at the N-terminus of the RGS domain; however, α12 is unable to recruit this p115-RhoGEF mutant to the PM. These studies provide new insight into the function and mechanisms of α12/13-mediated PM recruitment of p115-RhoGEF.  相似文献   

14.

Background

Two pertussis toxin sensitive Gi proteins, Gi2 and Gi3, are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous Gi isoforms are functionally distinct. To test for isoform-specific functions of Gi proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC).

Methods

Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gαi2 (Gαi2 −/−) or Gαi3 (Gαi3 −/−). mRNA levels of Gαi/o isoforms and L-VDCC subunits were quantified by real-time PCR. Gαi and Cavα1 protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings.

Results

In cardiac tissue from Gαi2 −/− mice, Gαi3 mRNA and protein expression was upregulated to 187±21% and 567±59%, respectively. In Gαi3 −/− mouse hearts, Gαi2 mRNA (127±5%) and protein (131±10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gαi2 −/− mice was lowered (−7.9±0.6 pA/pF, n = 11, p<0.05) compared to wild-type cells (−10.7±0.5 pA/pF, n = 22), whereas it was increased in myocytes from Gαi3 −/− mice (−14.3±0.8 pA/pF, n = 14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gαi2 (but not of Gαi3) and following treatment with pertussis toxin in Gαi3 −/−. The pore forming Cavα1 protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Cavα1 and Cavβ2 subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gαi2.

Conclusion

Our data provide novel evidence for an isoform-specific modulation of L-VDCC by Gαi proteins. In particular, loss of Gαi2 is reflected by alterations in channel kinetics and likely involves an impairment of the ERK1/2 signalling pathway.  相似文献   

15.
The mechanisms of G protein coupling to G protein-coupled receptors (GPCR) share general characteristics but may exhibit specific interactions unique for each GPCR/G protein partnership. The extreme C terminus (CT) of G protein α-subunits has been shown to be important for association with GPCR. Hypothesizing that the extreme CT of Gα(s) is an essential component of the molecular landscape of the GPCR, human LH receptor (LHR), and β(2)-adrenergic receptor (β(2)-AR), a model cell system was created for the expression and manipulation of Gα(s) subunits in LHR(+) s49 ck cells that lack endogenous Gα(s). On the basis of studies involving truncations, mutations, and chain extensions of Gα(s), the CT was found to be necessary for LHR and β(2)-AR signaling. Some general similarities were found for the responses of the two receptors, but significant differences were also noted. Computational modeling was performed with a combination of comparative modeling, molecular dynamics simulations, and rigid body docking. The resulting models, focused on the Gα(s) CT, are supported by the experimental observations and are characterized by the interaction of the four extreme CT amino acid residues of Gα(s) with residues in LHR and β(2)-AR helix 3, (including R of the DRY motif), helix 6, and intracellular loop 2. This portion of Gα(s) recognizes the same regions of the two GPCR, although with differences in the details of selected interactions. The predicted longer cytosolic extensions of helices 5 and 6 of β(2)-AR are expected to contribute significantly to differences in Gα(s) recognition by the two receptors.  相似文献   

16.
Many of the systematically and historically valuable collections in the DePauw University Herbarium (DPU), Greencastle, Indiana, were made by Truman G. Yuncker during his numerous expeditions. He collected in large, and until then unexplored, areas of Honduras, and undertook several expeditions to islands in the South Pacific (Manua, Niue, and Tonga) and Hawaii. In his late years he collected in the West Indies and in Brazil. His extensive collections ofCuscuta (Cuscutaceae) and Piperaceae each became among the largest in the world. In this article an itinerary of his expeditions is presented.  相似文献   

17.
18.
Glycyrrhetic acid (GA) exerts synergistic anti-asthmatic effects via a β2-adrenergic receptor (β2AR)-mediated pathway. Cholesterol is an important component of the structure and function of lipid rafts, which play critical roles in the β2AR-Gs-adenylate cyclase (AC)-mediated signaling pathway. Owing to the structural similarities between GA and cholesterol, we investigated the possibility that GA enhances β2AR signaling by altering cholesterol distribution. Azide-terminal GA (ATGA) was synthesized and applied to human embryonic kidney 293 (HEK293) cells expressing fusion β2AR, and the electron spin resonance (ESR) technique was utilized. GA was determined to be localized predominantly on membrane and decreased their cholesterol contents. Thus, the fluidity of the hydrophobic region increased but not the polar surface of the cell membrane. The conformations of membrane proteins were also changed. GA further changed the localization of Gαs from lipid rafts to non-raft regions, resulting the binding of β2AR and Gαs, as well as in reduced β2AR internalization. Co-localization of β2AR, Gαs, and AC increased isoproterenol-induced cAMP production and cholesterol reloading attenuated this effect. A speculation wherein GA enhances beta-adrenergic activity by increasing the functional linkage between the subcomponents of the membrane β2AR-protein kinase A (PKA) signaling pathway was proposed. The enhanced efficacy of β2AR agonists by this novel mechanism could prevent tachyphylaxis.  相似文献   

19.
Heterotrimeric G-proteins are the immediate downstream effectors of G-protein coupled receptors (GPCRs). Endogenous protein guanine nucleotide dissociation inhibitors (GDIs) like AGS3/4 and RGS12/14 function through GPR/Goloco GDI domains. Extensive characterization of GPR domain peptides indicate they function as selective GDIs for Gαi by competing for the GPCR and Gβγ and preventing GDP release. We modified a GPR consensus peptide by testing FGF and TAT leader sequences to make the peptide cell permeable. FGF modification inhibited GDI activity while TAT preserved GDI activity. TAT-GPR suppresses G-protein coupling to the receptor and completely blocked α2-adrenoceptor (α2AR) mediated decreases in cAMP in HEK293 cells at 100 nM. We then sought to discover selective small molecule inhibitors for Gαi. Molecular docking was used to identify potential molecules that bind to and stabilize the Gαi–GDP complex by directly interacting with both Gαi and GDP. Gαi–GTP and Gαq–GDP were used as a computational counter screen and Gαq–GDP was used as a biological counter screen. Thirty-seven molecules were tested using nucleotide exchange. STD NMR assays with compound 0990, a quinazoline derivative, showed direct interaction with Gαi. Several compounds showed Gαi specific inhibition and were able to block α2AR mediated regulation of cAMP. In addition to being a pharmacologic tool, GDI inhibition of Gα subunits has the advantage of circumventing the upstream component of GPCR-related signaling in cases of overstimulation by agonists, mutations, polymorphisms, and expression-related defects often seen in disease.  相似文献   

20.
异三元G蛋白是真核细胞感知外界信号后将信号传递到胞内的重要分子,在生物中参与了广泛的信号转导途径,如光、神经递质和激素等。为了研究G蛋白在家蚕Bombyx mori中的生理功能及其作用机理,我们运用生物信息学方法在已有的家蚕基因组数据库中找到了一段与G蛋白alpha亚基(Gα)同源性很高的序列。通过设计特异性引物,运用PCR和RACE技术,成功地克隆了一个家蚕Gα基因的全长cDNA序列。该基因全长1 509 bp (GenBank登录号:EU914850),开放阅读框(ORF)为1 158 bp,编码385个氨基酸。Blast和DNAstar等软件分析发现该基因编编码的蛋白质与其他物种已知的Gα具有一定的保守性,将它命名为BmGα73B。RT-PCR扩增检测该基因在家蚕不同组织器官和不同发育时期的转录表达活性,结果表明它在不同发育时期的家蚕各组织器官中都有表达。从组织水平上看,BmGα73B在中肠中表达量最高,在马氏管、头部和神经索等组织中也有适量表达。在家蚕的不同发育时期中,转录水平峰值出现在幼虫期,在蛹早期也有适量的表达,而在预蛹期、蛹后期和成虫期几乎没有表达。结果说明BmGα73B可能参与了家蚕生长前期的中肠发育过程,为进一步研究G蛋白在家蚕发育过程的作用奠定了一定的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号